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Abstract

We address the task of determining, from statistical averages alone, whether
a population under study consists of several subpopulations, unknown to the
investigator, each responding to a given treatment markedly differently. We
show that such determination is feasible in three cases: (1) randomized trials
with binary treatments, (2) models where treatment effects can be identified
by adjustment for covariates, and (3) models in which treatment effects can
be identified by mediating instruments. In each of these cases we provide an
explicit condition which, if confirmed empirically, proves that treatment-effect
is not uniform, but varies appreciably across individuals.

Keywords: Heterogeneity, treatment on the treated, negative selection, effect modifi-
cation, variable-effect bias

1 Introduction

Many social and health researchers are concerned with “the problem of heterogene-
ity,” namely, the presence of idiosyncratic groups that react differently to treatment
or policies. (Angrist, 1998; Angrist and Krueger, 1999; Elwert and Winship, 2010;
Heckman and Robb, 1985; Heckman et al., 2006; Morgan and Todd, 2008; Morgan
and Winship, 2007, 2015; Winship and Morgan, 1999; Xie et al., 2012). The reason
is obvious. Health scientists need to know whether an approved drug is uniformly
beneficial or kills some and saves more. Social scientists need to know whether those
who have access to a program benefit most from the program; the alternative calls
for revising recruiting policies (Brand and Xie, 2010).

Heterogeneity also introduces bias if one ventures to estimate average effects using
linear or constant-effect models. Indeed, the bulk of the literature on this topic is
concerned with demonstrating or minimizing this bias. Such bias is of no concern,
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however, to students of nonparametric models where heterogeneity is assumed a pri-
ori within the model, thus protecting analysts from ever drawing conclusions that
heterogeneity could invalidate.

Instead, nonparametric analysis concerns the detection of heterogeneity, if such
exists, and locating its boundaries as narrowly as possible, within the granularity of
the model. A straightforward way of assessing heterogeneity is to estimate the “in-
teraction” or “effect modifying” capacity of various features of units. (VanderWeele
and Robins, 2007). This amounts to estimating and comparing c-specific, or “condi-
tional” effects, where C stands for a set of baseline covariates that characterize the
units (Shpitser and Pearl, 2006).

This paper shows, however, that, under certain conditions, it is possible to assess
the degree of heterogeneity in the population even without knowing the covariates C
that make units differ in their response to treatment. We call this type of exogeneity
“latent.”

Section 2 of this paper will describe covariate-specific methods of detecting het-
erogeneity, and will summarize the capabilities and limitations of these methods.
Section 3 defines a latent heterogeneity that produces differences between treated
and untreated units. Section 4 will identify three settings in which this type of het-
erogeneity can be detected and assessed from empirical data. These include:

1. Randomized trials with binary treatments (Section 4.1)

2. Covariate adjustment (Section 4.2), and

3. Mediating instrumental variables (Section 4.3).

Section 5 presents a numerical example involving enrollment disparity in a job
training program, where individuals possessing an unusual talent (a latent character-
istics) have higher propensity to enroll in the program and are less likely to benefit
from it. The section shows how the tests developed in Secions 4.1 and 4.2 can be used
to detect such unusual characteristic and to assess its prevalent in the population.

Finally, Appendix A demonstrates the detection of a more drastic type of hetero-
geneity, where the population is composed of two distinct subpopulations, undetected
by any observed characteristics, only through their behavior under both obsrvational
and experimental studies. Appendix B will illustrate how structural models facilitate
the evaluation of counterfactuals in genearl and heterogeneity in particular.

2 Covariate-induced Heterogeneity

If we can measure any characteristic C of individuals, a straightforward way of search-
ing for heterogeneity is to determine if people having this characteristic respond dif-
ferently from those not having it. There can of course be many group differences
that escape measurement, this is unavoidable, but finding an observed characteristic
accompanied by unusual effect size gives us a definitive warning that heterogeneity
exists, and that its magnitude is at least equal to that found by examining C.

Formally, we can cast these considerations as follows.
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2.1 Assessing covariate-induced heterogeneity

Let C stand for any measured baseline covariate, and let E(Y1 − Y0|C = c) stand for
the causal effect1 in stratum C = c of C. If E(Y1 − Y0|C = c) is identifiable (for all
c), we can then estimate the effect difference,

D(ci, cj) = |E(Y1 − Y0|C = ci)− E(Y1 − Y0|C = cj)| (1)

for any two strata ci and cj of C. D(ci, cj) gives the extent to which the effect size
in group C = ci differs from that of group C = cj. Further generalizing to all pairs
(ci, cj), we get a lower bound LB on the heterogeneity between any two labeled groups
in the population:

LB = max(ci,cj)D(ci, cj) (2)

This bound extends, of course, to the case where C is a vector of measured covariates
and ci, cj any two instantiations of the variables in that vector. If we remove the
requirement of identifiability, LB represents the best measure of heterogeneity in
the population given the crudeness of our measurements. When the identifiability
requirement is imposed, LB represents the best assessment of heterogeneity given
both the crudeness of measurements and the opacity of non-experimental data. The
two main problems in computing the lower bound in (2) is, first, to find a C for which
the c-specific effect is identifiable and, second, to perform the maximization in (2)
over all pairs (i, j) and all vectors C.

2.2 Special cases

Three special cases of estimable covariate-based heterogeneity are worth mentioning.

C is admissible2

If C is admissible, the c-specific effect is identified through

E(Y1 − Y0|C = c) = E(Y |X = 1, C = c)− E(Y |X = 0, C = c)

and D(ci, cj) is estimable by simple regression.

1In this section we assume a binary treatment variable X = (0, 1) and an outcome variable Y
with two potential outcomes, Y0 and Y1, designating the hypothetical values of Y under treatment
conditions X = 0 and X = 1, respectively.

2By “admissible” we mean a set C of covariates that satisfies the back-door criterion (Pearl, 1993;
Pearl, 2009, pp. 79–81) in the causal diagram and thus permits the identification of the average
causal effect by controlling for C. Admissibility entails the conditional independence (Yx⊥⊥X|C),
sometimes called “conditional ignorability” (Rosenbaum and Rubin, 1983). The back-door criterion
provides a scientific basis and a transparent test for “conditional ignorability” type claims, which
many researchers entrust to intuition.
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C is part of an admissible set

Assume C in itself is not admissible, but we can observe a set S of covariates such
that S ∪C is admissible (as in Fig. 1(b) and (c)). In such a case, the c-specific effect
is still identifiable with:

E(Y1−Y0|C = c) =
∑
s

[E(Y |X = 1, S = s, C = c)−E(Y |X = 0, S = s, C = c)]P (s|c)3

Figure 1 depicts four models in which the c-specific effect is identifiable, and two
models in which it is not identifiable.
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Figure 1: Models (a), (b), and (c) permit the identification of the c-specific effect of
X on Y (by adjustment). Model (d) does not permit this identification, lacking an
admissible set. Model (e) does not permit the identification of c-specific effects, even
though S is admissible. Model (f) permits the identification using measurement of Z
though S is admissible (U1 and U2 are unobserved).

Identification in the absence of admissible sets

If C is not part of an admissible set, the c-specific effect cannot be identified by
adjustment. A typical example is given in Fig. 1(d). Since U is unobserved, the
confounding path X ← U → Y remains open even if we adjust for C. However, the
measurement of other variables in the model may nevertheless permit the identifica-
tion of E(Y1 − Y0|C = c) by other methods, and the bound LB can be estimated
accordingly. An example is given in Fig. 1(f) where E(Y1 − Y0|C = c) is identifi-
able through the front-door estimator (Pearl, 1995, see also Section 4.3) by virtue of
measuring an intermediate variable Z. A complete characterization of models that
permit the identification of c-specific effects is given by Shpitser and Pearl (2006).

3In practice, the summation over S can be prohibitive, and propensity score methods can be used
to replace this summation by integration over the unit interval 0 ≤ PS ≤ 1 (?)
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C excluded from all admissible sets

An intriguing pattern of heterogeneity is described in Fig. 1(e). Here S is an admis-
sible set, but if we add C to S, admissibility is destroyed. This occurs because C is a
collider, so conditioning on C would open the path X ← U1 → C ← U2 → Y in vio-
lation of the back-door condition. This means that, even if C is observed, we cannot
identify the c-specific effects (of X on Y ) and, therefore, we cannot assess whether
units falling in different strata of C differ in their response to X. Adjustment for
ci or cj, be it with or without S, would tell us nothing about the causal effects in
those strata, and would thus prevent us from using the comparisons described in
Section 2.1, Eq. (1).

Note that Model (e) is statistically indistinguishable from (c), implying that no
statistical test, however clever, can determine whether a given set {S,C} of covariates
is admissible. This includes sensitivity analysis which is often presumed to provide
evidence for ignorability or admissibility.

3 Latent Heterogeneity Between the Treated and

Untreated

So far, the aim of the analysis has been to find two subgroups C = ci and C = cj with
unequal effect sizes, where C was an observed baseline characteristic of individuals.
In this section we abandon this requirement and seek “latent heterogeneity,” namely,
heterogeneity that is not present in any baseline covariate but stems from unknown
origin and manifests itself in effect differences between the treated and untreated
groups.

3.1 Two types of confounding

The potential for detecting such heterogeneity was unveiled in the analyses of Winship
and Morgan (1999) and Xie et al. (2012), who decomposed the average treatment effect
ATE into several components:4

ATE = E(Y1 − Y0) = E(Y |X = 1)− E(Y |X = 0)− [E(Y0|X = 1)− E(Y0|X = 0)]

− (ETT − ETU)/P (X = 0)

4This decomposition was first proposed in sociology by Winship and Morgan (1999, p. 667) in
a paper that raised awareness for the importance of treatment-effect heterogeneity. Emphasis on
ETT and ETU was introduced earlier in econometrics by Heckman and his co-workers (Heckman
and Robb, 1986; Heckman, 1992).
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where ETT and ETU are the average effect of treatment on the treated and untreated
respectively5 i.e.,

ETT = E(Y1 − Y0|X = 1),

ETU = E(Y1 − Y0|X = 0).

They observed that the bias,

Bias = E(Y |X = 1)− E(Y |X = 0)− ATE

is made up of two components with distinct characteristics. The first is [E(Y0|X =
1)−E(Y0|X = 0)] and the second is ETT−ETU . The former is not a causal effect but
merely a difference in output (Y ) between two groups under the same “no-treatment”
regime. The latter, on the other hand, represents difference in treatment effects of
two groups, the treated and the untreated, and would be non-zero only if the two
groups respond differently to treatment, thus exhibiting heterogeneity.6

Xie et al. called the former Type-I bias and the latter Type-II bias, whereas Mor-
gan and Winship (2007, pp. 46–8) called them baseline bias and differential treatment
effect bias. We will shorten the labels to read baseline and variable-effect biases re-
spectively. To understand the two types of bias, think about two groups, one with
high Y that is aggressively selected for treatment, and one with low Y , which is rarely
selected for treatment. There will definitely be a bias in estimating ATE, even if all
units have the same treatment effect. Now think about two other groups, both achiev-
ing the same Y under no treatment, but one is sensitive to X and one is not. If the
second is more likely to select treatment, a bias is generated solely by the sensitivity
difference between the two groups.

3.2 Separating fixed-effect from variable-effect bias

To convince ourselves that baseline and variable-effect biases, as defined above, indeed
capture fixed-effect and variable-effect subpopulations, respectively, we evaluate their
corresponding expressions in a linear model with an interaction term. The model is
shown in Fig. 2 and represents the structural equations:

y = βx+ γz + δxz + ε1

x = αz + ε2

z = ε3

where the disturbances ε1, ε2, and ε3 are assumed to be mutually independent. Indeed,
for variable-effect bias we obtain:7

ETT − ETU = αδ(x′ − x)2

5Xie et al. (2012) used D for treatment and TT − TUT instead of ETT − ETU . In contrast,
Morgan and Winship (2015) use ATT − ATC. Here we use X for treatment, consistent with
theoretical analyses in Shpitser and Pearl (2009), where the acronym ETT was used, and a necessary
and sufficient condition for identifying ETT was developed.

6Heckman et al. (2006) called this difference essential heterogeneity.
7These expressions follow directly from the structural definition of counterfactuals (Pearl, 2009,

p. 98) as defined in Eq. (12). A complete derivation is given in Appendix B.
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Figure 2: A linear model with interaction, demonstrating baseline and variable-effect
biases. The former is proportional to γα and independent of δ; the latter is propor-
tional to δα and independent of γ, reflecting effect variability.

whereas for baseline bias we have

E(Yx|X = x′)− E(Yx|X = x)] = γα(x′ − x).

(x and x′ are two arbitrary levels of the treatment.) This is exactly the decomposition
we expect; the former captures the bias introduced through the interaction term δ
(representing variable-effect), whereas the latter represents the bias that would prevail
in the linear (or fixed-effect) case, without that interaction.

Note also the ETT − ETU vanishes when α = 0. Thus, not every effect hetero-
geneity is detected through the difference ETT −ETU . When interactions are strong
(i.e., high δ) we certainly have appreciable heterogeneity between units with high Z
and units with low Z. However, this heterogeneity will remain undetected; it will not
be revealed through the difference ETT − ETU , unless Z also affects the treatment
assignment X.

4 Three Ways of Detecting Heterogeneity

The interesting feature in the preceding analysis is that the decomposition into fixed-
effect and variable-effect components can be defined counterfactually, without resort-
ing to a specific model or a specific covariate set. This means that whenever we can
identify ETT and ETU , we can also obtain an indication of heterogeneity, regardless
of whether we can name or observe the covariates responsible for the heterogene-
ity. Moreover, even in cases where auxiliary measurements are needed for identifying
ETT and ETU , the graphical theory of ETT (Shpitser and Pearl, 2009) can guide
us in the assessment of heterogeneity by (1) selecting the right set of measurements
and (2) obtaining the right estimands for ETT and ETU .

The three classical cases where ETT can be identified are:

1. The treatment is binary, and E(Y1) and E(Y0) are identifiable by some method
(e.g., randomized trials).

2. The treatment is arbitrary, and E(Yx) is identifiable (for all x) by adjustment
for an admissible set of covariates.

3. ATE is identified through mediating instruments.

The next subsections deal separately with each of these cases.
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4.1 Detecting heterogeneity in randomized trials

It is well known that, when treatment is binary, ETT and ETU are identified when-
ever E(Y0) and E(Y1) are (Pearl, 2009, p. 396–7). Moreover, the relation between
these quantities is given by

ETT = E(Y1 − Y0|X = 1) =

= E(Y |X = 1)− [E(Y0)− E(Y |X = 0)(1− p)]/p
ETU = E(Y1 − Y0|X = 0)

= [E(Y1)− E(Y |X = 1)p]/(1− p)− E(Y |X = 0)

where p = P (X = 1).8

We conclude that in a (binary) randomized clinical trial, where E(Y0) and E(Y1)
are estimable empirically, the difference ETT −ETU is estimable as well and is given
by

ETT − ETU = [E(Y |X = 1)− E(Y1)]/(1− p) + [E(Y |X = 0)− E(Y0)]/p (3)

Likewise, the size of the baseline bias is identifiable from clinical trials, and is given
by:

E(Y0|X = 1)− E(Y0|X = 0) = [E(Y0)− E(Y |X = 0)]/p (4)

This means that, based on pre-trial and post-trial data we can estimate the het-
erogeneity bias that exists in the population prior to randomization, and we can
accomplish this without measuring any covariate whatsoever.

This result might appear surprising at first; how can we possibly detect the exis-
tence of individual variations among units when we have only population data? Upon
further reflection, however, we note that ETT − ETU does not represent the degree
of heterogeneity in the population but rather that portion of heterogeneity that ex-
hibits preferential selection to treatment. Additionally, we are not entirely justified in
claiming that we accomplish this assessment without measuring any covariate. The
treatment itself serves as a measured covariate in our case, since it is a proxy for those
factors that affect the choice of treatment.

While these explanations mitigate the surprise, the point remains that effect het-
erogeneity is not entirely shielded from empirical scrutiny, even when we only have
population data. Whenever experimental findings reveal a non-zero ETT − ETU ,
one can categorically state that heterogeneity exists in the population, that is, there
exist at least two groups whose treatment effects differ from one another.

The analysis also tells us which combination of observational and experimental
data would compel us to conclude that the population consists of at least two disparate
groups. In particular, Eq. (3) implies that whenever we observe the inequality

P (X = 1)[E(Y |X = 1)− E(Y1)] 6= P (X = 0)[E(Y |X = 0)− E(Y0)] (5)

8These expressions can readily be derived by noting that E(Y0|X = 0) = E(Y |X = 0) and
writing:

E(Y0) = E(Y0|X = 1)p + E(Y |X = 0)(1− p).

For non-binary treatments, ETT is not expressible in terms of E(Y0) and E(Y1).
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we can be assured that the population is marred by heterogeneity, and in such cases,
a systematic exploration may be undertaken to unveil its underlying sources. This
is not a trivial result by any means; it is in fact counter intuitive, and should be
considered a victory of formal counterfactual analysis. Section 5 presents numerical
examples of such findings, and Appendix A provides an example where Eq. (5) returns
equality despite rampant heterogeneity.

Sander Greenland suggested (personal communication) that heterogeneity in ran-
domized trials is related to the issue debated by Fisher vs. Neyman about the ap-
propriate nulls to test. Fisher advocated the strict (point) null Y1 = Y0 for all units,
(which led to his famous exact test); in contrast, Neyman advocated the much weaker
mean null E(Y1) = E(Y0), which allows arbitrarily extensive heterogeneity, ostensi-
bly on the grounds that nothing finer could be discerned in a randomized experiment
(Greenland, 1991).

Equation (5) casts this debate in a new setting. While Fisher’s exact null cannot
be distinguished from Neyman’s mean null in a pure randomized experiment, such
distinction is feasible when we have a combination of randomized and observational
data. In fact, inequality in Eq. (5) can be regarded as a testable condition for rejecting
Fisher’s null hypothesis.

Section 5 and Appendix A present models where Neyman’s mean null holds,
E(Y1) = E(Y0), as well as inequality in (5), thus rejecting Fisher’s sharp null. The
same test can be applied when the outcome distribution under treatment is identi-
cal to the outcome distribution for control, a case where conventional approaches to
testing heterogeneity fail (Greenland, 1999; Ding, 2014).

4.2 Detecting heterogeneity through adjustment

The second case where ETT and ETU are identified is when an admissible set Z of
covariates can be measured, yielding (see footnote 2) the adjustment estimand

E(Yx) =
∑
z

E(Y |x, z)P (z) (6)

where x is any treatment level, not necessarily one or zero. It can be further shown
that if Z is admissible, the expression for E(Yx|x′) can be identified as well, and is
given by

E(Yx|x′) =
∑
z

E(Y |x, z)P (z|x′) (7)

(Shpitser and Pearl, 2009). It is almost the same as the adjustment formula (6), save
for using P (z|x′) as a weighting function, instead of P (z).9

9This difference accounts for the modified Horvits-Thompson weights required for estimating
ETT and ETU by regression (Morgan and Winship, 2015, p. 231).
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Accordingly, we can write the difference ETT − ETU as

ETT − ETU = E(Yx′ − Yx|X = x′)− E(Yx′ − Yx|X = x)

=
∑
z

[E(Y |X = x′, z)− E(Y |X = x, z)][P (z|X = x′)− P (z|X = x)]

(8)

and thus establish an explicit and general formula for the detectable part of variable-
effect heterogeneity.10

When the set Z is large, the estimation of (8) can be enhanced using propensity
score adjustment. But aside from providing a powerful estimation method in sparse
data studies, the use of propensity scores does not add any substance to the discussion
of identification (Pearl, 2009, pp. 348–52).

An objection might be raised to classifying the heterogeneity detected by Eq. (8) as
“latent” when, in fact, it could only be uncovered using a set Z of observed covariates.
The justification rests on the realization that the treated-untreated heterogeneity,
ETT − ETU , is a property of the population, not of the set Z chosen to uncover it.
Z serves merely as an auxiliary tool for uncovering ETT −ETU ; it does not affect its
value. Moreover, ETT −ETU represents a new species of heterogeneity, unrelated to
those induced by the strata of Z (see Section 2.2). To witness, Eq. (8) shows that the
heterogeneity between the treated and untreated groups may be many times larger
than that induced by any two strata of Z. For a trivial, albeit contrived example, let
Z take on integer values z = 1, 2, . . . , k, and let

E(Y |X = x′, z)− E(Y |X = x, z)

be positive for even values of z and negative for odd values. If we now let the difference
P (z|X = x′)−P (z|X = x) be positive for even values and negative for odd values of
z, ETT−ETU increases indefinitely as k increases, while the effect difference between
any two strata of Z remains bounded. We also note, somewhat counterintuitively,
that the treated-untreated heterogeneity (ETT−ETU) vanishes within each stratum
Z = z of an admissible set Z, while the overall difference ETT − ETU need not
be zero. The reason is that ETT and ETU invoke different weighing functions in
averaging over the values of z; P (z|X = x′) is invoked in the former and P (z|X = x)
in the latter.11

10Morgan and Todd (2008) recognized the fact that ETT and ETU are estimable (using weighted
regression) whenever conditional ignorability holds. Equation (8) extends their analysis by providing
an explicit formula for ETT − ETU , applicable whenever a set Z of covariates is observed that is
deemed admissible for identifying ATE. (Note that identifying ATE, in itself, is insufficient.) Brand
and Halaby (2005) used bootstrapping methods to determine whether the difference between the
ETT and the ETU is significant?

11This is an interesting variant of Simpson’s paradox that surfaces when the aggregation of data
results in sign reversal of all statistical associations (Blyth, 1972; Simpson, 1951). However, in the
standard exposition of Simpson’s paradox, the signs of all causal effects remain unaltered (Pearl,
2009, pp. 180–2; 2014). Here we witness a causal, not associational relationship that is present in
the combined population and is absent in each and every subpopulation.
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4.3 Detecting heterogeneity through mediating instruments

U

X YZ

(Unobserved)

Figure 3: A model in which variable Z acts as a mediating instrument for identifying
the causal effect of X on Y in the presence of unknown or unobserved confounders
(U).

Identification by adjustment requires modeling assumptions that researchers may
not be prepared to make. Attempting to circumvent this requirement, some re-
searchers have advocated the use of instrumental variables (IV ), which appears to
require milder assumptions (Angrist and Pischke, 2010). Aside from the fact that
good instruments are hard to come by, and that the choice of instruments often re-
quires strong modeling assumptions, identification through instruments suffers from a
fundamental limitation in that it is effective only in linear (or pseudo-linear) models,
and in nonparametric models, can only identify local effects, sometimes called LATE
(Angrist et al., 1996; Brand and Thomas, 2013).

Fortunately, the use of mediating instruments overcomes these limitations and
identifies causal effects in non-parametric models even in the presence of unknown
confounders. The method of mediating instruments, also known as “the front-door
criterion” (Pearl, 1995) is depicted in Fig. 3, and assumes the availability of covariates
Z that intercept all directed paths from treatment (X) to outcome (Y ).12 Moreover,
the graphical theory of ETT teaches us that both ETT and ETU are identifiable in
the model of Fig. 3 and can be obtained from the estimand:

E(Yx|X = x′) =
∑
z

E(Y |z, x′)P (z|x) (9)

where x and x′ are any two levels of the treatment (Shpitser and Pearl, 2009).
Remarkably, this expression is almost identical to the one obtained through ad-

justment for confounders Z, Eq. (7), save for exchanging x and x′. Moreover, and in
contrast to identification by randomized experiment, this estimand remains valid for
non-binary treatments as well.

Accordingly, the estimand for the heterogeneous component of the bias becomes

12For application of the front-door criterion in the social sciences, see (Chalak and White, 2012;
Morgan and Winship, 2007, 2015).
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identical to that of Eq. (8):

ETT − ETU = E(Yx′ − Yx|X = x′)− E(Yx′ − Yx|X = x)

=
∑
z

[E(Y |X = x′, z)− E(Y |X = x, z)][P (z|X = x′)− P (z|X = x)]

(10)

with X = x′ representing the treatment level received and X = x a comparison
reference. Likewise, the expression for the baseline component of the bias becomes:

E(Yx|X = x′)− E(Yx|X = x) =
∑
z

[E(Y |z, x′)− E(Y |z, x)]P (z|x) (11)

We are now in possession of simple expressions for both the heterogeneous and
homogeneous parts of the bias. These expressions enable us to decompose the bias
into its heterogeneous and homogeneous parts without any reference to the latent
confounders (U), which may remain unknown or unnamed. Whereas detection by
randomized trials requires physical control, and is limited to binary treatments, and
detection through ordinary adjustment requires an admissible set of deconfounders,
the method of mediating instruments gives us a general way of assessing the impact
of homogeneous vs. heterogeneous mechanisms on the observed bias without knowing
the actual mechanisms involved.

5 Example: Heterogeneity in Recruitment

A government is funding a job training program aimed at getting jobless people
back into the workforce. A pilot randomized experiment shows that the program is
effective; a higher percentage of people were hired among those trained than among
the untrained. As a result, the program is approved, and a recruitment effort is
launched to encourage enrollment among the unemployed.

A study conducted a year later reveals that the hiring rate among the trained is
even higher than in the randomized study. Still, critics claim that the program is a
waste of tax payers’ money because, while the program was somewhat successful in
the experimental study, where participants were chosen at random, there is no proof
that the program accomplishes its mission among those recruited for enrollment.
Those enrolled, so the critics say, are more intelligent, more resourceful, and more
socially connected than the eligibles who did not enroll, and would have found a job
regardless of the training. The population is not homogeneous, the critics claim; the
informed who are first to enroll draw little benefit from the program, while the weak
and uninformed who could truly benefit from it were not aggressively recruited.

In order to assess the extent to which the ETT − ETU test can detect the pres-
ence of such heterogeneity, we will simulate the hiring process assuming two types
of individuals, “informed” and “uninformed.” Let Z = 1 stand for the class of
“informed” individuals, for whom the chances of hiring after training is only 10%
higher than without training, 0.9 vs. 0.8. Let Z=0 stands for the class of unin-
formed individuals, for whom the chances of hiring after training are 70% higher
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than without training, 0.8 vs. 0.1. We will assume that the propensity for enroll-
ment among the informed, q2, is higher then that among the uninformed, q1, i.e.,
q2 − q1 = P (X = 1|Z = 1) = P (X = 1|Z = 0) > 0.

Since we are dealing with a binary treatment, we can assess the magnitude of
ETT − ETU using Eq. (3) without measuring any covariates. We rely solely on
{E(Y1), E(Y0)}, which are estimable from the experimental study and {E(Y |X =
1), E(Y |X = 1)}, which are estimable from the observational study, and reflect the
current recruitment policy. The plots in Fig. 4 depict the difference ETT − ETU as
a function of r, the percentage of “informed” individuals in the population, with each
curve representing a fixed enrollment disparity q2 − q1.

Figure 4: ETT − ETU vs. r for different levels of enrollment disparity, q2 − q1.

In generating these plots, we assume a model similar in structure to the one of
Fig. 2, with Z being the only confounder between X and Y . We further assume the
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following parameters:

E[Y |X = 1, Z = 1) = 0.9

E[Y |X = 0, Z = 1) = 0.8

E[Y |X = 1, Z = 0) = 0.8

E[Y |X = 0, Z = 0) = 0.1

q1 = P (X = 1|Z = 0) = 0.1

We see that ETT −ETU is negative, indicating loss of opportunity due to misdi-
rected recruiting policy, with those in the program benefitting less from it than (poten-
tially) those who are not in it. The higher the enrollment discrepancy q2−q1 between
the “informed” and the “uninformed,” the more negative the difference ETT −ETU .
We further see that the difference ETT−ETU becomes zero when the population be-
comes homogeneous, at r = 0 or r = 1, with the slopes at these two points measuring
the sensitivity of program effectiveness to the presence of heterogenous individuals.
Plots such as those in Fig. 2 provide valuable information about the nature and mag-
nitude of the heterogeneity observed. For example if in a randomized experiment we
observe the difference ETT −ETU = −0.3 (through Eq. (3)), we can then infer that,
if the propensity difference q1−q2 is lower than 0.5, the proportion r must lie between
0.20 and 0.62. The larger the difference q1 − q2 the wider the bounds for r.

6 Conclusions

This paper explores ways of uncovering the presence of effect-heterogeneity without
knowing the factors that may produce it. This possibility was shown to be realizable
in the three most common designs in which the average treatment effect (ATE) can be
estimated: (1) randomized experiments, (2) covariate adjustment, and (3) mediating
instruments. The only exceptions in these three designs are randomized experiments
with non-binary treatments, and models in which ATE is identified and ETT is
not. Such models can be recognized using the graphical theory of ETT (Shpitser
and Pearl, 2009), which provides a complete set of conditions for the identification of
ETT and ETU from modeling assumptions.

In all three cases that allow for the detection of latent heterogeneity, we have
derived explicit conditions that, if observed in practice, behoove us to conclude that
subpopulations exist that differ in their response to treatment. These conditions can
also serve to assess, albeit roughly (in the form of lower bounds), the magnitude of
the heterogeneity detected.
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Appendix A (An Extreme Case of Latent Hetero-

geneity)13

The example below demonstrates a case in which the bias is zero, the average causal
effect is zero and, yet, heterogeneity is high and can be detected by Eq. (5), using no
modeling assumptions.

A study was conducted to determine which of two schools, A or B, has a more
effective educational program. 200 randomly selected students underwent a random-
ized trial and were randomly assigned to the two schools, 100 to each. Another group
of 200 (randomly selected) students were allowed to choose schools on their own; 100
selected A and 100 B. After a year of study, students were tested in a uniform, state
run exam, and data showed the following:

100% of the A-choosing students failed the state exam

100% of the B-choosing students failed the state exam

50% of the A-randomized students failed the state exam

50% of the B-randomized students failed the state exam

It appears that, when given a choice, students tend to pick the school that is
worse for them, which is strange but explainable. Suppose school A deemphasized
math and B deemphasized history, while the state exam demands proficiency in both
math and history. If students choose schools by the area of their strength, then free
choice amounts to a license to neglect one of the required subjects, which is a ticket
to failure. Random assignment would force at least 50% of the students to study an
area of weakness, which may explain the 50% success rate in the randomized groups.

From the data available, and letting X = 1 and X = 0 stand for “School A
chosen” and “School B chosen,” respectively, we can infer the following findings:

p = 1
2
, E(Y |X = 1) = 0, E(Y |X = 0) = 0

E(Y1) = 1
2
, E(Y0) = 1

2

13This example is taken from (Pearl, 2012).
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Accordingly we have:

Bias = E[(Y |X = 1)− E(Y |X = 0)]− [E(Y1)− E(Y0)]

= 0− 0− (
1

2
− 1

2
)

= 0

Baseline Bias = E(Y0|X = 1)− E(Y0|X = 0)

= [E(Y0)− E(Y |X = 0)]/p

= (
1

2
− 0)2

= 1

Variable-effect Bias = (ETT − ETU)(1− p)
= [E(Y |X = 1)− E(Y1)]p/(1− p) + [E(Y |X = 0)− E(Y0)]]

= (0− 1

2
) + (0− 1

2
)

= −1

We conclude that a substantial effect-heterogeneity exists in the population. In
fact, the bias is composed of two components of equal magnitude and opposite sign.
This result is not surprising given that our population is composed indeed of two
distinct subpopulations, indexed by school preference, which have two different treat-
ment effects. Those who prefer school B have clearly different benefit from A vs. B
as compared to those who prefer school A; the former would pass the exam, the latter
would fail.

It is also interesting, at this point, to examine models in which latent heterogeneity
is rampant, yet remains undetected by the difference ETT −ETU . Such models are
discussed in (Pearl, 2009, pp. 35–6), which can be adapted to the story above by
assuming that Z (students school preference) is totally independent of X (the school
actually attended). In such an environment, the two groups will still exhibit the
disparate treatment effects, but the difference ETT −ETU will be zero, because the
relationship between X and Y is not confounded.

Appendix B (Assessing Heterogeneity in Structural

Equation Models)

In this Appendix, I first define counterfactuals in terms of structural equation models,
and then illustrate how this definition facilitates the detection of heterogeneity in the
linear model discussed in Section 3.2. The definition is fundamental to the under-
standing of counterfactuals in general, and for that reason, I will first introduce the
method and then solve the example in minute details. The solution will demonstrate
the role of structural models in defining and evaluating counterfactuals.
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B.1 The Structural origin of counterfactuals

At the center of the definition lies a model M consisting of a set of equations that
represents the investigator’s perception of reality. M consists of two sets of variables,
U and V (exogenous and endogenous), and a set F of equations that determine how
values are assigned to each variable Vi ∈ V . Thus for example, the equation

vi = fi(v, u)

describes a physical process by which Nature examines the current values, v and u,
of all variables in V and U and accordingly assigns variable Vi the value vi = fi(v, u).
The variables in U are considered “exogenous,” namely, background conditions for
which no explanatory mechanism is encoded in model M . Every instantiation U = u
of the exogenous variables corresponds to defining a “unit,” or a “situation” in the
model, and uniquely determines the values of all variables in V . Therefore, if we
assign a probability P (u) to U , it defines a probability function P (v) on V . The
probabilities on U and V can best be interpreted as the proportion of the population
with a particular combination of values on U and/or V .

The basic counterfactual entity in structural models is the sentence: “Y would be
y had X been x in situation U = u,” denoted Yx(u) = y, where Y and X are any
variables in V . The key to interpreting counterfactuals is to treat the subjunctive
phrase “had X been x” as an instruction to make a minimal modification in the
current model, so as to ensure the antecedent condition X = x. Such a minimal
modification amounts to replacing the equation for X with a constant x, which may
be thought of as an external intervention do(X = x), not necessarily by a human
experimenter, that imposes the condition X = x. This replacement permits the
constant x to differ from the actual value of X (namely fx(v, u)) without rendering
the system of equations inconsistent, thus allowing all variables, exogenous as well as
endogenous, to serve as antecedents.

Letting Mx stand for a modified version of M , with the equation(s) of X replaced
by X = x, the formal definition of the counterfactual Yx(u) reads:

Yx(u)
∆
= YMx(u). (12)

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in
the “surgically modified” submodel Mx.

This definition, first proposed in (Balke and Pearl, 1994a,b) was recently dubbed
the “First Law of causal inference” (Pearl, 2015) due to its universality, and because
it treats counterfactuals as an intrinsic property of reality rather than a byproduct
of a specific experimental design. Simon and Rescher (1966) came close to this defi-
nition but, lacking the “wiping out” operator, could not reconcile the contradiction
that evolves when an observation X = x′ clashes with the antecedent X = x of
the counterfactual Yx. Galles and Pearl (1998) and Halpern (1998) have given a
complete axiomatization of structural counterfactuals, embracing both recursive and
non-recursive models. (see also Pearl, 2009, Chapter 7). They showed that the ax-
ioms governing recursive structural counterfactuals are identical to those used in the
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potential outcomes framework, hence the two systems are logically identical – a the-
orem in one is a theorem in the other. This means that relying on structural models
as a basis for counterfactuals does not impose additional assumptions beyond those
routinely invoked by potential outcome practitioners.

P (u) induces a well defined probability distribution on V , P (v). As such, it not
only defines the probability of any single counterfactual, also assigns joint distribution
of all conceivable counterfactuals, including those that may not be observed. Thus
the probability of the Boolean combination, “Yx = y AND Zx′ = z” for variables Y
and Z in V and two different values of X, x and x′, is well-defined even though it is
impossible for both outcomes to be simultaneously observed as X = x and X = x′

cannot be concurrently true.
In general, the probability of the counterfactual sentence P (Yx = y|e), where e is

any information about an individual, can be computed by the 3-step process:

Step 1 (abduction): Update the probability P (u) to obtain P (u|e).

Step 2 (action): Replace the equations corresponding to variables in set X by the
equations X = x.

Step 3 (prediction): Use the modified model to compute the probability of Y = y.

In temporal metaphors, Step 1 explains the past (U) in light of the current evidence
e; Step 2 bends the course of history (minimally) to comply with the hypothetical
antecedent X = x; finally, Step 3 predicts the future (Y ) based on our new under-
standing of the past and our newly established condition, X = x.

B.2 Illustration

To demonstrate the power of this definition, let us compute the latent heterogeneity
ETT − ETU for the interaction model discussed in Section 3.2. The model (shown
in Fig. 2) represents the structural equation model:

M : Y = βX + γZ + δXZ + ε1

X = αZ + ε2

Z = ε3

The modified model Mx, representing the intervention X = x, is given by

Mx : Y = βX + γZ + δxZ + ε1

X = x

Z = ε3

Let X = x represent the treatment administered and X = x′ the level that X
attains under natural, no-treatment conditions. We first compute the conditional
counterfactual E(Yx|X = x′) which appears in the expressions of ETT and ETU

ETT = E[Yx − Yx′|X = x]

ETU = E[Yx − Yx′|X = x′]
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Since Yx is equal to the solution for Y in the mutilated model Mx, we have

E[Yx|X = x′] = E[βx+ γZ + δxZ + ε1|X = x′]

= βx+ (γ + δx)E[Z|X = x′]

where we make use of the orthogonality assumption ε1⊥⊥X. Further assuming stan-
dardized variables (i.e., zero mean and unit variance) we have E[Z|X = x′] = αx′,
which leads to

E[Yx|X = x′] = βx+ (γ + δx)αx′

Accordingly, the effect of treatment on the treated is given by

ETT = E[Yx − Yx′|X = x]

= E[Y |X = x]− E[Yx′ |X = x]

= βx+ αγx+ αδx2 − [βx′ + (γ + δx′)αx]

= (β + αδx)(x− x′)

In a similar fashion we obtain

ETU = E[Yx − Yx′|X = x′]

= (β + αδx′)(x− x′)

and finally:

ETT − ETU = αδ(x− x′)2.

which confirms the result stated in Section 3.2.

References

Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects
using instrumental variables (with comments). Journal of the American Statistical
Association 91 444–472.

Angrist, J. D. (1998). Estimating the labor market on voluntary military service
using social security date on military applicants. Econometrica 66 249–288.

Angrist, J. D. and Krueger, A. B. (1999). Handbook of labor economics. In
Causality: Statistical Perspectives and Applications (O. Ashenfelter and D. Card,
eds.), edition 1, volume 3, chapter 23 ed. Elsevier, 1277–1366.

Angrist, J. D. and Pischke, J.-S. (2010). The credibility revolution in empiri-
cal economics: How better research design is taking the con out of econometrics.
Journal of Economic Perspectives 24 3–30.

19



Balke, A. and Pearl, J. (1994a). Counterfactual probabilities: Computational
methods, bounds, and applications. In Uncertainty in Artificial Intelligence 10
(R. L. de Mantaras and D. Poole, eds.). Morgan Kaufmann, San Mateo, CA, 46–
54.

Balke, A. and Pearl, J. (1994b). Probabilistic evaluation of counterfactual
queries. In Proceedings of the Twelfth National Conference on Artificial Intelli-
gence, vol. I. MIT Press, Menlo Park, CA, 230–237.

Blyth, C. (1972). On Simpson’s paradox and the sure-thing principle. Journal of
the American Statistical Association 67 364–366.

Brand, J. E. and Halaby, C. N. (2005). Regression and matching estimates of
the effects of elite college attendance on educational and career achievement. Social
Science Research 35 749–770.

Brand, J. E. and Thomas, J. S. (2013). Causal effect heterogeneity. In Handbook
of Causal Analysis for Social Research (S. L. Morgan, ed.), chap. 11. Springer,
Netherlands, 189–213.

Brand, J. E. and Xie, Y. (2010). Who benefits most from college? Evidence for
negative selection in heterogeneous economic returns to higher education. American
Sociological Review 75 273–302.

Chalak, K. and White, H. (2012). An extended class of instrumental variables
for the estimation of causal effects. Canadian Journal of Economics 44 1–31.

Ding, P. (2014). A paradox from randomization-based causal inference. Tech. rep.,
Harvard University, Cambridge, MA. arXiv:1402.0142v3.

Elwert, F. and Winship, C. (2010). Effect heterogeneity and bias in main-effects-
only regression models. In Heuristics, Probability and Causality: A Tribute to
Judea Pearl (R. Dechter, H. Geffner and J. Halpern, eds.). College Publications,
UK, 327–336.

Galles, D. and Pearl, J. (1998). An axiomatic characterization of causal coun-
terfactuals. Foundation of Science 3 151–182.

Greenland, S. (1991). On the logical justification of conditional tests for two-by-
two contingency tables. The American Statistician 45 248–251.

Greenland, S. (1999). Relation of probability of causation, relative risk, and dou-
bling dose: A methodologic error that has become a social problem. American
Journal of Public Health 89 1166–1169.

Halpern, J. (1998). Axiomatizing causal reasoning. In Uncertainty in Artificial
Intelligence (G. Cooper and S. Moral, eds.). Morgan Kaufmann, San Francisco,
CA, 202–210. Also, Journal of Artificial Intelligence Research 12:3, 17–37, 2000.

20



Heckman, J. (1992). Randomization and social policy evaluation. In Evaluations:
Welfare and Training Programs (C. Manski and I. Garfinkle, eds.). Harvard Uni-
versity Press, Cambridge, MA, 201–230.

Heckman, J. and Robb, R. (1985). Alternative methods for evaluating the impact
of interventions. In Longitudinal Analysis of Labor Market Data (J. Heckman and
B. Singer, eds.). Cambridge University Press, New York, NY, 156–245.

Heckman, J. and Robb, R. (1986). Alternative methods for solving the problem
of selection bias in evaluating the impact of treatments on outcomes. In Drawing
Inference From Self Selected Samples (H. Wainer, ed.). Springer-Verlag, New York,
NY, 63–107.

Heckman, J., Urzua, S. and Vytlacil, E. (2006). Understanding instrumental
variables in models with essential heterogeneity. The Review of Economics and
Statistics 88 389–432.

Morgan, S. and Winship, C. (2007). Counterfactuals and Causal Inference: Meth-
ods and Principles for Social Research (Analytical Methods for Social Research).
Cambridge University Press, New York, NY. 2nd edition, 2015.

Morgan, S. and Winship, C. (2015). Counterfactuals and Causal Inference: Meth-
ods and Principles for Social Research (Analytical Methods for Social Research).
2nd ed. Cambridge University Press, New York, NY.

Morgan, S. L. and Todd, J. J. (2008). A diagnostic routine for the detection of
consequential heterogeneity of causal effects. Sociological Methodology 38 231–281.

Pearl, J. (1993). Comment: Graphical models, causality, and intervention. Statis-
tical Science 8 266–269.

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika 82 669–710.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge
University Press, New York.

Pearl, J. (2012). The causal mediation formula – a guide to the assessment of
pathways and mechanisms. Prevention Science 13 426–436, DOI: 10.1007/s11121–
011–0270–1.

Pearl, J. (2015). Trygve Haavelmo and the emergence of causal calculus. Econo-
metric Theory 31 152–179. Special issue on Haavelmo Centennial.

Pearl, J. and Bareinboim, E. (2014). External validity: From do-calculus to
transportability across populations. Statistical Science 29 579–595.

Rosenbaum, P. and Rubin, D. (1983). The central role of propensity score in
observational studies for causal effects. Biometrika 70 41–55.

21



Shpitser, I. and Pearl, J. (2006). Identification of conditional interventional
distributions. In Proceedings of the Twenty-Second Conference on Uncertainty in
Artificial Intelligence (R. Dechter and T. Richardson, eds.). AUAI Press, Corvallis,
OR, 437–444.

Shpitser, I. and Pearl, J. (2009). Effects of treatment on the treated: Identifi-
cation and generalization. In Proceedings of the Twenty-Fifth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI-09). AUAI Press, Cor-
vallis, Oregon, 514–521.

Simon, H. and Rescher, N. (1966). Cause and counterfactual. Philosophy and
Science 33 323–340.

Simpson, E. (1951). The interpretation of interaction in contingency tables. Journal
of the Royal Statistical Society, Series B 13 238–241.

VanderWeele, T. and Robins, J. (2007). Four types of effect modification: A
classification based on directed acyclic graphs. Epidemiology 18 561–568.

Winship, C. and Morgan, S. (1999). The estimation of causal effects from obser-
vational data. Annual Review of Sociology 25 659–706.

Xie, Y., Brand, J. E. and Jann, B. (2012). Estimating heterogeneous treatment
effects with observational data. Sociological Methodology 42 314–347.

22




