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1 Introduction

In a recent article (Pearl, 2012), T posed a series of questions to econometricians, to
demonstrate how long-standing problems in econometric research can be resolved us-
ing modern techniques of causal analysis. Among the questions were three pertaining
to sample selection bias, to which this paper provides a general solution. The origi-
nal questions are presented in Section 2.1, their solutions in Section 2.2, and further
generalizations are then developed in Section 3.

2 Sampling Selection Bias

2.1 Three questions concerning bias removal

Consider a nonparametric structural model defined over a set of endogenous vari-
ables {Y, X, Z1, Zy, Z3, W1, Wy, W3}, and unobserved exogenous variables {U, U’, Uy,
Uy, Us, Uy, U}}. The equations are structured as follows:

Model 1
Yy = f(WS,ZS,Wsz) X = Q(WhZz,U')
Wi = 93(X7U:§) W, = 91(Zl7U{)
Zz = fS(ZhZQ>U3) Zy = fl(Ul)
Wy = 92<Z27Ué) Zy = f2(U2)

where f, g, f1, f2, f3, 91, 92, g3 are arbitrary, unknown functions, and all exogenous
variables are mutually independent but otherwise arbitrarily distributed.

Due to its non-parametric nature, the algebraic representation of the model is su-
perfluous and can be replaced, without loss of information, with the diagram depicted
in Fig. 1.1

!This is entirely optional; readers comfortable with algebraic representations are invited to stay
in their comfort zone.



Figure 1: A graphical representation of Model 1. Error terms are assumed mutually
independent and not shown explicitly.

Suppose our aim is to estimate the conditional probability P(Y|X = z), yet
samples are preferentially selected to the dataset depending on a set Vg of variables.

(a) Let Vg = {W;, Wy}, what variables need be measured to correct for selection
bias?

(b) In general, for what sets, Vg, would selection bias be correctable, and by what
measurements.

(c) Repeat (a) and (b) assuming that our aim is to estimate the causal effect of X
onY.

2.2 Solutions

To students of graphical models, the solution to the three questions above is rather
trivial, and can best be expressed in terms of the augmented graph Gg in Fig. 2.
Here the node named S indicates actual selection to the dataset (i.e., S = 1 indicating

Figure 2: An augmented graph Gg, in which conditioning on S indicate actual selec-
tion into the dataset.

selection and S = 0 exclusion.)

2.2.1 Solution to Question (a)

Since the selection set Vg = {W;, W5} separates S from all other nodes in the graph,
a trivial solution to problem is that measurement of the set M = {X,Y,W;, Wy}



would be sufficient to correct for selection bias, provided the marginal probability
P(z,wy,ws) is available from external sources. This can be seen immediately by
conditioning on Wi and Wj:

P(ylz) = > P(ylz, wi, ws) P(wy, wy|x)
w1,w2

= Z P(y|z,wy,wse, S = 1)P(wy, we|z) (1)

wi,w?2
where we made use of the conditional independence
Y 1LS|(X, Wy, W)

confirmed by the corresponding d-separation condition in the graph. Since the first
factor of Eq. (1) is estimable in the study, and the second term from external sources,
the expression above constitutes a solution to question (a).

2.2.2 Solution to Question (b)

This exercise also provides a simple solution to the more general question (b). For
any selection set Vg, measurement of the set M = {Y, X, Vs} should allow us to
correct for selection bias, provided the marginal probability P(z,vg) is estimable.
The correction is given by:

P(yle) =Y P(ylz,vs, S = 1)P(vs) (2)

Again, the first factor is estimable in the study, while the second is estimable from
external sources.

A degenerate, yet frequently analyzed case of (2) occurs when Vg = X, namely,
selection is determined by “treatment” alone. In this case we have

P(ylx) = P(ylz, S = 1) (3)

and, notably, selection bias is removed without resorting to external information.

These simple solutions are predicated on the assumption that Vg is in the mea-
surement set M, and begs a generalization to cases where some elements of Vg are
not measured.

Assume, for example, that Vg = {W;, W5}, but W; can not be measured; can
we still recover our target quantity @ = P(y|z) and, if so, what set of variables M,
need to be measured? Clearly, M should contain X and Y, but what other elements
should be measured? This question can be expressed as a requirement that a subset
M'" of M will be found that satisfies the following condition:

Pylz) =) Pyle,m) P(m'|)

= Z P(ylz,m’,S = 1)P(m/|x) (4)



Clearly, the condition
Y ULS|(X, M") (5)

would satisfy the equality above and leads to a general solution to question (b).

Theorem 1 Given a DAG Gg in which a node S indicates selection, a sufficient
condition for bias free estimation of P(y|z) is the existence of a subset M’ of variables
such that:

(i) M',X,Y is measured is the study.
(i1) The marginal probability of {M', X} is estimable.

(111) {M', X} separates S from 'Y in the augmented graph Gg, i.e. (Y 1LS|M' X)q,.

Moreover, conditions (i)—(iii) lead to

P(ylz) =Y P(ylm',x, S = 1)P(m'|). (6)

m/

2.2.3 Illustrating Theorem 1

In our example of Fig. 2, it is trivial to confirm that any (pre-treatment) set M
containing W5 and Z3 would satisfy the conditions of Theorem 1. In particular,
M' = {W,, Z3} is such a set, and it allows us to recover @) without measuring W, via

Q= Pylz) = Z P(ylz, wa, 23, S = 1) P(w2, z37).

w2,z3

Note that the set M’ = {Ws,, Z;, Z»} will not be sufficient for bias correction. It
fails condition (iii) of Theorem 1 because conditioning on {X, W5, Z, Z,} leaves an
unblocked path between S and Y, ie., (S <+ W) - X < Z3 > Y).

3 Generalizations

So far, we have assumed that external data is available on all variables measured in
the study, with the exception of Y. The fact is, however, that the type of variables we
can measure in a carefully conducted study is usually different from that which we can
measure in the population at large. In our example, assuming again Vg = {Wy, W5},
we may have external data on the set T = {X, Wy, Z;, Z5} which does not include
Z3, a variable found to be essential for satisfying the conditions of Theorem 1. The
question arises whether measurements taken in the study, which are all conditioned
on S = 1, can help extend T into a larger set that includes Z3 and thus enables the
removal of selection bias as authorized by Theorem 1.



Whether this can be accomplished depends on whether a subset 7" of T can be
measured in the study such that the following d-separation condition holds in the
graph:

Zs 1LS|T'

because that would allow us to write P(z3,t') in terms of estimable probabilities:

P(z3,t") = P(z3]t")P(t")
= P(z]t', S =1)P(t)

Obviously, this d-separation does not hold in our graph, but the requirement can be
turned into a formal condition for bias removal.

In general, we can characterize the selection bias problem in terms of three subsets
of variables, (T, M, S), where:

e T'is a set of variables for which we have population data in the form of P(T = t).

e M is a set of variables for which we have measurements in the study, and permit
therefore, the estimation of P(M = m|S = 1).

e Vg is the set which determines the selection of samples into the dataset.

Our problem now is one of identification: Identify P(y|z) from two sources of
information, P(t) and P(m|S = 1), given a graph G in which Vg satisfies S1LV|Vs.

Theorem 1 offers a sufficient condition for this problem. It states that selection
bias is removable if we can find a measured subset M of T that contains X, and
separates Y from S. Now we are asking whether the condition can be relaxed to
allow for a measurement set M that is NOT a subset of 7. Namely some elements in
M will not have population probabilities.

Thus formulated, the question can be given a simple answer: Let M be a minimal
set satisfying (ii) and (iii) in Theorem 1. Is it possible to construct P(m) from P(t)
and P(m|S = 1) This would be feasible if there was a subset 7" of T" such that

P(m) =Y p(m|tp(t)
= 3" pmlt, 8 = 1p(t)

which requires the independence M ILS|T".
To summarize, we now we have two conditions for bias removal:

Theorem 2 P(y|z) is recoverable from sample-selection bias if there exists two mea-
sured sets, T' and M, such that:

(i) P(T =t) and P(M = m|S = 1) are estimable.
(i) (Y1LS|(M', X)) for some subset M' of M.
(111) (M'LLS|(T', X)) for some subset T' of T'.
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Moreover, when (i)-(iii) are satisfied, P(y|z) is given by:

P(yle) =) Plyle,m’,S = 1)P(m'|z)

m

where M’ = M\{X,Y} and P(m/|x) is estimable through:

P(m'lz) =Y _P(m/[t',z, S =1)P(t'|x)

In the special case of M’ being a subset of T, item (iii) is satisfied trivially by
choosing 7" = M.

3.1 Illustrating Theorem 2

A graph satisfying Theorem 2 and not Theorem 1 is contrived in Fig. 3, where we let
the path W; — X be mediated with the variable T7. In this model, selection bias is
removable using the sets

T = {ZlvT17X7 W17 W2}7

T/: {ZlaT17X7W2}
M = {Y7Xa ZhZ?)uTlaWQ}-

Figure 3: Selection bias can be removed if measurements on the set M =
{Y, X, Zy, Z3,T1,W5} are available in the study and the joint probability of T =
{X,Th, Z,, W3} is estimable from external sources.

Note that, in violation of Theorem 1, Z3 is not in 7', and still we can remove the
bias through the estimand

P(ylz) = Plyle,m’, S = 1)P(m/|z)
where M’ = M\ X and P(m’|x) is estimable through:
P23, 21, t1, we|x) = P(23|21, 11, wa, ) P(21, 1, wal|7)
= P(z3]21,t1, we, 2, S = 1) P (21, t1, wa|x)



An interesting case arises when 7' = 0, namely, we do not have any external infor-
mation, save for that coming from the study. It is not hard to see that the choice
M = {X,Y} would satisfy the conditions of Theorem 2, provided Y 1L S| X, namely, X
separates Y from S. This coincide with the degenerate case of “treatment dependent
selection” analyzed in Section 2.2.2 (Eq. (3)).

3.2 Recovering causal effects (Question (c))

A sufficient answer to question (c¢) (Section 2.1) follows in a fairly straightforward
way from the discussion of Section 3. If our aim is to estimate the causal effect
P(Y = y|do(X = x)) in the model of Fig. 2. We should seek a set T of variables such
that {7, S} blocks all back-door paths from X to Y. This can be accomplished using
T = {Z3, W3} or T{W1, Z3}, and would require a separate estimate of the marginal
distribution P(t) be estimable separately. This last requirement is not necessary if
we can settle for the t-specific causal effect P(Y = y|do(X = z),t) rather then the
average effect. If S is a descendant of X then we need to block not only the back-door
paths, but also paths containing arrows from X which carry spurious dependencies.
For example, if Vg = {X, W}, we need to measure T' = {Z3, W5}, which blocks the
path X — S <~ W, — Y in addition to all back-door paths. The set T' = {WW;, Z3}
will not be sufficient. Lastly, if S is a descendant of any intermediate variable (e.g.,
W3) on the path from X to Y, conditioning on S would unblock a “virtual collider”
through X — W3 < Uy,. See (Pearl, 2009, pp. 339-340; Shpitser and VanderWeele,
2011). In summary, the set T" should block all paths carrying non-causal dependencies
between X and Y, and should be prevented from creating such paths. Daniel et al.
(2011) operationalized these considerations in algorithms.

4 Conclusions

Theorem 1 and 2 give sufficient conditions for recovering the relationship P(y|z) from
selection biased data, provided that we know what variables Vg determine whether
samples are selected or excluded. FExtensions to more elaborate relationships, like
P(y|z, z) are straightforward, letting all expressions be conditioned on Z = z. Like-
wise, the causal effect P(y|do(z)) can be recovered when the conditions of Theorem 2
are satisfied with an added requirement that 77 be an admissible set.

Economists associate the topic of “selection bias” with celebrated work of James
Heckman (1979) which deals with outcome-dependent sampling, and relies on distri-
butional assumptions. The results reported in this paper are orthogonal to these of
Heckman’s because they are applicable to the entire class of non parametric models.
Angrist (1997) focused on the trivial case of X-dependent selection and on estimating
Eq. (3) using propensity score.

Related works on selection bias can be found in Greenland and Pearl (2011) and
Hernén et al. (2004), which give a classification of selection bias in various epidemi-
ological scenarios and demonstrates cases where adjustment for the set Vg would
remove such bias. Several of the graphical conditions formulated in Section 2 were



also noted in Bareinboim and Pearl (2012) and Greenland and Pearl (2011). Bias
caused by outcome-dependence sampling is treated in Bareinboim and Pearl (2012);
Didelez et al. (2010); Geneletti et al. (2009). These papers focus primarily on recov-
ering the odds-ratio which, due to its (X,Y’) symmetry, can be recovered even under
outcome-dependent sampling.
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