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Abstract

This paper considers the problem of transfer-
ring experimental findings learned from mul-
tiple heterogeneous domains to a different
environment, in which only passive observa-
tions can be collected. Pearl and Bareinboim
(2011) established a complete characteriza-
tion for such transfer between two domains,
a source and a target, and this paper gener-
alizes their results to multiple heterogeneous
domains. It establishes a necessary and suf-
ficient condition for deciding when effects in
the target domain are estimable from both
statistical and causal information transferred
from the experiments in the source domains.
The paper further provides a complete algo-
rithm for computing the transport formula,
that is, a way of fusing observational and ex-
perimental information to synthesize an un-
biased estimate of the desired effects.

1 Motivation

The problem of transporting and synthesizing experi-
mental knowledge from heterogeneous settings is per-
vasive in science. Conclusions that are obtained in a
laboratory setting are transported and applied else-
where, in an environment that differs in many aspects
from that of the laboratory. In data-driven sciences,
experiments are conducted on disparate domains, but
the intention is almost invariably to fuse the acquired
knowledge, and translate it into some meaningful claim
about a target domain, which is usually different than
any of the individual study domains.
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However, the conditions under which this extrapo-
lation can be legitimized were not formally artic-
ulated. Although the problem has been discussed
in many areas of statistics, economics, and the
health sciences, under rubrics such as “external va-
lidity” (Campbell and Stanley, 1963, Manski, 2007),
“meta-analysis” (Glass, 1976, Hedges and Olkin, 1985,
Owen, 2009), “overgeneralization” (Hofler, Gloster,
and Hoyer (2010)), “quasi-experiments” (Shadish,
Cook, and Campbell (2002), Ch. 3, Adelman (1991)),
“heterogeneity” (Morgan and Winship (2007)), these
discussions are limited to verbal narratives in the form
of heuristic guidelines for experimental researchers –
no formal treatment of the problem has been at-
tempted to answer the practical challenge of general-
izing causal knowledge across multiple domains posed
in this paper.

Artificial Intelligence and Statistics provide the tools
for tackling the meta-transportability problem. First,
the distinction between statistical and causal knowl-
edge has received syntactic representation through
causal diagrams (Pearl, 1995, Spirtes, Glymour, and
Scheines, 2000, Pearl, 2009). Second, the inferential
machinery provided by the do-calculus (Pearl, 1995,
2009, Koller and Friedman, 2009) is particularly suit-
able for handling knowledge transfer across domains.

Armed with these techniques, Pearl and Bareinboim
(2011) introduced a formal language for encoding dif-
ferences and commonalities between domains and de-
rived a complete set of conditions under which trans-
portability of empirical findings is feasible between
two domains, a source and a target. This paper
generalizes their results to the case of multiple het-
erogeneous sources, a task that we call here “meta-
transportability”.

More formally, the meta-transportability problem con-
cerns the transfer of causal knowledge from a hetero-
geneous collection of source domains Π = {π1, ..., πn}
to a target domain π∗. In each domain πi ∈ Π, exper-
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iments can be performed and causal knowledge gath-
ered. In π∗, potentially different from πi, only passive
observations can be collected but no experiments con-
ducted. The problem is to infer a causal relationship R
in π∗ using knowledge obtained in Π. Clearly, if noth-
ing is known about the relationship between Π and π∗,
the problem is trivial; no transfer can be justified. Yet
the fact that all scientific experiments are conducted
with the intent of being used elsewhere (e.g., outside
the laboratory) implies that scientific progress relies
on the assumption that certain domains share com-
mon characteristics and that, owed to these common-
alities, causal claims would be valid in new settings
even where experiments cannot be conducted.

This paper generalizes the one dimensional theory in-
troduced in (Pearl and Bareinboim, 2011) to cases
where there exist multiple heterogeneous source do-
mains. Remarkably, while the effects of interest might
not be individually transportable to the target domain
from anyone of the available sources, combining differ-
ent pieces from the various sources can still enable us
to estimate the effects on the target domain (to be
shown later on).

The goal of this paper is to formally characterize the
conditions under which the target quantity is (non-
parametrically) estimable from the available data, and
then to develop an effective procedure to decide when
and how this transfer is possible.

2 Previous Work and Our
Contributions

Consider Fig. 1(a) in which the node S represents fac-
tors that produce differences between source and tar-
get populations. Assume that we conduct a random-
ized trial in Los Angeles (LA) and estimate the causal
effect of treatment X on outcome Y for every age
group Z = z, denoted P (y|do(x), z). We now wish to
generalize the results to the population of the United
States (U.S.), but we find the distribution P (x, y, z) in
LA to be different from the one in the U.S. (call the
latter P ∗(x, y, z)). In particular, the average age in
the U.S. is significantly higher than that in LA. How
are we to estimate the causal effect of X on Y in U.S.,
denoted R = P ∗(y|do(x))? 1 2

The selection diagram for this example (Fig. 1) con-
veys the assumption that the only difference between
the two populations are factors determining age dis-
tributions, shown as S → Z, while age-specific ef-
fects P ∗(y|do(x), Z = z) are invariant across cities.
Difference-generating factors are represented by a spe-
cial set of variables called selection variables S (or
simply S-variables), which are graphically depicted as

X Y X Y

Z

(a) (b)

S

S

Figure 1: (a) Selection diagram illustrating when
transportability among two domains is trivially solved
through a simple recalibration. (b) Smallest selection
diagram in which a causal relation is not transportable.

square nodes (�). From this assumption, the overall
causal effect in the U.S. can be derived as follows:

R =
∑

z

P ∗(y|do(x), z)P ∗(z)

=
∑

z

P (y|do(x), z)P ∗(z)

The last line is the transport formula for R.
It combines experimental results obtained in LA,
P (y|do(x), z), with observational aspects of the U.S.
population, P ∗(z), to obtain an experimental claim
P ∗(y|do(x)) about the U.S.. In this trivial exam-
ple, the transport formula amounts to a simple re-
calibration (or re-weighting) of the age-specific effects
to account for the new age distribution. In general,
however, a more involved mixture of experimental and
observational findings would be necessary to obtain
a bias-free estimate of the target relation R, a full
characterization of which is given in (Bareinboim and
Pearl, 2012).

One might surmise that multiple pairwise trans-
portability would be sufficient to solve the meta-
transportability problem, but this is not the case. To
witness, consider Fig. 2 which concerns the trans-
ference of experimental results from two sources
({πa, πb}) to infer the effect of X on Y in π∗, R =
P ∗(y|do(x)). In these graphs, X may represent the
treatment (e.g., drug), Z represents an intermediate
variable (e.g., biomarker), and Y represents the out-
come (e.g., survival).

A simple analysis based on (Bareinboim and Pearl,
2012) shows that R cannot be transported from either
source alone. However, we can decompose R into sub-
relations such that each one is separately transportable
from the source domains (in this case, πa or πb), as is
demonstrated in Section 4 below.

1We will use Px(y) interchangeably with P (y | do(x)).
2We use the structural interpretation of causal diagrams

as described in (Pearl, 2000, pp. 205).
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The goal of this paper is to go further and characterize
the conditions for the existence of such decomposition,
as well as its form, for any arbitrary collection of selec-
tion diagrams. Our contributions can be summarized
as follows:

• We derive a general graphical condition for de-
ciding meta-transportability of causal effects. We
show that meta-transportability is feasible if and
only if a certain graph structure does not appear
as an edge subgraph of the inputted collection of
selection diagrams.

• We construct a complete algorithm for deciding
meta-transportability of joint causal effects and
returning the correct transport formula whenever
those effects are meta-transportable.

• We show that the do-calculus is complete for de-
ciding meta-transportability.

3 Definitions and Preliminaries

The basic semantical framework in our analysis rests
on structural causal models as defined in (Pearl,
2000, pp. 205), also called probabilistic causal models,
or simply data-generating models. In the structural
causal framework (Pearl, 2000, Ch. 7), actions are
modifications of functional relationships, and each ac-
tion do(x) on a causal model M produces a new model
Mx = 〈U,V,Fx, P (U)〉, where Fx is obtained after re-
placing fX ∈ F for every X ∈ X with a new function
that outputs a constant value x given by do(x).

We follow the conventions given in (Pearl, 2000). We
will denote variables by capital letters and their real-
ized values by small letters. Similarly, sets of variables
will be denoted by bold capital letters, sets of realized
values by bold letters. We will use the typical graph-
theoretic terminology with the corresponding abbre-
viations Pa(Y)G, An(Y)G, and De(Y)G, which will
denote respectively the set of observable parents, an-
cestors, and descendants of the node set Y in G. By
convention, these sets will include the arguments as
well, for instance, the ancestral set An(Y)G will in-
clude Y. We will usually omit the graph subscript
whenever the graph in question is assumed or obvi-
ous. A graph GY will denote the induced subgraph
G containing nodes in Y and all arrows between such
nodes. Finally, GXZ stands for the edge subgraph of
G where all incoming arrows into X and all outgoing
arrows from Z are removed.

Key to the analysis of transportability is the notion
of “identifiability,” defined below, which expresses the
requirement that causal effects are computable from a

(b)
X YZ

(a)
X YZ

Figure 2: Selection diagrams illustrating impossibil-
ity of obtaining P ∗(y|do(x)) through individual trans-
portability from πa and πb to π∗, yet a more elaborated
analysis yield the desired result combining different
pieces from both domains.

combination of data P and assumptions embodied in
a causal graph G.

Definition 1 (Causal Effects Identifiability (Pearl,
2000, pp. 77)). The causal effect of an action do(x)
on a set of variables Y such that Y ∩X = ∅ is said to
be identifiable from P in G if Px(y) is uniquely com-
putable from P (V ) in any model that induces G.

Causal models and their induced graphs are usually
associated with one particular domain (also called set-
ting, study, population, environment). In ordinary
transportability, this representation was extended to
capture properties of two domains simultaneously.
This is made possible if we assume that the structural
equations share the same set of arguments, though the
functional forms of the equations may vary arbitrarily
(Bareinboim and Pearl, 2012). 3

Definition 2 (Selection Diagram). Let 〈M,M∗〉 be a
pair of structural causal models (Pearl, 2000, pp. 205)
relative to domains 〈π, π∗〉, sharing a causal diagram
G. 〈M,M∗〉 is said to induce a selection diagram D if
D is constructed as follows:

1. Every edge in G is also an edge in D;

2. D contains an extra edge Si → Vi whenever there
might exist a discrepancy fi 6= f∗i or P (Ui) 6=
P ∗(Ui) between M and M∗.

In words, the S-variables locate the mechanisms where
structural discrepancies between the two domains are
suspected to take place.4 Alternatively, the absence of
a selection node pointing to a variable represents the
assumption that the mechanism responsible for assign-
ing value to that variable is identical in both domains.

3As discussed in the reference, the assumption of no
structural changes between domains can be relaxed.

4Transportability assumes that enough structural
knowledge about both domains is known in order to sub-
stantiate the production of their respective causal dia-
grams. In the absence of such knowledge, causal discovery
algorithms might be used to infer the diagrams from data
(Pearl and Verma, 1991, Pearl, 2000, Spirtes et al., 2000).
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Armed with the concept of identifiability and selection
diagram, meta-transportability of causal effects (or µ-
transportability, for short) can be defined as follows:

Definition 3 (µ-Transportability). Let D =
{D1, ..., Dn} be a collection of selection diagrams rel-
ative to source domains Π = {π1, ..., πn}, and target
domain π∗, respectively. Let 〈P i, Ii〉 be the pair of ob-
servational and interventional distributions of πi, and
P ∗ be the observational distribution of π∗. The causal
effect R = P ∗x (y) is said to be µ-transportable from
Π to π∗ in D if P ∗x (y) is uniquely computable from⋃

i=1,...,n〈P i, Ii〉 ∪ P ∗ in any model that induces D.

A powerful way of solving µ-transportability problems
invokes the principle of decomposition, as formulated
in the next theorem:

Theorem 1. Given a set of domains Π =
{π1, π2, ..., πn} characterized by selection diagrams
D = {D1, D2, ..., Dn} relative to domain π∗, a rela-
tion R(π∗) is µ-transportable if it can be decomposed
into a set of subrelations of the form:

Rk = P ∗(Vk|do(Wk),Zk) k = 1, 2, . . . ,K

such that each Rk is uniquely computable from some
Dk ∈ D.

Proof. The proof is immediate, if the target relation is
decomposable in such a way that each subrelation is
computable from the available information, the quan-
tity is µ-transportable by definition.

Through successive decompositions, we can reduce the
target relation to more elementary and easily recogniz-
able µ-transportability problems as defined below:

Definition 4. (Trivial µ-Transportability)
A causal relation R is said to be trivially µ-
transportable from Π to π∗, if R(π∗) is identifiable
from the data available in π∗ (i.e., (G∗, P ∗)).

Another special case of µ-transportability is when a
causal relation has the identical form in both domains
– no recalibration is needed. This is captured by the
following definition.

Definition 5. (Direct µ-Transportability)
A causal relation R is said to be directly µ-
transportable from Π to π∗, if for some domain πi ∈
Π, R(πi) = R(π∗).

A graphical test for direct µ-transportability of R =
P ∗(y|do(x), z) follows from do-calculus and reads: for
some domain πi, (S ⊥⊥ Y |X,Z)

D
(i)
X

; in words, X

blocks all paths from S to Y once we remove all arrows
pointing to X and condition on {X,Z} in the selec-
tion diagram Di. As an example, the Z-specific effects

in Fig. 1 is the same in both domains, hence, it is di-
rectly µ-transportable. The same effects are directly
µ-transportable in Fig. 2(b), but not in 2(a).

These two cases will act as a basis to decompose the
problem of µ-transportability into smaller and more
manageable subproblems based on Theorem 1.

So far we have been concerned with the positive
cases of µ-transportability, but it is also important
to understand when a certain quantity cannot be
µ-transported. The following lemma provides an
auxiliary tool to prove that a quantity is not µ-
transportable based on the refutation of the unique-
ness property required by Def. 3, which will show to
be instrumental for proving completeness in the sequel.

Lemma 1. Let X,Y be two sets of disjoint variables
in populations Π and π∗, and let D = {D1, ..., Dn}.
P ∗x (y) is not µ-transportable from Π to π∗ if there
exist two models M1 and M2 compatible with D
such that P i

M1
(V) = P i

M2
(V), P ∗M1

(V) = P ∗M2
(V),

P i
M1

(V \W|do(W)) = P i
M2

(V \W|do(W)), for all
W ⊂ V, all families have positive distribution, and
P ∗M1

(y|do(x)) 6= P ∗M2
(y|do(x)).

Proof. Let I =
⋃

i I
i, the collection of all interven-

tional distributions P i(V \W|do(W)) ∈ Ii, for all
W ⊂ V in domain Di, and similarly P =

⋃
i P

i for
the observational distributions in each domain. The
latter inequality of the Lemma rules out the existence
of a function from 〈P, I, P ∗〉 to P ∗x (y).

While the problems of transportability and µ-
transportability are related, Lemma 1 indicates that
proofs of non-µ-transportability are more involved
than those of non-transportability. Indeed, to prove
non-µ-transportability requires the construction of two
models agreeing on 〈P, I, P ∗〉 (P, I represent the col-
lection of observational and interventional distribu-
tions in all source domains), while non-transportability
requires the two models to agree solely on the distri-
butions 〈P j , Ij , P ∗〉 of a domain πj .

4 Deriving µ-Transportability

We provide examples where it is feasible and infeasible
to µ-transport certain relations, and this will help to
build our intuition to study more formal and general
conditions for µ-transportability.

Let us consider again the example in Fig. 2.. Re-
call that our goal is to establish whether R(π∗) =
P ∗(y|do(x)) is µ-transportable from {πa, πb} to π∗.
Note that in this case, if we wish to directly trans-
port R from each place this is not allowed since we
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can rewrite P ∗(y|do(x)) = P (y|do(x), S), and the con-
dition for directly µ-transport this relation does not
hold, i.e., it is not true that (S ⊥⊥ Y |X)Di

X
in πi (for

πa and πb)5. Now we decompose the target relation as
follows (possible implementation of Theorem 1):

R(π∗) =
∑

z

P ∗(y|do(x), z)P (z|do(x))

=
∑

z

P ∗(y|do(x), do(z))P ∗(z|do(x))

=
∑

z

P ∗(y|do(z))P ∗(z|do(x)),

where the first line we condition on Z, the second line
follows by rule 2 of do-calculus since (Z ⊥⊥ Y |X)DXZ

holds, and the third line follows from rule 3 of the do-
calculus since (X ⊥⊥ Y |Z)DX,Z

holds, where D is the
causal diagram of π∗ (despite the S-nodes).

Finally, we can now directly transport each of these
pieces individually from the source domains noticing
that P ∗(y|do(z)) is directly µ-transportable from πb

giving that (S ⊥⊥ Y |Z)
D

(b)
Z

, and P ∗(z|do(x)) is directly

µ-transportable from πa given that (S ⊥⊥ Z|X)
D

(a)
X

.

These yields, respectively, P ∗(y|do(z)) = P (b)(y|do(z))
and P ∗(z|do(x)) = P (a)(z|do(x)), and therefore the
target relation can be rewritten as,

R(π∗) =
∑

z

P (a)(z|do(x))P (b)(y|do(z))

For a somewhat more challenging example, consider
the selection diagrams in Fig. 3, and the task of de-
ciding whether there exists an unbiased estimand for
the relation R(π∗) = P ∗(y|do(x)). It is not difficult
to show that R(π∗) is not (separately) transportable
from the domains πa and πb, however, it turns out that
this relation is µ-transportable from the domains when
treated in conjunction. A more involved analysis is re-
quired in this case though, which yields the following
µ-transport formula for R(π∗) 1,6 :∑

w1,w2,w3,z

P ∗(y|z)P (a)
x,w2,w3

(w1, z)P ∗(w2|w1)P (b)
x,w1,w2

(w3)

(1)

In this case we have a witness showing that R(π∗)
is µ-transportable from the combination of the two
sources together with the target domain, but the ques-
tion arises how to perform a systematic decomposition
guided by a guarantee that when it fails, there is no al-
ternative way to decompose the target relation R(π∗)
in order to µ-transport it.

5Indeed, the impossibility follows from the completeness
of the do-calculus for ordinary transportability.

6We show explicitly in Section 6 how the proposed al-
gorithm entails this µ-transport formula.

W3

W2

W1

W3

W2

W1

(b)

YZXZX

(a)

Y

Figure 3: Selection diagrams illustrating a more in-
volved analysis that yields an estimand (Eq. (1)) for
the target quantity which combines information from
three domains, the two sources πa and πb together with
the target π∗.

Consider now Fig. 1(b) (called the “s-bow arc”) which
is known to be the smallest possible graph where
R(π∗) = P ∗(y|do(x)) is not transportable (Theorem
2 in (Bareinboim and Pearl, 2012)). This structure
can be trivially extended to the µ-transportability case
assuming that there are two domains with identical se-
lection diagrams. It is obvious that R(π∗) cannot be
obtained from the available data; note that there is
no possible alternative decomposition for R, and R is
neither trivially nor directly µ-transportable from any
of the domains. The reduction of µ-transportability to
a transportability test can be justified for any causal
relation and collection of domains where (1) the se-
lection diagrams coincide and (2) the target quantity
is not pairwise-transportable, which implies that the
target relation is also not µ-transportable.

This, however, does not exhaust the possible cases of
non-µ-transportability. Consider Fig. 4 in which the
source domains do not share selection diagrams and
the target quantity is R(π∗) = P ∗(y|do(x)). If an ora-
cle claims that R(π∗) is not µ-transportable, it is still
not trivial to show that this claim is true. Formally,
we need to display two models M1,M2 such that the
following relations hold (by Lemma 1):

P
(i)
M1

(X,Z, Y ) = P
(i)
M2

(X,Z, Y ),
P

(i)
M1

(X,Y |do(Z)) = P
(i)
M2

(X,Y |do(Z)),
P

(i)
M1

(X,Z|do(Y )) = P
(i)
M2

(X,Z|do(Y )),
P

(i)
M1

(Y |do(X), do(Z)) = P
(i)
M2

(Y |do(X), do(Z)),
P ∗M1

(X,Z, Y ) = P ∗M2
(X,Z, Y ),

for i = {a, b} and all values of X,Y, Z, and also,

P ∗M1
(Y |do(X)) 6= P ∗M2

(Y |do(X)),

for some value of X and Y .
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We formally show how to construct such a certificate,
which will be instrumental for the general proof of
completeness for any collection of selection diagrams.
See the proofs in (Bareinboim and Pearl, 2013b).
Theorem 2. P ∗x (y) is not µ-transportable in the se-
lection diagrams in Fig. 4.

5 Characterizing µ-Transportable
Relations

The concept of confounded components (or C-
components) was introduced in (Tian and Pearl, 2002)
to represent clusters of variables connected through
bidirected edges, and was instrumental in establishing
several conditions for ordinary identification (Def. 1).
If G is not a C-component itself, it can be uniquely
partitioned into a set C(G) of C-components. We now
recast C-components for µ-transportability.7

Definition 6 (sC-component). Let D be a selection
diagram such that a subset of its bidirected arcs forms
a spanning tree over all vertices in D. Then D is a
sC-component (selection confounded component).

The existence of a sC-component does not prevent µ-
transportability between domains by itself. For in-
stance, the graphs in Fig. 2 are single sC-components
but the effects of interest are µ-transportable there.

Consider now a more specific type of sC-component
carrying three extra features that prevents the µ-
transportability of the causal effects in more general
cases: the structure is closed under ancestral (i.e., con-
sist of ancestral sets), there exists an S-node pointing
to some of its elements, and it is a forest.
Definition 7 (sC-forest). Let D be a selection dia-
gram, where Y is the maximal root set. Then D is
a Y-rooted sC-forest if D is a sC-component, all ob-
servable nodes have at most one child, and there is a
selection node pointing to some vertex of D.

The sC-forest are special structures and we introduce
below a composite structure that witnesses non-µ-
transportability characterized by a pair of sC-forests.
µ-Transportability will be shown impossible whenever
such structure exists as an edge subgraph of the in-
putted collection of selection diagrams.8

7Departing from results given in (Spirtes, Glymour, and
Scheines, 1993, Galles and Pearl, 1995, Pearl and Robins,
1995, Halpern, 1998, Kuroki and Miyakawa, 1999), the ad-
vent of C-components complements the notion of inducing
path, which was earlier introduced in (Verma and Pearl,
1990), and opened the path for several observations that
culminated in the breakthrough result proving complete-
ness of the do-calculus for non-parametric identification
of causal effects by (Huang and Valtorta, 2006, Shpitser
and Pearl, 2006).

8µs-hedges generalize s-hedges (Bareinboim and Pearl,

Z Z

YX Y X

(a) (b)

S

S

Figure 4: Collection of heterogeneous selection dia-
grams in which the target relation P ∗(y|do(x)) is not
µ-transportable from both domains (see Theorem 2).

Definition 8 (µs-hedge). Let X,Y be two sets of vari-
ables in domain π∗, and let D = {D1, ..., Dn} be a
collection of selection diagrams relative to π∗ and the
domains Π = {π1, ..., πn}. Let F, F ′ be R-rooted sC-
forests such that F ∩ X 6= 0, F ′ ∩ X = 0, F ′ ⊆ F ,
R ⊂ An(Y)GX

in every Di ∈ D. Then F and F ′ form
a µs-hedge for P ∗x (y) in D.

We can see a µs-hedge as a growing sC-forest F ′, which
does not intersect X, to a larger sC-forest F that do
intersect X in all source domains at the same time.
For instance, in Fig. 1(b), the sC-forests F ′ = {Y },
and F = F ′∪{X} form a µs-hedge to Px(y); in Fig. 4,
the sC-forests F ′ = {Z, Y }, and F = F ′ ∪{X} form a
µs-hedge to Px(y). Remarkably, there are similar sC-
forests relative to the effects Px(y) in Fig. 3, but there
is no a µs-hedge since the structures are not shared
across domains.

Finally, we state below the formal connection between
µs-hedges and non-µ-transportability.

Theorem 3. Assume there exist a pair of sC-forests
F, F ′ that form a µs-hedge for P ∗x (y) in D. Then
P ∗x (y) is not transportable from Π to π∗.

To prove that the µs-hedges characterize non-µ-
transportability in collection of selection diagrams, we
construct in the next section an algorithm which trans-
port any causal effects that do not contain a µs-hedge.

6 Complete Algorithm for Deciding
µ-Transportability of Joint Effects

We construct an algorithm for deciding µ-
transportability called µsID (see Fig. 5), which
extends previous analysis of transportability given
in (Bareinboim and Pearl, 2012). We build on three
particular observations articulated along the paper:

2012), which are based on hedges (Shpitser and Pearl,
2006).
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1. Decomposability (Theorem 1): The target rela-
tion can be broken into smaller subexpressions.

2. µ-Transportability (Def. 3-5): Causal relations
can be partitioned into trivially and directly µ-
transportable.

3. Non-µ-transportability (Theorem 3): The exis-
tence of a µs-hedge as an edge subgraph of the
inputted diagrams can be used to prove non-µ-
transportability.

The algorithm µsID simplifies and decomposes the in-
putted selection diagrams D (which is also a causal
diagram over π∗ when we disregard the S-nodes), par-
titioning the original problem into smaller blocks un-
til either the entire expression is µ-transportable, or it
runs into the problematic µs-hedge structure. For each
block, µsID tries to directly or trivially µ-transport it.
Whenever µsID exhausts the possibility of applying
these operations, it exits with failure with a counterex-
ample for µ-transportability – i.e., the graph local to
the faulty call witnesses the non-µ-transportability of
the query given that it will contain a µs-hedge as edge
subgraph of the inputted diagrams.

Before showing the more formal properties of µsID,
we demonstrate how it works through the µ-
transportability of Q = P ∗(y|do(x)) in Fig. 3.

Since D = An(Y ) and C(D \ {X}) = {C0, C1, C2, C3},
where C0 = D({W1, Z}), C1 = D({W2}), C2 =
D({W3}), and C3 = D({Y }), we invoke line 4 and
try to µ-transport individually Q0 = P ∗x,w2,w3,y(w1, z),
Q1 = P ∗x,w1,w3,z,y(w2), Q2 = P ∗x,w1,w3,z,y(w2), and
Q3 = P ∗x,z,w1,w2,w3

(y). Thus the original prob-
lem reduces in trying to evaluate the equivalent ex-
pression

∑
z,w1,w2,w3

P ∗x,w2,w3,y(w1, z)P ∗x,w1,w3,z,y(w2)
P ∗x,w1,w2,z,y(w3)P ∗x,z,w1,w2,w3

(y).

First, µsID evaluates the expression Q0 and trig-
gers line 2, noting that the nodes that are not an-
cestors of {W1, Z} can be ignored. This implies
that P ∗x,w2,w3,y(w1, z) = P ∗x,w2,w3

(w1, z) with induced
subgraph G0 = Gx,z,w1,w2,w3 . µsID goes to line
5, in which in the local call C(D \ {X,W2,W3}) =
{W1 L9999K Z}. In this call, ordinary identifiability
would fail, but µsID proceeds to line 6 testing whether
(S ⊥⊥ W1, Z|X,W2,W3)

D
(i)
X,W2,W3

in some domain πi.

The test comes false in πb, but true for πa, which makes
µsID to directly µ-transport Q0 with data from the
experimental domain πa, i.e., P ∗x (z) = P

(a)
x,w2,w3(w1, z).

Second, µsID evaluates the expression Q1 triggering
line 2, which implies that P ∗x,w1,w3,z,y(w2) = P ∗w1

(w2)
with induced subgraph G1 = {W1 →W2}. µsID goes
to line 5, in which in the local call C(D\{W1}) = {W2}.

function µsID(y,x, P ∗, I,D)
INPUT: x,y: value assignments; P ∗: observational
distribution in the target π∗; I: collection of all inter-
ventional distributions in the sources Π; D: collection
of selection diagram; D: causal diagram in π∗ (despite
S-nodes); S: set of selection nodes (per domain).
OUTPUT: Expression for P ∗x (y) in terms of P ∗, I or
FAIL(F, F ′).
1 if x = ∅, return

∑
V\Y P ∗(V)

2 if V \An(Y)D 6= ∅,
return µsID(y,x ∩An(Y)D,

∑
V\An(Y)D

P ∗, An(Y)D)
3 Set W = (V \X) \An(Y)DX

.
if W 6= ∅, return µsID(y,x ∪w, P ∗, D)

4 if C(D \X) = {C0, C1, ..., Ck},
return

∑
V\{Y,X}

∏
i µsID(ci,V \ ci, P ∗, D)

5 if C(D \X) = {C0}
6 for i = 1, ..., |D|:
7 if (S ⊥⊥ Y | X)

D
(i)
X

, return P (i)(y|do(x))

8 if C(D) = {D}, FAIL(D,C0)
9 if C0 ∈ C(D), return

∑
s\Y

∏
i|Vi∈S P

∗(vi|V (i−1)
D )

10 if (∃C ′)C0 ⊂ C ′ ∈ C(D), return µsID(y,x ∩ C ′∏
i|Vi∈C′ P ∗(Vi|V (i−1)

D ∩ C ′, v(i−1)
D \ C ′), C ′).

Figure 5: Modified version of transportability algo-
rithm capable of recognizing µ-transportable relations.

Thus it proceeds to line 6 testing (S ⊥⊥ W2|W1)DW1
.

The test comes false, which makes µsID move to line
7. The test again returns false since C(G1) 6= {G1}.
Finally, line 8 evaluates true since C({W2}) ∈ C(G1);
µsID trivially µ-transport Q1 using the data from the
target domain π∗, i.e., P ∗w1

(w2) = P ∗(w2|w1).

Third, evaluating the expression Q2, µsID goes to line
2, which implies that P ∗x,w1,w2,z,y(w3) = P ∗x,w1,w2

(w3)
with induced subgraphG2 = GX,W1,W2,W3 . µsID goes
to line 5, and in this local call C(D \ {X,W1,W2}) =
{W3}. Note that ordinary identifiability would fail
here, but µsID proceeds to line 6 testing whether
(S ⊥⊥ W3|X,W1,W2)

D
(i)
X,W1,W2

in some domain πi.

The test comes false for ordinary transportability in
πa, but positive in πb, which allows the direct µ-
transportability of Q2 using data from the experimen-
tal domain πb (i.e., P ∗x,w1,w2

(w3) = P
(b)
x,w1,w2(w3)).

Forth, µsID evaluates the expression Q3 and triggers
line 5, C(D \ {X,W1,W2,W3, Z}) = {Y }. In turn,
both tests at lines 6 and 7 fail, but the test in line 8
succeed since C({Y }) ∈ C(D). Then, µsID trivially
µ-transport Q3 using the data from the target domain
π∗, i.e., P ∗x,w1,w2,w3,z(y) = P ∗(y|z) (after simplifica-
tion). The composition of the return of these calls
generates the expression provided in Section 4.
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Finally, we prove next soundness and completeness of
the algorithm µsID.

Theorem 4 (soundness). Whenever µsID returns an
expression for P ∗x (y), it is correct.

Theorem 5. Assume µsID fails to µ-transport P ∗x (y)
(executes line 7). Then there exists X′ ⊆ X, Y′ ⊆ Y,
such that the graph pair D,C0 returned by the fail con-
dition of µsID contain as edge subgraphs sC-forests
F , F ′ that form a µs-hedge for P ∗x′(y′).

Corollary 1 (completeness). µsID is complete.

Next, we show that the graphical criterion of µs-hedge
indeed characterizes µ-transportability.

Corollary 2. P ∗x (y) is µ-transportable from Π to π∗

in D if and only if there is not µs-hedge for Px′(y′) in
D for any X′ ⊆ X and Y′ ⊆ Y.

Furthermore, we show below that the do-calculus
is complete for establishing µ-transportability, which
means that failure in the exhaustive application of its
rules implies the inexistence of a mapping from the
available data to the target relation (i.e., there is no µ-
transport formula), independently of the method used
to obtain such mapping.

Corollary 3. The rules of do-calculus, together with
standard probability manipulations are complete for es-
tablishing µ-transportability of all causal effects of the
form P ∗x (y).

7 Conclusions

Informal discussions concerning the difficulties of gen-
eralizing results across populations have been going
on for almost half a century (Cox, 1958, Campbell
and Stanley, 1963, Heckman, 1992, Hotz, Imbens, and
Mortimer, 2005, Manski, 2007) and appear to accom-
pany every textbook in experimental design. By and
large, these discussions have led to the obvious con-
clusions that researchers should be extremely cautious
about unwarranted generalization, that many threats
may await the unwary, and that extrapolation across
studies requires “some understanding of the reasons
for the differences” (Cox, 1958, p. 11).

This paper embeds these discussions in a precise math-
ematical language, and then provides researchers with
theoretical guarantees that, if certain conditions can
be ascertained, generalization across populations can
be accomplished, protected from the threats and dan-
gers that the informal literature has accumulated.

The paper goes further and provides a complete al-
gorithm for computing the correct transport formula,
namely, the proper way of modifying the experimental
results so as to account for differences in the popula-

tions. These transport formulae enable the investiga-
tor to select the essential measurements in both the
experimental and observational studies, and combine
them into a bias-free estimand of the target quantity.

Of course, our analysis is based on the assumption that
the analyst is in possession of sufficient background
knowledge to determine, at least qualitatively, where
the populations may differ from one another. In prac-
tice, such knowledge may only be partially available
and, as is the case in every mathematical exercise, the
benefit of the analysis lies primarily in understanding
what knowledge is needed for the task to succeed and
how sensitive conclusions are to knowledge that we do
not possess.

This paper complements a recent work on a task called
z-transportability (Bareinboim and Pearl, 2013a),
which deals with transferring causal information when
just limited experiments are available for use.
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