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Abstract

Augmenting the graphoid axioms with three additional rules enables us to handle
independencies among observed as well as counterfactual variables. The augmented set
of axioms facilitates the derivation of testable implications and ignorability conditions
whenever modeling assumptions are articulated in the language of counterfactuals.

1 Motivation

Consider the causal Markov chain X → Y → Z which represents the structural equations:

y = f(x, u1) (1)

z = g(y, u2) (2)

with u1 and u2 being omitted factors such that X, u1, u2 are mutually independent.
It is well known that, regardless of the functions f and g, this model implies the condi-

tional independence of X and Z given Y , written

X ⊥⊥ Z | Y (3)

This can be readily derived from the independence of X, u1, and u2, and it also follows from
the d-separation criterion, since Y blocks all paths between X to Z.

However, the causal chain can also be encoded in the language of counterfactuals by
writing:

Yx(u) = f(x, u1) (4)

Zxy(u) = g(y, u2) = Zy(u) (5)

where u stands for all omitted factors (in our case u = {u1, u2}) and Yx(u) stands for the
value that Y would take in unit u had X been x. Accordingly, the functional and indepen-
dence assumptions embedded in the chain model translate into the following counterfacutal
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statements:

Zxy = Zy (6)

X ⊥⊥ Yx (7)

Zxy ⊥⊥ (Yx, X) (8)

Equation (6) represents the missing arrow from X to Z, while (7)–(8) convey the mutual
independence of X, u1, and u2.
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Assume now that we are given the three counterfactual statements (6)–(8) as a specifica-
tion of some uncharted model; the question arises: Are these statements testable? In other
words, is there a statistical test conducted on the observed variables X, Y , and Z that could
prove the model wrong? On the one hand, none of the three defining conditions (6)–(8)
is testable in isolation, because each invokes a counterfactual entity. On the other hand,
the fact that the chain model of Eqs. (1)–(2) yields the conditional independence of Eq. (3)
implies that the combination of all three counterfactual statements should yield a testable
implication.

This paper concerns the derivation of testable conditions like Eq. (3) from counterfac-
tual sentences like Eqs. (6)–(8). Whereas graphical models have the benefits of inferential
tools such as d-separation (Pearl 1988; 2009, p. 335) for deriving their testable implications,
counterfactual specifications must resort to the graphoid axioms2, which, on their own, can-
not reduce subscripted expressions like Eqs. (6)-(8) into a subscript-free expression like Eq.
(3). To unveil the testable implications of counterfactual specifications, the graphoid axioms
must be supplemented with additional inferential machinery.

We will first prove that Eq. (3) indeed follows from Eq. (6)–(8) and then tackle the general
question of deriving testable sentences from any given collection of counterfactual statements
of the conditional independence variety. To that end, we will augment the graphoid axioms
with three auxiliary inference rules, which will enable us to remove subscripts from variables
and, if feasible, derive sentences in which all variables are unsubscripted, that is, testable.
These auxiliary rules will rely on the composition axiom (Pearl, 2009, p. 229)

Xw = x =⇒ Yxw = Yw (9)

which was shown to be sound and complete relative to recursive models (Galles and Pearl,
1998; Halpern, 1998).3 In the special case of W = {∅} the axiom is known as consistency
rule:

X = x =⇒ Yx = Y (10)

and is discussed in Robins (1986) and Pearl (2010).

1Rules for translating graphical models to counterfactual notation are given in Pearl (2009, pp. 232–234),
based on the structural semantics of counterfactuals. The rules represent the omitted factors affecting any
variable, say Y , by the set of counterfactuals Ypa(Y ), where pa(Y ) stands for the parents of Y in the diagram.

2The graphoid axioms are axioms of conditional independence, first formulated by Dawid (1979) and
Spohn (1980). Their connections to graph connectivity and to other notions of “information relevance” were
established by Pearl and Paz (1987) and are described in detail in (Pearl 1988, pp. 78–133; 2009, p. 11).

3The axiom of “composition” was first stated in Holland (1986, p. 968). Its completeness rests on a few
technical conditions such as uniqueness and effectiveness (Halpern, 1998).
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2 Deriving Testables from Non-testables

In this section we will show that Eq. (3) can be derived from (6)–(8) with the help of (9).
We first note that substituting (6) into (8) yields

Zy ⊥⊥ (Yx, X) (11)

which is a universally quantified formula, stating that for all z, y, y′, x, x′ in the respective
domains of Z, Y, and X, the following independence condition holds:

Zy = z ⊥⊥ (Yx = y′, X = x′) (12)

We next note that, for the special case of x′ = x, Eq. (12) yields:

Zy = z ⊥⊥ (Yx = y′, X = x)

or, using (10)

Zy = z ⊥⊥ (Y = y′, X = x) for all y, z, y′, x (13)

This can be written succintly as

Zy ⊥⊥ (Y,X) (14)

Our next task is to remove the subscript from Zy, This is done in two steps. First we
apply the graphoid rule of “weak union” (Pearl, 2009, p. 11) to obtain:

Zy ⊥⊥ (Y,X) =⇒ Zy ⊥⊥ X | Y (15)

Second, we explicate the components of (15) and write

Zy ⊥⊥ (X, Y ) =⇒ Zy = z ⊥⊥ X = x | Y = y′ (16)

for all y, z, x, and y′. Again, for the special case of y′ = y, Eq. (10) permits us to remove the
subscript from Zy and write

Z = z ⊥⊥ X = x | Y = y for all x, y, z (17)

Finally, since the last independency holds for all x, y, and z, we can write it in succinct
notation as

Z ⊥⊥ X | Y
which is subscript-free and coincides with the testable implication of Eq. (3).

To summarize, we have shown that the subscripts in Eq. (11) can be removed in two
steps. First

Zy ⊥⊥ (Yx, X) =⇒ Zy ⊥⊥ (Y,X) (18)

and second,

Zy ⊥⊥ (Y,X) =⇒ Z ⊥⊥ X|Y (19)

Moreover, we see that (3) follows from (8) alone, and does not require the exogeneity
assumption expressed in (7).
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3 Augmented Graphoid Axioms

In this section we will identify three general rules that, when added to the graphoid axioms,
will enable us to derive testable implications without referring back to the consistency axiom
of Eq. (10). The three rules are as follows

Rule 1
V ⊥⊥ (Xw, Yxw, S) | R ⇒ V ⊥⊥ (Xw, Yw, S) | R (20)

Rule2
V ⊥⊥ R | (Xw, Yxw, S) ⇒ V ⊥⊥ R|(Xw, Yw, S) (21)

Rule 3
V ⊥⊥ (Yxw, S) | (Xw, R) ⇒ V ⊥⊥ (Yw, S) | (Xw, R) (22)

Rules 1 and 2 state that a subscript x can be removed from Yxw whenever Yxw stands in
conjunction with Xw, be it before or after the conditioning bar. In our example we had
W = {∅}. Rule 3 states that a subscript x can be removed from Yxw whenever Xw appears
in the conditioning set. The symbols V, S,R in Eqs. (20)–(22) stand for any set of variables,
observable as well as counterfactual.

The proof of these three rules follow the path that led to the derivation of Eq. (18) and
(19).

For mnemonic purposes we can summarize these rule using the following shorthand:

Rule 1–2

(Xw, Yxw) ⇒ (Xw, Yw) (23)

Rule 3

(Yxw|Xw) ⇒ (Yw|Xw) (24)

4 Deriving Ignorability Relations

Unveiling testable implications is only one application of the augmented graphoid axioms in
Section 3. Not less important is the ability of these axioms to justify ignorability relations
which a researcher may need for deriving causal effect estimands.4

Consider the sentence Zx ⊥⊥ (Yz, X) which may be implied by a certain process, and
assume we wish to estimate the causal effect of Z on Y , P (Yz = y) from non-experimental
data. For this estimation to be unbiased, the conditional ignorability Z ⊥⊥ Yz|W need to be
assumed, where W is some set of observed covariates. Using Axiom (22) we can show that

4Reliance on the assumptions of conditional ignorability (Rubin, 1974; Rosenbaum and Rubin, 1983;
Holland, 1986), which are cognitively formidable, is one of the major weaknesses of the potential outcome
framework (Pearl, 2009, pp. 350–351). Axioms (20)-(22) permit us to derive needed ignorability conditions
from other counterfactual statements which are perhaps more transparent.
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W = X satisfies the ignorability assumptions and, therefore, adjustment for X will yield a
bias-free estimate of the causal effect P (Yz = y). This can be shown as follows:

Zx ⊥⊥ (Yz, X) =⇒ Zx ⊥⊥ Yz|X

(using the graphoid rule of “weak union”) and by Rule (22) we obtain

Zx ⊥⊥ Yz|X =⇒ Z ⊥⊥ Yz|X

We therefore can write

P (Yz = y) =
∑
x

P (Yz = y|X = x)P (X = x)

=
∑
x

P (Yz = y|Z = z,X = x)P (X = x)

=
∑
x

P (Y = y|Z = z,X = x)P (X = x). (25)

Equation (25) is none other but the standard adjustment formula for the causal effect of Z
on Y , controlling for X.

The process can also be reversed; we start with a needed, yet unsubstantiated ignorability
condition, and we ask whether it can be derived from more fundamental conditions which
are either explicit in the model or are defensible on scientific grounds. Consider, for example,
an unconfounded mediation model in which treatment X is randomized and assume we seek
to estimate to effect of the mediator Z on the outcome Y . (The model is depicted in Fig. 1).
Operationally, we know that the ignorability condition Z ⊥⊥ Yz|X would allow us to obtain

X Y

Z

Figure 1: Unconfounded mediation model implying the conditional ignorability Z ⊥⊥ Yz|X.

the desired effect P (Yz = y) by adjusting for X, as shown in the derivation of Eq. (25).
However, lacking graphs for guidance, it is not clear whether this condition follows from the
assumptions embedded in the model; a formal proof is therefore needed. The assumptions
explicit in the model take the form

(a) Xz = X

(b) X ⊥⊥ (Zx, Yzx)

(c) Zx ⊥⊥ Yzx.

(a) states that Z does not affect X, (b) represents the assumption that X is randomized, and
(c) stands for the no-confounding assumption, that is, all factors affecting Z when X is held
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constant are independent of those affecting Y when X and Z are held constant (Pearl, 2009,
p. 232, p. 343). These factors stand precisely for the “error terms” that enter the structural
equations for Z and Y , respectively, hence they have clear process-based interpretations, and
avail themselves to plausibility judgments.

To show that the desired ignorability condition Z ⊥⊥ Yz|X follows from (a), (b) and (c),
we can use Rule 3 (Eq. 22) as follows. First, the standard graphoid axioms dictate

X ⊥⊥ (Zx, Yzx) & Zx ⊥⊥ Yzx ⇒ Zx ⊥⊥ Yzx|X

Next, applying Rule 3 twice, together with X = Xz, gives

Zx ⊥⊥ Yzx|X ⇒ Z ⊥⊥ Yzx|X ⇒ Z ⊥⊥ Yzx|Xz ⇒ Z ⊥⊥ Yz|Xz ⇒ Z ⊥⊥ Yz|X

which yields the desired ignorability condition.
These derivations can be skipped, of course, when we have a graphical model for guidance.

The adjustment formula (25) could then be written by inspection, since X satisfies the back-
door condition relative to Z → Y . However, researchers who mistrust graphs and insist on
doing the entire analysis by algebraic methods, would need to use Rules 1–3 to justify the
ignorability condition from assumptions (a), (b), and (c).

5 Conclusions

Rules 1-3, when added to the graphoid axioms, allow us to process conditional-independence
sentences involving counterfactuals and derive both their testable implications, as well as
implications that are deemed necessary for identifying causal effects. We conjecture that
Rules 1–3 are complete in the sense that all implications derivable from the graphoid axioms
together with the consistency rule (18) are also derivable using the graphoid axioms together
with Rules 1–3.

Augmented graphoids are by no means a substitute for causal diagrams, since the com-
plexity of finding a derivation using graphoid axioms may be exponentially hard (Geiger,
1990). Diagrams, on the other hand, offer simple graphical criteria (e.g., d-separation or
back-door) for deriving testable implications and effect estimands. In reasonably sized prob-
lems, these criteria can be verified by inspection, while, in large problems, they can be
computed in polynomial time (Tian et al., 1998; Shpitser and Pearl, 2008). The secret
of diagrams is that they embedd all the graphoid axioms in their structure and, in effect,
pre-compute all their ramifications and display them in graphical patterns.
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