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Abstract

We address the task of determining, from statistical averages alone, whether
a population under study consists of several subpopulations, unknown to the
investigator, each responding to a given treatment markedly differently. We
show that such determination is feasible in three cases: (1) randomized trials
with binary treatments, (2) models where treatment effects can be identified
by adjustment for covariates, and (3) models in which treatment effects can
be identified by mediating instruments. In each of these cases, we provide an
explicit condition which, if confirmed empirically, proves that treatment
effect is not uniform but varies appreciably across individuals.
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Introduction

Many social and health researchers are concerned with ‘‘the problem of

heterogeneity,’’ namely, the presence of idiosyncratic groups that react

differently to treatment or policies (Angrist 1998; Angrist and Krueger

1999; Elwert and Winship 2010; Heckman and Robb 1985; Heckman, Urzua,

and Vytlacil 2006; Morgan and Winship 2007, 2015; Morgan and Todd
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2008; Winship and Morgan 1999; Xie, Brand, and Jann 2012). The reason is

obvious. Health scientists need to know whether an approved drug is uni-

formly beneficial or kills some and saves more. Social scientists need to

know whether those who have access to a program benefit most from the pro-

gram; the alternative calls for revising recruiting policies (Brand and Xie

2010).

Heterogeneity also introduces bias if one ventures to estimate average

effects using linear or constant-effect models. Indeed, the bulk of the litera-

ture on this topic is concerned with demonstrating or minimizing this bias.

Such bias is of no concern, however, to students of nonparametric models

where heterogeneity is assumed a priori within the model, thus protecting

analysts from ever drawing conclusions that heterogeneity could invalidate.

Instead, nonparametric analysis concerns the detection of heterogeneity, if

such exists, and locating its boundaries as narrowly as possible, within the

granularity of the model. A straightforward way of assessing heterogeneity

is to estimate the ‘‘interaction’’ or ‘‘effect modifying’’ capacity of various

features of units (VanderWeele and Robins 2007). This amounts to estimating

and comparing c-specific, or ‘‘conditional’’ effects, where c stands for a set

of baseline covariates that characterize the units (Shpitser and Pearl 2006).

This article shows, however, that, under certain conditions, it is possible to

assess the degree of heterogeneity in the population even without knowing

the covariates C that make units differ in their response to treatment. We call

this type of exogeneity ‘‘latent.’’

The second section of this article will describe covariate-specific methods

of detecting heterogeneity and will summarize the capabilities and limita-

tions of these methods. The third section defines a latent heterogeneity that

produces differences between treated and untreated units. The fourth section

will identify three settings in which this type of heterogeneity can be detected

and assessed from empirical data. These include

1. randomized trials with binary treatments (Detecting Heterogeneity in

Randomized Trials subsection),

2. covariate adjustment (Detecting Heterogeneity Through Adjustment

subsection), and

3. mediating instrumental variables (Detecting Heterogeneity Through

Mediating Instruments subsection).

The fifth section presents a numerical example involving enrollment dis-

parity in a job training program, where individuals possessing an unusual

talent (a latent characteristics) have higher propensity to enroll in the
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program and are less likely to benefit from it. The section shows how the tests

developed in Detecting Heterogeneity in Randomized Trials and Detecting

Heterogeneity Through Adjustment subsections can be used to detect such

unusual characteristic and to assess its prevalence in the population.

Finally, Online Appendix A demonstrates the detection of a more drastic

type of heterogeneity, where the population is composed of two distinct sub-

populations undetected by any observed characteristics, only through their

behavior under both observational and experimental studies (Pearl 2013).1

Online Appendix B will illustrate how structural models facilitate the evalua-

tion of counterfactuals in general and heterogeneity in particular.

Covariate-Induced Heterogeneity

If we can measure any characteristic C of individuals, a straightforward way

of searching for heterogeneity is to determine if people having this character-

istic respond differently from those not having it. There can of course be

many group differences that escape measurement, this is unavoidable, but

finding an observed characteristic accompanied by unusual effect size gives

us a definitive warning that heterogeneity exists, and that its magnitude is at

least equal to that found by examining C.

Formally, we can cast these considerations as follows.

Assessing Covariate-Induced Heterogeneity

Let C stand for any measured baseline covariate, and let EðY1 � Y0jC ¼ cÞ
stand for the causal effect2 in stratum C ¼ c of C. If EðY1 � Y0jC ¼ cÞ is

identifiable (for all c), we can then estimate the effect difference:

Dðci; cjÞ ¼ jEðY1 � Y0jC ¼ cjÞ � EðY1 � Y0jC ¼ cjÞj; ð1Þ

for any two strata ci and cj of C. D(ci, cj) gives the extent to which the effect

size in group C¼ ci differs from that of group C¼ cj. Further generalizing to

all pairs (ci, cj), we get a lower bound LB on the heterogeneity between any

two labeled groups in the population:

LB ¼ maxðci;cjÞDðci; cjÞ: ð2Þ

This bound extends, of course, to the case where C is a vector of measured

covariates and ci, cj are any two instantiations of the variables in that vector.

If we remove the requirement of identifiability, LB represents the best mea-

sure of heterogeneity in the population, given the crudeness of our measure-

ments. When the identifiability requirement is imposed, LB represents the
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best assessment of heterogeneity, given both the crudeness of measurements

and the opacity of nonexperimental data. The two main problems in comput-

ing the lower bound in equation (2) are, first, to find a C for which the c-specific

effect is identifiable and, second, to perform the maximization in equation (2)

over all pairs (i, j) and all vectors C.

Special Cases

Three special cases of estimable covariate-based heterogeneity are worth

mentioning.

C is admissible. If C is admissible,3 the c-specific effect is identified through

EðY1 � Y0jC ¼ cÞ ¼ EðY jX ¼ 1;C ¼ cÞ � EðY jX ¼ 0;C ¼ cÞ;

and D(ci, cj) is estimable by simple regression.

C is part of an admissible set. Assume C in itself is not admissible, but we can

observe a set S of covariates such that S [ C is admissible (as in Figure 1b

and c). In such a case, the c-specific effect is still identifiable with4:

EðY1 � Y0jC ¼ cÞ ¼
X

s

½EðY jX ¼ 1; S ¼ s;C ¼ cÞ

� EðY jX ¼ 0; S ¼ s;C ¼ cÞ�PðsjcÞ:

Figure 1 depicts four models in which the c-specific effect is identifiable

and two models in which it is not identifiable.

Identification in the absence of admissible sets. If C is not part of an admissible

set, the c-specific effect cannot be identified by adjustment. A typical exam-

ple is given in Figure 1d. Since U is unobserved, the confounding path

X  U ! Y remains open even if we adjust for C. However, the measure-

ment of other variables in the model may nevertheless permit the identifica-

tion of EðY1 � Y0jC ¼ cÞ by other methods, and the bound LB can be

estimated accordingly. An example is given in Figure 1f, where

EðY1 � Y0jC ¼ cÞ is identifiable through the front-door estimator (Pearl

1995, see also Detecting Heterogeneity Through Mediating Instruments sub-

section) by virtue of measuring an intermediate variable Z. A complete char-

acterization of models that permit the identification of c-specific effects is

given by Shpitser and Pearl (2006).
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C excluded from all admissible sets. An intriguing pattern of heterogeneity is

described in Figure 1e. Here S is an admissible set, but if we add C to S, admis-

sibility is destroyed. This occurs because C is a collider, so conditioning on C

would open the path X  U1 ! C  U2 ! Y in violation of the backdoor

condition. This means that, even if C is observed, we cannot identify the c-spe-

cific effects (of X on Y) and, therefore, we cannot assess whether units falling

in different strata of C differ in their response to X. Adjustment for ci or cj, be it

with or without S, would tell us nothing about the causal effects in those strata

and would thus prevent us from using the comparisons described in the subsec-

tion on Assessing Covariate-Induced Heterogeneity, equation (1).

Note that model (e) is statistically indistinguishable from model (c), imply-

ing that no statistical test, however clever, can determine whether a given set

fS,Cg of covariates is admissible. This includes sensitivity analysis, which is

often presumed to provide evidence for ignorability or admissibility.

Latent Heterogeneity between the Treated
and Untreated

So far, the aim of the analysis has been to find two subgroups C ¼ ci and

C ¼ cj with unequal effect sizes, where C was an observed baseline

Y

S

C

X
(c)

C S

(a)
YX

S

U1 U2

C C

U

(e)
YX

U

(d)
X Y

(Unobserved)

(b)
YX

C

S

(f)
X

C

YZ

(Unobserved)

Figure 1. Models (a), (b), and (c) permit the identification of the c-specific effect of
X on Y (by adjustment). Model (d) does not permit this identification, lacking an admis-
sible set.Model (e) does not permit the identification of c-specific effects, even though S is
admissible. Model (f) permits the identification using measurement of Z though no admis-
sible set exists (U, U1 and U2 are unobserved).
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characteristic of individuals. In this section, we abandon this requirement and

seek ‘‘latent heterogeneity,’’ namely, heterogeneity that is not present in any

baseline covariate but stems from unknown origin and manifests itself in

effect differences between the treated and untreated groups.

Two Types of Confounding

The potential for detecting such heterogeneity was unveiled in the analyses

of Winship and Morgan (1999) and Xie et al. (2012) who decomposed the

average treatment effect ATE into several components5:

ATE ¼ EðY1 � Y0Þ ¼ EðY jX ¼ 1Þ � EðY jX ¼ 0Þ
� ½EðY0jX ¼ 1Þ � EðY0jX ¼ 0Þ� � ðETT � ETUÞ=PðX ¼ 0Þ;

where ETT and ETU are the average effect of treatment on the treated and

untreated, respectively,6 that is:

ETT ¼ EðY1 � Y0jX ¼ 1Þ;
ETU ¼ EðY1 � Y0jX ¼ 0Þ:

They observed that the bias:

Bias ¼ EðY jX ¼ 1Þ � EðY jX ¼ 0Þ � ATE;

is made up of two components with distinct characteristics. The first is

½EðY0jX ¼ 1Þ � EðY0jX ¼ 0Þ� and the second is ETT � ETU . The former

is not a causal effect but merely a difference in output (Y) between two

groups under the same ‘‘no-treatment’’ regime. The latter, on the other hand,

represents difference in treatment effects of two groups, the treated and the

untreated, and would be nonzero only if the two groups respond differently

to treatment, thus exhibiting heterogeneity.7

Xie et al. called the former type-I bias and the latter type-II bias, whereas

Morgan and Winship (2007:46-48) called them baseline bias and differential

treatment effect bias. We will shorten the labels to read baseline and vari-

able-effect biases, respectively. To understand the two types of biases, think

about two groups, one with high Y that is aggressively selected for treatment,

and one with low Y, which is rarely selected for treatment. There will defi-

nitely be a bias in estimating ATE, even if all units have the same treatment

effect. Now think about two other groups, both achieving the same Y under

no treatment, but one is sensitive to X and one is not. If the second is more

likely to select treatment, a bias is generated solely by the sensitivity differ-

ence between the two groups.
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Separating Fixed-Effect from Variable-Effect Bias

To convince ourselves that baseline and variable-effect biases, as defined

earlier, indeed capture fixed-effect and variable-effect subpopulations,

respectively, we evaluate their corresponding expressions in a linear model

with an interaction term. The model is shown in Figure 2 and represents the

structural equations:

y ¼ bxþ gzþ dxzþ e1

x ¼ azþ e2

z ¼ e3;

where the disturbances e1, e2, and e3 are assumed to be mutually independent.

Indeed, for variable-effect bias, we obtain8:

ETT � ETU ¼ adðx0 � xÞ2;

whereas for baseline bias, we have:

EðYxjX ¼ x0Þ � EðYxjX ¼ xÞ ¼ gaðx0 � xÞ:

(x and x0 are two arbitrary levels of the treatment.) This is exactly the decom-

position we expect; the former captures the bias introduced through the inter-

action term d (representing variable effect), whereas the latter represents the

bias that would prevail in the linear (or fixed effect) case, without that

interaction.

Note also the ETT � ETU vanishes when a ¼ 0. Thus, not every effect

heterogeneity is detected through the difference ETT � ETU . When interac-

tions are strong (i.e., high d), we certainly have appreciable heterogeneity

between units with high Z and units with low Z. However, this heterogeneity

will remain undetected, and it will not be revealed through the difference

ETT � ETU , unless Z also affects the treatment assignment X.

Three Ways of Detecting Heterogeneity

The interesting feature in the preceding analysis is that the decomposition

into fixed-effect and variable-effect components can be defined counterfac-

tually, without resorting to a specific model or a specific covariate set. This

means that whenever we can identify ETT and ETU, we can also obtain an

indication of heterogeneity, regardless of whether we can name or observe

the covariates responsible for the heterogeneity. Moreover, even in cases

where auxiliary measurements are needed for identifying ETT and ETU, the
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graphical theory of ETT (Shpitser and Pearl 2009) can guide us in the assess-

ment of heterogeneity by (1) selecting the right set of measurements and (2)

obtaining the right estimands for ETT and ETU.

The three classical cases where ETT can be identified are as follows:

1. The treatment is binary, and E(Y1) and E(Y0) are identifiable by some

method (e.g., randomized trials).

2. The treatment is arbitrary, and E(Yx) is identifiable (for all x) by

adjustment for an admissible set of covariates.

3. ATE is identified through mediating instruments.

The following subsections deal separately with each of these cases.

Detecting Heterogeneity in Randomized Trials

It is well known that, when treatment is binary, ETT and ETU are identified

whenever E(Y0) and E(Y1) are identified (Pearl 2009:396-97). Moreover, the

relation between these quantities is given by:

ETT ¼ EðY1 � Y0jX ¼ 1Þ
¼ EðY jX ¼ 1Þ � ½EðY0Þ � EðY jX ¼ 0Þð1� pÞ�=p

ETU ¼ EðY1 � Y0jX ¼ 0Þ
¼ ½EðY1Þ � EðY jX ¼ 1Þp�=ð1� pÞ � EðY jX ¼ 0Þ;

where p ¼ P (X ¼ 1).9

We conclude that in a (binary) randomized clinical trial, where E(Y0) and

E(Y1) are estimable empirically, the difference ETT � ETU is estimable as

well and is given by:

ETT � ETU ¼ ½EðY jX ¼ 1Þ � EðY1Þ�=ð1� pÞ þ ½EðY jX ¼ 0Þ � EðY0Þ�=p:

ð3Þ

YX

Z

γ

β

δα

Figure 2. A linear model with interaction, demonstrating baseline and variable-effect
biases. The former is proportional to ga and independent of d; the latter is pro-
portional to da and independent of g, reflecting effect variability.
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Likewise, the size of the baseline bias is identifiable from clinical trials

and is given by:

EðY0jX ¼ 1Þ � EðY0jX ¼ 0Þ ¼ ½EðY0Þ � EðY jX ¼ 0Þ�=p: ð4Þ

This means that, based on pretrial and posttrial data, we can estimate the

heterogeneity bias that exists in the population prior to randomization, and

we can accomplish this without measuring any covariate whatsoever.

This result might appear surprising at first; how can we possibly detect the

existence of individual variations among units when we have only population

data? Upon further reflection, however, we note that ETT � ETU does not

represent the degree of heterogeneity in the population but rather that portion

of heterogeneity that exhibits preferential selection to treatment. Addition-

ally, we are not entirely justified in claiming that we accomplish this assess-

ment without measuring any covariate. The treatment itself serves as a

measured covariate in our case, since it is a proxy for those factors that affect

the choice of treatment.

While these explanations mitigate the surprise, the point remains that

effect heterogeneity is not entirely shielded from empirical scrutiny, even

when we only have population data. Whenever experimental findings reveal

a nonzero ETT � ETU , one can categorically state that heterogeneity exists

in the population, that is, there exist at least two groups whose treatment

effects differ from one another.

The analysis also tells us which combination of observational and experi-

mental data would compel us to conclude that the population consists of at

least two disparate groups. In particular, equation (3) implies that whenever

we observe the inequality:

PðX ¼ 1Þ½EðY jX ¼ 1Þ � EðY1Þ� 6¼ PðX ¼ 0Þ½EðY jX ¼ 0Þ � EðY0Þ�; ð5Þ

we can be assured that the population is marred by heterogeneity, and, in

such cases, a systematic exploration may be undertaken to unveil its under-

lying sources. This is not a trivial result by any means; it is in fact counter-

intuitive and should be considered a victory of formal counterfactual

analysis. The fifth section presents numerical examples of such findings and

Online Appendix A provides an example where equation (5) returns equality

despite rampant heterogeneity.

Sander Greenland suggested (personal communication, January 24, 2015)

that heterogeneity in randomized trials is related to the issue debated by

Fisher versus Neyman about the appropriate nulls to test. Fisher advocated

the strict (point) null Y1¼ Y0 for all units (which led to his famous exact test);

in contrast, Neyman advocated the much weaker mean null E(Y1) ¼ E(Y0),
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which allows arbitrarily extensive heterogeneity, ostensibly on the grounds

that nothing finer could be discerned in a randomized experiment (Greenland

1991).

Equation (5) casts this debate in a new setting. While Fisher’s exact null

cannot be distinguished from Neyman’s mean null in a pure randomized

experiment, such distinction is feasible when we have a combination of ran-

domized and observational data. In fact, the inequality in equation (5) can be

regarded as a testable condition for rejecting Fisher’s null hypothesis.

The fifth section and Online Appendix A present models where Neyman’s

mean null holds, E(Y1) ¼ E(Y0), as well as inequality in equation (5), thus

rejecting Fisher’s sharp null. The same test can be applied when the outcome

distribution under treatment is identical to the outcome distribution for con-

trol, a case where conventional approaches to testing heterogeneity fail (Ding

2014; Greenland 1991).

Detecting Heterogeneity Through Adjustment

The second case where ETT and ETU are identified is when an admissible set

Z of covariates can be measured, yielding (see note 2) the adjustment for-

mula:

EðYxÞ ¼
X

z

EðY jx; zÞPðzÞ; ð6Þ

where x is any treatment level, not necessarily one or zero. It can be further

shown that if Z is admissible, the expression for EðYxjx0Þ can be identified as

well (Shpitser and Pearl 2009), and is given by:

EðYxjx0Þ ¼
X

z

EðY jx; zÞPðzjx0Þ: ð7Þ

(Shpitser and Pearl 2009). It is almost the same as the adjustment equation

(6), save for using Pðzjx0Þ as a weighting function, instead of P (z).10

Accordingly, we can write the difference ETT � ETU as:

ETT � ETU ¼ EðYx0 � YxjX ¼ x0Þ � EðYx
0 � YxjX ¼ xÞ

¼
X

z

½EðY jX ¼ x0; zÞ � EðY jX ¼ x; zÞ�½PðzjX ¼ x0Þ � PðzjX ¼ xÞ�

ð8Þ

and thus establish an explicit and general formula for the detectable part of

variable-effect heterogeneity.11

When the set Z is large, the estimation of equation (8) can be enhanced

using propensity score adjustment. But aside from providing a powerful
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estimation method in sparse data studies, the use of propensity scores does

not add to the discussion of identification (Pearl 2009:348-52).

An objection might be raised to classifying the heterogeneity detected by

equation (8) as latent when, in fact, it could only be uncovered using a set Z

of observed covariates. The justification rests on the realization that the

treated–untreated heterogeneity, ETT � ETU , is a property of the popula-

tion, not of the set Z chosen to uncover it. Z serves merely as an auxiliary tool

for uncovering ETT � ETU ; it does not affect its value. Moreover,

ETT � ETU represents a new species of heterogeneity, unrelated to those

induced by the strata of Z (see the subsection on Special Cases). To witness,

equation (8) shows that the heterogeneity between the treated and untreated

groups may be many times larger than that induced by any two strata of Z.

For a trivial, albeit contrived example, let Z take on integer values z ¼ 1,

2, . . . , k, and let:

EðY jX ¼ x0; zÞ � EðY jX ¼ x; zÞ;

be positive for even values of z and negative for odd values. If we now let

the difference PðzjX ¼ x0Þ � PðzjX ¼ xÞ be positive for even values and

negative for odd values of z, ETT � ETU increases indefinitely as k

increases, while the effect difference between any two strata of Z remains

bounded. We also note, somewhat counterintuitively, that the treated–

untreated heterogeneity (ETT � ETU) vanishes within each stratum Z ¼ z

of an admissible set Z, while the overall difference ETT � ETU need not be

zero. The reason is that ETT and ETU invoke different weighing functions

in averaging over the values of z; PðzjX ¼ x0Þ is invoked in the former and

PðzjX ¼ xÞ in the latter.12

Detecting Heterogeneity Through Mediating Instruments

Identification by adjustment requires modeling assumptions that researchers

may not be prepared to make. Attempting to circumvent this requirement,

some researchers have advocated the use of instrumental variables, which

appears to require milder assumptions (Angrist and Pischke 2010; Pearl

2015). Aside from the fact that good instruments are hard to come by and that

the choice of instruments often requires strong modeling assumptions, iden-

tification through instruments suffers from a fundamental limitation in that it

is effective only in linear (or pseudo-linear) models, and in nonparametric

models, can only identify local effects, sometimes called LATE (Angrist,

Imbens, and Rubin 1996; Brand and Thomas 2013).
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Fortunately, the use of mediating instruments overcomes these limitations

and identifies causal effects in nonparametric models even in the presence of

unknown confounders. The method of mediating instruments, also known as

‘‘the front-door criterion’’ (Pearl 1995) is depicted in Figure 3 and assumes

the availability of covariates Z that intercept all directed paths from treatment

(X) to outcome (Y).13 Moreover, the graphical theory of ETT teaches us that

both ETT and ETU are identifiable in the model of Figure 3 and can be

obtained from the estimand:

EðYxjX ¼ x0Þ ¼
X

z

EðY jz; x0ÞPðzjxÞ; ð9Þ

where x and x0 are any two levels of the treatment (Shpitser and Pearl 2009).

Remarkably, this expression is almost identical to the one obtained

through adjustment for confounders Z, equation (7), save for exchanging x

and x0. Moreover, and in contrast to identification by randomized experi-

ment, this estimand remains valid for nonbinary treatments as well.

Accordingly, the estimand for the heterogeneous component of the bias

becomes identical to that of equation (8):

ETT � ETU ¼ EðYx0 � YxjX ¼ x0Þ � EðYx0 � YxjX ¼ xÞ

¼
X

z

½EðY jX ¼ x0; zÞ ¼ �EðY jX ¼ x; zÞ�½PðzjX ¼ x0Þ � PðzjX ¼ xÞ�;

ð10Þ

with X¼ x0 representing the treatment level received and X¼ x a comparison

reference. Likewise, the expression for the baseline component of the bias

becomes:

EðYxjX ¼ x0Þ � EðYxjX ¼ xÞ ¼
X

z

½EðY jz; x0Þ � EðY jz; xÞ�PðzjxÞ: ð11Þ

U

X YZ

(Unobserved)

Figure 3. A model in which variable Z acts as a mediating instrument for identifying the
causal effect of X on Y in the presence of unknown or unobserved confounders (U).
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We are now in possession of simple expressions for both the heteroge-

neous and homogeneous parts of the bias. These expressions enable us to

decompose the bias into its heterogeneous and homogeneous parts without

any reference to the latent confounders (U), which may remain unknown

or unnamed. Whereas detection by randomized trials requires physical con-

trol, and is limited to binary treatments, and detection through ordinary

adjustment requires an admissible set of deconfounders, the method of med-

iating instruments gives us a general way of assessing the impact of homo-

geneous versus heterogeneous mechanisms on the observed bias without

knowing the actual mechanisms involved.

Example: Heterogeneity in Recruitment

A government is funding a job training program aimed at getting jobless people

back into the workforce. A pilot randomized experiment shows that the program

is effective; a higher percentage of people were hired among those trained than

among the untrained. As a result, the program is approved, and a recruitment

effort is launched to encourage enrollment among the unemployed.

A study conducted a year later reveals that the hiring rate among the

trained is even higher than in the randomized study. Still, critics claim that

the program is a waste of tax payers’ money because, while the program was

somewhat successful in the experimental study, where participants were cho-

sen at random, there is no proof that the program accomplishes its mission

among those recruited for enrollment. Those enrolled, so the critics say, are

more intelligent, more resourceful, and more socially connected than the eli-

gibles who did not enroll, and would have found a job regardless of the train-

ing. The population is not homogeneous, the critics claim; the informed who

are first to enroll draw little benefit from the program, while the weak and

uninformed who could truly benefit from it were not aggressively recruited.

In order to assess the extent to which the ETT � ETU test can detect the

presence of such heterogeneity, we will simulate the hiring process assum-

ing two types of individuals, ‘‘informed’’ and ‘‘uninformed.’’ Let Z ¼ 1

stand for the class of informed individuals, for whom the chances of hiring

after training is only 10 percent higher than without training, 0.9 versus 0.8.

Let Z ¼ 0 stand for the class of uninformed individuals, for whom the

chances of hiring after training are 70 percent higher than without training,

0.8 versus 0.1. We will assume that the propensity for enrollment among

the informed, q2, is higher than that among the uninformed, q1, that is,

q2 � q1 ¼ PðX ¼ 1jZ ¼ 1Þ ¼ PðX ¼ 1jZ ¼ 0Þ > 0.
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Since we are dealing with a binary treatment, we can assess the magnitude

of ETT � ETU using equation (3) without measuring any covariates. We rely

solely on {E(Y1), E(Y0)}, which are estimable from the experimental study,

and {E(Y |X ¼ 1), E(Y |X ¼ 1)}, which are estimable from the observational

study, and reflect the current recruitment policy. The plots in Figure 4 depict

the difference ETT � ETU as a function of r, the percentage of informed

individuals in the population, with each curve representing a fixed enroll-

ment disparity q2 � q1.

In generating these plots, we assume a model similar in structure to the

one in Figure 2, with Z being the only confounder between X and Y. We fur-

ther assume the following parameters:

E½Y jX ¼ 1; Z ¼ 1Þ ¼ 0:9
E½Y jX ¼ 0; Z ¼ 1Þ ¼ 0:8
E½Y jX ¼ 1; Z ¼ 0Þ ¼ 0:8
E½Y jX ¼ 0; Z ¼ 0Þ ¼ 0:1
q1 ¼ PðX ¼ 1jZ ¼ 0Þ ¼ 0:1:

We see that ETT � ETU is negative, indicating loss of opportunity due to

misdirected recruiting policy, with those in the program benefitting less from

it than (potentially) those who are not in it. The higher the enrollment

Figure 4. ETT � ETU versus r for different levels of enrollment disparity, q2 � q1.
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discrepancy q2 � q1 between the informed and the uninformed, the more

negative the difference ETT � ETU .

We further see that the difference ETT � ETU becomes zero when the pop-

ulation becomes homogeneous, at r ¼ 0 or r ¼ 1, with the slopes at these two

points measuring the sensitivity of program effectiveness to the presence of

heterogeneous individuals. Plots such as those in Figure 2 provide valuable

information about the nature and magnitude of the heterogeneity observed. For

example, if in a randomized experiment we observe the difference

ETT � ETU ¼ �0.3 (through equation (3)), we can then infer that, if the pro-

pensity difference q2 � q1 is lower than 0.5, the proportion r must lie between

0.20 and 0.62. The larger the difference q2 � q1, the wider the bounds for r.

Conclusions

This article explores ways of uncovering the presence of effect heterogene-

ity without knowing the factors that may produce it. This possibility was

shown to be realizable in the three most common designs in which the ATE

can be estimated: (1) randomized experiments, (2) covariate adjustment,

and (3) mediating instruments. The only exceptions in these three designs

are randomized experiments with nonbinary treatments and models in

which ATE is identified and ETT is not. Such models can be recognized

using the graphical theory of ETT (Shpitser and Pearl 2009), which pro-

vides a complete set of conditions for the identification of ETT and ETU

from modeling assumptions.

In all three cases that allow for the detection of latent heterogeneity, we

have derived explicit conditions that, if observed in practice, behoove us

to conclude that subpopulations exist that differ in their response to treat-

ment. These conditions can also serve to assess, albeit roughly (in the form

of lower bounds), the magnitude of the heterogeneity detected.

Acknowledgment

I am indebted to Jennie Brand and Stephen Morgan for calling my attention to the

sociological literature on heterogeneity and commenting on earlier versions of the

manuscript. Subsequently, this article benefitted from discussions with Felix Elwert

and Sander Greenland. I thank Ang Li for generating the plots of Figure 4.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Pearl 15

19, 2015
 by SAGE Production (DO NOT CHANGE THE PASSWORD!) on Octobersmr.sagepub.comDownloaded from 

http://smr.sagepub.com/


Funding

The author(s) disclosed receipt of the following financial support for the research,

authorship, and/or publication of this article: This research was supported in parts

by grants from NSF #IIS-1249822 and ONR #N00014-13-1-0153 and #N00014-

10-1-0933.

Notes

1. This example is taken from Pearl (2013).

2. In this section, we assume a binary treatment variable X ¼ (0, 1) and an outcome

variable Y with two potential outcomes, Y0 and Y1, designating the hypothetical

values of Y under treatment conditions X ¼ 0 and X ¼ 1, respectively. The logic

of potential outcomes (Rosenbaum and Rubin 1983) and its equivalence to struc-

tural equations where established in (Simon and Rescher 1966; Balke and Pearl

1994ab; Galles and Pearl 1998; Halpern 1998; Pearl 2015).

3. By ‘‘admissible,’’ we mean a set C of covariates that satisfy the backdoor criter-

ion (Pearl 1993; Pearl 2009:79-81) in the causal diagram and thus permit the

identification of the average causal effect by controlling for C. Admissibility

entails the conditional independence ðYx ⊥⊥ X jCÞ, sometimes called ‘‘condi-

tional ignorability’’ (Rosenbaum and Rubin 1983). The backdoor criterion pro-

vides a scientific basis and a transparent test for conditional ignorability–type

claims, which many researchers entrust to intuition.

4. In practice, the summation over S can be prohibitive, and propensity score

weighting can be used over the unit interval 0 � PS � 1 (Brand and Xie 2010).

5. This decomposition follows from the consistency rule: E(Y1 j X = 1) = E(Y j X = 1),

E(Y0 j X = 0) = E(Y j X = 0). It was first proposed in sociology by Winship and Mor-

gan (1999:667) in a paper that raised awareness for the importance of treatment-

effect heterogeneity. Emphasis on ETT and ETU was introduced earlier in econo-

metrics by Heckman and his coworkers (Heckman 1992; Heckman and Robb 1986).

6. Xie et al. (2012) used D for treatment and TT � TUT instead of ETT � ETU . In

contrast, Morgan and Winship (2015) use ATT � ATC. Here, we use X for treat-

ment, consistent with theoretical analyses in Shpitser and Pearl (2009), where the

acronym ETT was used, and a necessary and sufficient condition for identifying

ETT was developed.

7. Heckman et al. (2006) called this difference essential heterogeneity.

8. These expressions follow directly from the structural definition of counterfac-

tuals (Pearl 2009:98) as defined in equation (12). A complete derivation is given

in Online Appendix B.

9. These expressions can readily be derived by noting that EðY0jX ¼ 0Þ =

EðY jX ¼ 0Þ and writing: EðY0Þ ¼ EðY0jX ¼ 1Þpþ EðY jX ¼ 0Þð1� pÞ.
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For nonbinary treatments, ETT is not expressible in terms of E(Y0) and E(Y1).

10. This difference accounts for the modified Horvits–Thompson weights required

for estimating ETT and ETU by regression (Morgan and Winship 2015:231).

11. Morgan and Todd (2008) recognized the fact that ETT and ETU are estimable

(using weighted regression) whenever conditional ignorability holds. Equation

(8) extends their analysis by providing an explicit formula for ETT � ETU ,

applicable whenever a set Z of covariates is observed that is deemed admissible

for identifying ATE. (Note that identifying ATE, in itself, is insufficient.) Brand

and Halaby (2005) used bootstrapping methods to determine whether the differ-

ence between the ETT and the ETU is significant.

12. This is an interesting variant of Simpson’s paradox that surfaces when the aggre-

gation of data results in sign reversal of all statistical associations (Blyth 1972;

Simpson 1951). However, in the standard exposition of Simpson’s paradox, the

signs of all causal effects remain unaltered (Pearl 2009:180-82; 2014). Here we

witness a causal, not associational relationship that is present in the combined

population and is absent in each and every subpopulation.

13. For application of the front-door criterion in the social sciences, see Chalak and

White (2012) and Morgan and Winship (2007, 2015).
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The online appendices are available at http://smr.sagepub.com/supplemental.

References

Angrist, J. D., G. Imbens, and D. Rubin. 1996. ‘‘Identification of Causal Effects Using

Instrumental Variables (with Comments).’’ Journal of the American Statistical

Association 91:444-72.

Angrist, J. D. 1998. ‘‘Estimating the Labor Market on Voluntary Military Service

Using Social Security Date on Military Applicants.’’ Econometrica 66:249-88.

Angrist, J. D. and A. B. Krueger. 1999. ‘‘Handbook of Labor Economics.’’ Pp.

1277-366 in Causality: Statistical Perspectives and Applications, 1st ed., vol. 3,

edited by O. Ashenfelter and D. Card. Amsterdam, the Netherlands: Elsevier.

Angrist, J. D. and J.-S. Pischke. 2010. ‘‘The Credibility Revolution in Empirical Eco-

nomics: How Better Research Design Is Taking the Con out of Econometrics.’’

Journal of Economic Perspectives 24:3-30.

Balke, A. and J. Pearl. 1994a. ‘‘Counterfactual Probabilities: Computational Methods,

Bounds, and Applications.’’ Pp. 46-54 in Uncertainty in Artificial Intelligence 10,

edited by R. L. de Mantaras and D. Poole. San Mateo, CA: Morgan Kaufmann.

Balke, A. and J. Pearl. 1994b. ‘‘Probabilistic Evaluation of Counterfactual Queries.’’

Pp. 230-37 in Proceedings of the Twelfth National Conference on Artificial Intelli-

gence, vol. I, edited by B. Hayes-Roth and R. E. Korf. Menlo Park, CA: MIT Press.

Pearl 17

19, 2015
 by SAGE Production (DO NOT CHANGE THE PASSWORD!) on Octobersmr.sagepub.comDownloaded from 

http://smr.sagepub.com/supplemental
http://smr.sagepub.com/


Blyth, C. 1972. ‘‘On Simpson’s Paradox and the Sure-thing Principle.’’ Journal of the

American Statistical Association 67:364-66.

Brand, J. E. and C. N. Halaby. 2005. ‘‘Regression and Matching Estimates of the

Effects of Elite College Attendance on Educational and Career Achievement.’’

Social Science Research 35:749-70.

Brand, J. E. and J. S. Thomas. 2013. ‘‘Causal Effect Heterogeneity.’’ Pp. 189-213 in

Handbook of Causal Analysis for Social Research, chap. 11, edited by S. L.

Morgan. Dordrecht, the Netherlands: Springer.

Brand, J. E. and Y. Xie. 2010. ‘‘Who Benefits Most from College? Evidence for Neg-

ative Selection in Heterogeneous Economic Returns to Higher Education.’’

American Sociological Review 75:273-302.

Chalak, K. and H. White. 2012. ‘‘An Extended Class of Instrumental Variables for the

Estimation of Causal Effects.’’ Canadian Journal of Economics 44:1-31.

Ding, P. 2014. ‘‘A Paradox from Randomization-based Causal Inference.’’ Tech. rep.,

Harvard University, Cambridge, MA. arXiv:1402.0142v3.

Elwert, F. and C. Winship. 2010. ‘‘Effect Heterogeneity and Bias in Main-effects-

only Regression Models.’’ Pp. 327-36 in Heuristics, Probability and Causality:

A Tribute to Judea Pearl, edited by R. Dechter, H. Geffner, and J. Halpern. Milton

Keynes, U.K.: College Publications.

Galles, D. and J. Pearl. 1998. ‘‘An Axiomatic Characterization of Causal Counterfac-

tuals.’’ Foundation of Science 3:151-82.

Greenland, S. 1991. ‘‘On the Logical Justification of Conditional Tests for Two-by-

two Contingency Tables.’’ The American Statistician 45:248-51.

Halpern, J.1998. ‘‘Axiomatizing Causal Reasoning.’’ Pp. 202-10 in Uncertainty in

Artificial Intelligence, edited by G. Cooper and S. Moral. San Francisco, CA:

Morgan Kaufmann; Journal of Artificial Intelligence Research 12:17-37, 2000.

Heckman, J. 1992. ‘‘Randomization and Social Policy Evaluation.’’ Pp. 201-30 in

Evaluations: Welfare and Training Programs, edited by C. Manski and I. Garfinkle.

Cambridge, MA: Harvard University Press.

Heckman, J. and R. Robb. 1985. ‘‘Alternative Methods for Evaluating the Impact of

Interventions.’’ Pp. 156-245 in Longitudinal Analysis of Labor Market Data, edi-

ted by J. Heckman and B. Singer. New York: Cambridge University Press.

Heckman, J. and R. Robb. 1986. ‘‘Alternative Methods for Solving the Problem of

Selection Bias in Evaluating the Impact of Treatments on Outcomes.’’ Pp.

63-107 in Drawing Inference from Self Selected Samples, edited by H. Wainer.

New York: Springer-Verlag.

Heckman, J., S. Urzua, and E. Vytlacil. 2006. ‘‘Understanding Instrumental Variables

in Models with Essential Heterogeneity.’’ The Review of Economics and Statistics

88:389-432.

18 Sociological Methods & Research

19, 2015
 by SAGE Production (DO NOT CHANGE THE PASSWORD!) on Octobersmr.sagepub.comDownloaded from 

http://smr.sagepub.com/


Morgan, S. L. and C. Winship. 2007. Counterfactuals and Causal Inference: Methods

and Principles for Social Research (Analytical Methods for Social Research). 2nd

ed. New York: Cambridge University Press.

Morgan, S. L. and C. Winship. 2015. Counterfactuals and Causal Inference: Methods

and Principles for Social Research (Analytical Methods for Social Research). 2nd

ed. New York: Cambridge University Press.

Morgan, S. L. and J. J. Todd. 2008. ‘‘A Diagnostic Routine for the Detection of Con-

sequential Heterogeneity of Causal Effects.’’ Sociological Methodology 38:231-81.

Pearl, J. 1993. ‘‘Comment: Graphical Models, Causality, and Intervention.’’ Statisti-

cal Science 8:266-69.

Pearl, J. 1995. ‘‘Causal Diagrams for Empirical Research.’’ Biometrika 82:669-710.

Pearl, J. 2009. Causality: Models, Reasoning, and Inference. 2nd ed. New York:

Cambridge University Press.

Pearl, J. 2013. ‘‘The Curse of Free-will and the Paradox of Inevitable Regret.’’ Jour-

nal of Causal Inference 1:255-257.

Pearl, J. 2014. ‘‘Understanding Simpson’s Paradox.’’ The American Statistician 68:

8-13.

Pearl, J. 2015. ‘‘Trygve Haavelmo and the Emergence of Causal Calculus.’’ Econo-

metric Theory 31:152-79. Special issue on Haavelmo Centennial.

Rosenbaum, P. and D. Rubin. 1983. ‘‘The Central Role of Propensity Score in Obser-

vational Studies for Causal Effects.’’ Biometrika 70:41-55.

Shpitser, I. and J. Pearl. 2006. ‘‘Identification of Conditional Interventional Distribu-

tions.’’ Pp. 437-44 in Proceedings of the Twenty-second Conference on Uncer-

tainty in Artificial Intelligence, edited by R. Dechter and T. Richardson.

Corvallis, OR: AUAI Press.

Shpitser, I. and J. Pearl. 2009. ‘‘Effects of Treatment on the Treated: Identification

and Generalization.’’ Pp. 514-21 in Proceedings of the Twenty-fifth Conference

Annual Conference on Uncertainty in Artificial Intelligence, edited by J. Bilmes

and A. NgCorvallis, OR: AUAI Press.

Simon, H. and N. Rescher. 1966. ‘‘Cause and Counterfactual.’’ Philosophy and

Science 33:323-40.

Simpson, E. 1951. ‘‘The Interpretation of Interaction in Contingency Tables.’’

Journal of the Royal Statistical Society, Series B 13:238-41.

VanderWeele, T. and J. Robins. 2007. ‘‘Four Types of Effect Modification: A

Classification Based on Directed Acyclic Graphs.’’ Epidemiology 18:561-68.

Winship, C. and S. L. Morgan. 1999. ‘‘The Estimation of Causal Effects from Obser-

vational Data.’’ Annual Review of Sociology 25:659-706.

Xie, Y., J. E. Brand, and B. Jann. 2012. ‘‘Estimating Heterogeneous Treatment

Effects with Observational Data.’’ Sociological Methodology 42:314-47.

Pearl 19

19, 2015
 by SAGE Production (DO NOT CHANGE THE PASSWORD!) on Octobersmr.sagepub.comDownloaded from 

http://smr.sagepub.com/


Author Biography

Judea Pearl is Chancellor’s professor of computer science and statistics at UCLA.

He is a graduate of the Technion, Israel, and has joined the faculty of UCLA in

1970, where he currently directs the Cognitive Systems Laboratory and conducts

research in artificial intelligence, human cognition and philosophy of science. Pearl

has authored three books, Heuristics (1983), Probabilistic Reasoning (1988) and

Causality (2000, 2009), winner of the London School of Economics Lakatosh Award.

He is a member of the National Academy of Sciences, and a fellow of the cognitive

science society and the Association for the Advancement of Artificial Intelligence. In

2012, he won the Technion’s Harvey Prize and the ACM Alan Turing Award.

20 Sociological Methods & Research

19, 2015
 by SAGE Production (DO NOT CHANGE THE PASSWORD!) on Octobersmr.sagepub.comDownloaded from 

http://smr.sagepub.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice




