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ABSTRACT 

Causality was at the center of the early history of Structural Equation Models (SEMs) which continue to 
serve as the most popular approach to causal analysis in the social sciences.  Through decades of 
development critics and defenses of the capability of SEMs to support causal inference have 
accumulated.  A variety of misunderstandings and myths about the nature of SEMs and their role in 
causal analysis have emerged and their repetition has led some to believe they are true.  Our paper is 
organized by presenting eight myths about causality and SEMs in the hope that this will lead to a more 
accurate understanding.  More specifically, the eight myths are: (1) SEMs aim to establish causal 
relations from associations alone, (2) SEMs and regression are essentially equivalent, (3) No causation 
without manipulation, (4) SEMs are not equipped to handle nonlinear causal relationships, (5) A 
potential outcome framework is more principled than SEMs, (6) SEMs are not  applicable to experiments 
with randomized treatments, (7) Mediation analysis in SEMs is inherently noncausal, and (8) SEMs do 
not test any major part of the theory against the data.  We present the facts that dispell these myths, 
describe what SEMs can and cannot do, and briefly present our critique of current practice using SEMs. 
We conclude that the current capabilities of SEMs to formalize and implement causal inference tasks are 
indispensible; its potential to do more is even greater. 

 
EIGHT MYTHS ABOUT CAUSALITY AND STRUCTURAL EQUATION MODELS 

 
Social scientists’ interest in causal effects is as old as the social sciences.  Attention to 
the philosophical underpinnings and the methodological challenges of analyzing 
causality has waxed and waned.  Other authors in this volume trace the history of the 
concept of causality in the social sciences and we leave this task to their skilled hands.  
But we do note that we are at a time when there is a renaissance, if not a revolution in 
the methodology of causal inference, and structural equation models play a major role 
in this renaissance. 
 
Our emphasis in this chapter is on causality and structural equation models (SEMs).  If 
nothing else, the pervasiveness of SEMs justifies such a focus.  SEM applications are 
published in numerous substantive journals.  Methodological developments on SEMs 
regularly appear in journals such as Sociological Methods & Research, Psychometrika, 
Sociological Methodology, Multivariate Behavioral Research, Psychological Methods, 
and Structural Equation Modeling, not to mention journals in the econometrics literature.  
Over 3,000 subscribers belong to SEMNET, a listserv devoted to SEMs.  Thus interest 
in SEMs is high and continues to grow (e.g., Hershberger 2003; Schnoll, Fang, and 
Manne 2004; Shah and Goldstein 2006). 
 
Discussions of causality in SEMs are hardly in proportion to their widespread use.  
Indeed, criticisms of using SEMs in analysis of causes are more frequent than 
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explanations of the role causality in SEMs.  Misunderstandings of SEMs are evident in 
many of these.  Some suggest that there is only one true way to attack causality and 
that way excludes SEMs. Others claim that SEMs are equivalent to regression analysis 
or that SEM methodology is incompatible with intervention analysis or the potential 
outcome framework.  On the other hand, there are valid concerns that arise from more 
thoughtful literature that deserve more discussion. We will address both the distortions 
and the insights from critics in our chapter. 
 
We also would like to emphasize that SEMs have not emerged from a smooth linear 
evolution of homogenous thought.  Like any vital field, there are differences and 
debates that surround it.  However, there are enough common themes and 
characteristics to cohere, and we seek to emphasize those commonalities in our 
discussion.  
 
Our paper is organized by presenting eight myths about causality and SEMs in the hope 
that this will lead to a more accurate understanding.  More specifically, the eight myths 
are: (1) SEMs aim to establish causal relations from associations alone, (2) SEMs and 
regression are essentially equivalent, (3) No causation without manipulation, (4) SEMs 
are not equipped to handle nonlinear causal relationships, (5) A potential outcome 
framework is more principled than SEMs, (6) SEMs are not  applicable to experiments 
with randomized treatments, (7) Mediation  analysis in SEMs is inherently noncausal, 
and (8) SEMs do not test any major part of the theory against the data. 
 
In the next section we provide the model and assumptions of SEM.  The primary section 
on the eight myths follows and we end with our conclusion section. 
  
MODEL AND ASSUMPTIONS OF SEMs 
 
Numerous scholars across several disciplines are responsible for the development of 
and popularization of SEMs.  Blalock (1960, 1961, 1962, 1969), Duncan (1966, 1975), 
Jöreskog (1969, 1970, 1973), and Goldberger (1972; Goldberger and Duncan 1973) 
were prominent among these in the wave of developments in the 1960s and 1970s.  But 
looking back further and if forced to list just one name for the origins of SEMs, Sewall 
Wright (1918, 1921, 1934), the developer of path analysis, would be a good choice.  
 
Over time this model has evolved in several directions.  Perhaps the most popular 
general SEM that takes account of measurement error in observed variables is the 
LISREL model proposed by Jöreskog and Sörbom (1978).  This model simplifies if 
measurement error is negligible as we will illustrate below.  But for now we present the 
general model so as to be more inclusive in the type of structural equations that we can 
handle.  We also note that this model is linear in the parameters and assumes that the 
coefficients are constant over individuals.  Later when we address the myth that SEMs 
cannot incorporate nonlinearity or heterogeneity, we will present a more general 
nonparametric form of SEMs which relaxes these assumptions.  But to keep things 
simpler, we now stay with the widely used linear SEM with constant coefficients. 
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This SEM consists of two major parts.  The first is a set of equations that give the causal 
relations between the substantive variables of interest, also called “latent variables”, 
because they are often inaccessible to direct measurement (Bollen 2002).  Self-esteem, 
depression, social capital, and socioeconomic status are just a few of the numerous 
variables that are theoretically important but are not currently measured without 
substantial measurement error.  The latent variable model gives the causal relationships 
between these variables in the absence of measurement error.  It is1     
       

iiii ζΓξα=η +++ ηBη     (1) 
 
The second part of the model ties the observed variables or measures to the 
substantive latent variables in a two equation measurement model of  
       

iiyyi εηΛα= ++y      (2) 

iixxi δΛα= ++ ξx          (3) 
 

In these equations, the subscript of i stands for the ith case, iη  is the vector of latent 
endogenous variables, ηα is the vector of intercepts, B  is the matrix of coefficients that 
give the expected effect2 of the iη  on iη where its main diagonal is zero3, iξ  is the 
vector of latent exogenous variables, Γ  is the matrix of coefficients that give the 
expected effects of iξ   on iη , and iζ  is the vector of equation disturbances that consists 
of all other influences of iη  that are not included in the equation.  The latent variable 
model assumes that the mean of the disturbances is zero [E( iζ )=0] and that the 
disturbances are uncorrelated with the latent exogenous variables [COV( iζ , iξ )=0].  If 
on reflection a researcher’s knowledge suggests a violation of this latter assumption, 
then those variables correlated with the disturbances are not exogenous and should be 
included as an endogenous latent variable in the model.   
 
The covariance matrix of iξ  is Φ and the covariance matrix of iζ  is Ψ.  The researcher 
determines whether these elements are freely estimated or are constrained to zero or 
some other value. 
 
In the measurement model, iy  is the vector of indicators of iη , yα is the vector of 
intercepts, yΛ  is the factor loading matrix that gives the expected effects of iη on iy , 

                                                            
1 The notation slightly departs from the LISREL notation in its representation of intercepts. 

2 The expected effect refers to the expected value of the effect of one η on another.  

3 This rules out a variable with a direct effect on itself. 



4 

 

and iε  is the vector of unique factors (or disturbances) that consists of all the other 
influences on iy  that are not part of iη .  The ix  is the vector of indicators of iξ , xα is the 
vector of intercepts, xΛ  is the factor loading matrix that gives the expected effects of iξ  
on ix , and iδ  is the vector of unique factors (or disturbances) that consists of all the 
other influences on ix  that are not part of iξ .  The measurement model assumes that 
the means of disturbances (unique factors) [E( iε ), E( iδ )]  are zero and that the different 
disturbances are uncorrelated with each other and with the latent exogenous variables 
[i.e., COV( iε , iξ ),COV( iδ , iξ ),COV( iε , iζ ),COV( iδ , iζ ) are all zero].  Each of these 
assumptions requires thoughtful evaluation.  Those that are violated will require a 
respecification of the model to incorporate the covariance.  The covariance matrix for iδ  
is ϴδ and the covariance matrix for iε  is ϴε.  The researcher must decide whether these 
elements are fixed to zero, some other constraint, or are freely estimated. 
 
The SEM explicitly recognizes that the substantive variables represented in iη and iξ  
are likely measured with error and possibly measured by multiple indicators.  Therefore, 
the preceding separate specification links the observed variables that serve as 
indicators to their corresponding latent variables.  Indicators influenced by single or 
multiple latent variables are easy to accommodate.  Researchers can include correlated 
disturbances from the latent variable or measurement model by freely estimating the 
respective matrix entries in the covariance matrices of these disturbances mentioned 
above (i.e., Ψ , ϴδ , ϴε ). If it happens that an observed variable has negligible 
measurement error, it is easy to represent this by setting the observed variable and 
latent variable equal (e.g., =ix3 iξ3 ).   
 
Now we focus on the “Structural” in Structural Equation Models.  By structural we mean 
that the researcher incorporates causal assumptions as part of the model.  In other 
words, each equation is a representation of causal relationships between a set of 
variables, and the form of each equation conveys the assumptions that the analyst has 
asserted.   
 
To illustrate, we retreat from the general latent variable structural equation model 
presented above and make the previously mentioned simplifying assumption that all 
variables are measured without error.  Formally, this means that the measurement 
model becomes ii η=y  and ii ξ=x .  This permits us to replace the latent variables with 
the observed variables and our latent variable model becomes the well-known 
simultaneous equation model of 
 

iiiii ζΓα= +++ xyBy η    (4) 
 
We can distinguish weak and strong causal assumptions.  Strong causal assumptions 
are ones that assume that parameters take specific values.  For instance, a claim that 
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one variable has no causal effect on another variable is a strong assumption encoded 
by setting the coefficient to zero.  Or, if one assumes that two disturbances are 
uncorrelated, then we have another strong assumption that the covariance equals zero.   
 
A weak causal assumption excludes some values for a parameter but permits a range 
of other values.  A researcher who includes an arrow between two variables usually 
makes the causal assumption of a nonzero effect, but if no further restrictions are made 
then this permits an infinite variety of values (other than zero) and this represents a 
weak causal assumption.  The causal assumption is more restrictive if the researcher 
restricts the coefficient to be positive, but the causal assumption still permits an infinite 
range of positive values and is a weaker causal assumption than specifying a specific 
value such as zero. 

 
[FIGURE 1 ABOUT HERE] 

 
To further explain the nature of causal assumptions, consider the special case of the 
simultaneous equations where there are four y variables as in Figure 1.  In this path 
diagram the boxes represent observed variables.  Single headed straight arrows 
represent the effect of the variable at the base of the arrow on the variable at the head 
of the arrow.  The two-headed curved arrows connecting the disturbances symbolize 
possible association among the disturbances.  Each disturbance contains all of the 
variables that influence the corresponding y variable but that are not included in the 
model.  The curved arrow connecting the disturbances means that these omitted 
variables are correlated.  The equations that correspond to the path diagram are 
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with kjforCOV kj ,0),( ≠ζζ .   
 
As a linear simultaneous equation system, the model in Figure 1 and equation (5) 
assumes linear relationships, the absence of measurement error, and incorporates only 
weak causal assumptions that all coefficients and covariances among disturbances are 
nonzero.  All other values of the coefficients and covariances are allowed.  Other than 
assuming nonzero coefficients and covariances, this model represents near total 
ignorance or a lack of speculation about the data-generating process.  Needless to say 
this model is underidentified in the sense that none of the structural coefficients is 
estimable from the data. 
 
A researcher who possesses causal knowledge of the domain may express this 
knowledge by bringing stronger causal assumptions to the model and by drawing their 
logical consequences.  Or a researcher who wants to examine the implications of or 
plausibility of a set of causal assumptions can impose them on the model and test their 
compatibility with the data.  The two strongest types of causal assumptions are: (1) 
imposing zero coefficients and (2) imposing zero covariances.  For instance, consider 
the models in Figure 2. 
 

[FIGURE 2 ABOUT HERE] 
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Figure 2a is the same as Figure 1 with the addition of the following strong causal 
assumptions: 
 

kjallforC kj ,0),(,0424134312423141312 ========== ζζβββββββββ  (6) 
   
This is a causal chain model.  The strong causal assumptions include forcing nine 
coefficients to zero and setting all disturbance covariances to zero.  The weak causal 
assumptions are that the coefficients and covariances remaining in the model are 
nonzero.  The resulting model differs from that of Figure 1 in two fundamental ways.  
First, it has testable implications and, second, it allows all of the remaining structural 
coefficients to be estimable from the data (i.e., identifiable). The set of testable 
implications of a model as well as the set of identifiable parameters can be 
systematically identified from the diagram (although some exceptions exist) [Pearl 
2000].  The ability to systematize these two readings has contributed substantially to our 
understanding of the causal interpretation of SEM, as well as causal reasoning in 
general. 
 
Figure 2b shows what results from Figure 1 when imposing a different set of causal 
assumptions on the coefficients and disturbance covariances.  The causal assumptions 
of Figure 2b are 
 

0),(),(),(),(
,0

42324131

4132242321141312

====
========

ζζζζζζζζ
ββββββββ

CCCC
  (7) 
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The model in Figure 2b has eight strong causal assumptions on the coefficients that are 
set to zero and four strong causal assumptions about disturbance covariances set to 
zero.  It can be shown that this model has no testable implications for the strong causal 
assumptions, yet all parameters are identified.  The weak causal assumptions of 
nonzero values for those coefficients and covariances that remain in the model can be 
tested, given that the strong assumptions hold, but are less informative than the zero 
coefficient and covariance restrictions present in Figure 2a. 
 
In Figures 1 and 2 we treated only models of observed variables in simultaneous 
equations.  Suppose we stay with the same four y variables, but consider them 
measures of latent variables.  The measurement model equation of  
 

iiyyi εηΛα= ++y    (8) 
covers factor analysis models.   

[FIGURE 3 ABOUT HERE] 
 

 
Figure 3 contains two hypothetical measurement models for the four y variables that we 
have used for our illustrations.  In the path diagram, the ovals or circles represent the 
latent variables.  As stated above, these are variables that are part of our theory, but not 
in our data set.  As in the previous path diagrams, the observed variables are in boxes, 
single-headed arrows stand for direct causal effects, two-headed arrows (often curved) 
signify sources of associations between the connected variables, though the reasons for 
their associations are not specified in the model.  It could be that they have direct causal 
influence on each other; that some third set of variables not part of the model influence 
both; or there could be some other unspecified mechanism (preferential selection) 
leading them to be associated.  The model only says that they are associated and not 
why. Disturbances (“unique factors”) are included in the model not enclosed in circles or 
boxes.  These are the ε s in the diagram.  Given that they could be considered as latent 
variables, they are sometimes enclosed by circles or ovals, though we do not do so 
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here.   
 
In Figure 3a our causal assumptions are that none of the indicators (ys) has direct 
effects on each other and that all covariances of disturbances are zero.  In other words, 
the model assumes that a single latent variable (η) explains all the association among 
the measures (ys).  In addition, the model assumes that causal influences run from the 
latent variable to the indicators and that none of the indicators has a causal effect on the 
latent variable.  The weak causal assumptions are that the coefficients (i.e., “factor 
loadings”) in the model are nonzero.  Similarly, the strong causal assumptions of Figure 
3b are that none of the indicators (ys) has direct effects on each other and all 
covariances of disturbances are zero.  But, in addition, it assumes that η1 has zero 
effect on y3 and y4 and that η2 has zero effect on y1 and y2.  It also assumes that two 
correlated latent variables are responsible for any association among the four 
indicators.  It assumes that all causal influences run from the latent variable to the 
indicators and none in the reverse direction.  The weak causal assumptions are that the 
coefficients and covariances of the latent variables are nonzero. 
 
Imposing different causal assumptions leads to different causal models, as illustrated by 
our examples.  The causal assumptions derive from prior studies, research design, 
scientific judgment, or other justifying sources.  In a minority of cases, the causal 
assumptions are well-supported and widely accepted (e.g., a variable at time 2 cannot 
cause a variable at time 1).  But there are few situations where all causal assumptions 
are without challenge. 
 
 More typically the causal assumptions are less established, though they should be 
defensible and consistent with the current state of knowledge.  The analysis is done 
under the speculation of “what if these causal assumptions were true.”  These latter 
analyses are useful because there are often ways of testing the model, or parts of it.  
These tests can be helpful in rejecting one or more of the causal assumptions, thereby 
revealing flaws in specification.  Of course, passing these tests does not prove the 
validity of the causal assumptions, but it lends credibility to them. If we repeatedly test 
the model in diverse data sets and find good matches to the data, then the causal 
assumptions further gain in their credibility.  In addition, when there are competing 
causal models, equally compatible with the data, an analyst can compare their 
performances under experimental conditions to see which are best.  We will have more 
to say about testing these causal assumptions later when discussing the myth that 
SEMs do not permit any testing of these assumptions. 
 
A second reason that the models resulting from causal assumption are valuable is that 
they enable an estimate of the coefficients (as well as variances, and covariances) that 
are important for guiding policies.  For instance, Figure 2a allows for y1 having a direct 
effect on y2, but it does not specify its magnitude.  With SEM estimation, and with the 
help of the strong assumptions, we can quantify the magnitude of this effect and of 
other estimated parameters and thus evaluate (albeit provisionally) the merits of 
interventional policies that depend on this effect. 
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This ability to quantify effects is available even in a saturated model (as in Figure 2b) 
when it is not possible to test any of the strong causal assumptions, nor any 
combination thereof. In such cases, the quantified effects are still useful for policy 
evaluation, though they are predicated on the validity of modeling assumptions that 
received no scrutiny by the data. 
  
The traditional path diagram as well as the graphical model notation that we discuss 
later, makes the causal assumptions of the model clear through the absence of certain 
arrows, and certain curved arcs (double-headed arrows).  The equation forms of these 
models are equally capable of making these causal assumptions clear, but can be more 
complicated to interpret and to analyze, especially in their nonparametric form. 
    
 
EIGHT MYTHS: 
 
In the previous section we presented the model, notation, and causal assumptions for 
SEMs as well as the role of identification, model testing and advice to policy making. A 
great deal of misinformation on SEMs and causality appears in a variety of publications.  
Rather than trying to address all such inaccuracies we highlight eight that are fairly 
frequent and widespread.  The remaining part of this section is organized around these 
myths.  
 
Myth #1  SEMs aim to establish causal relations from associations alone. 
  
This misunderstanding is striking both in its longevity and in its reach.  In essence, the 
critique states that developers and users of SEMs are under the mistaken impression 
that SEMs can convert associations and partial associations among observed and/or 
latent variables into causal relations.  The mistaken suggestion is that researchers 
developing or using SEMs believe that if a model is estimated and it shows a significant 
coefficient, then that is sufficient to conclude that a significant causal influence exists 
between the two variables.  Alternatively, a nonsignificant coefficient is sufficient to 
establish the lack of a causal relation.  Only the association of observed variables is 
required to accomplish this miracle. 
 
As an illustration of these critiques, Guttman (1977:97) argues that sociologists using 
path analysis or causal analysis do so under the mistaken belief that they can use 
correlation alone to imply causation between variables.  De Leeuw’s (1985:372) 
influential review of four early SEM manuscripts and books (Long 1983a, 1983b; Everitt 
1984; Saris and Stronkhorst 1984) gives an illustration of this claim: “I think that the use 
of causal terminology in connection with linear structural models of the LISREL type 
means indulging in a modern, but nevertheless clearly recognizable, version of the ‘post 
hoc ergo propter hoc’ fallacy.”  The ‘post hoc ergo propter hoc’ fallacy is “after this, 
therefore because of this” where association (with a temporal lag) is incorrectly used to 
justify a causality claim.   
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Freedman (1987:103) critiques recursive path models, a special case of SEM, 
suggesting that researchers are assuming causal or structural effects based on 
associations alone: “Of course, it is impossible to tell just from data on the variables in it 
whether an equation is structural or merely an association.  In the latter case, all we 
learn is that the conditional expectation of the response variable shows some 
connection to the explanatory variables, in the population being sampled.”   
 
Baumrind (1983:1289) bemoans the tendency of those using SEM to assume that 
associations alone lead to causal claims: “Since the publication of Kenny’s (1979) book 
Correlation and Causation, there has been an explosion in the research literature of 
studies making causal inferences from correlational data in the absence of controlled 
experiments.” 
 
If these distorted portrayals ended in the 1980s, there would be little need to mention 
them today.  They have not.  Goldthorpe (2001:11) suggests “causal path analysis” is 
regarded as a “means of inferring causation directly from data…”.  Freedman 
(2004:268) suggests that: “Many readers will ‘know’ that causal mechanisms can be 
inferred from nonexperimental data by running regressions,” and he asks readers to 
suspend this belief.  Or, look at Sobel (2008:114) who writes: “First, there is a putative 
cause Z prior in some sense to an outcome Y.  Furthermore, Z and Y are associated 
(correlated).  However, if the Z - Y association vanishes when a (set of) variable(s) X 
prior to Z is conditioned on (or in some accounts, if such a set exists), this is taken to 
mean that Z ‘does not cause’ Y.  The use of path analysis and structural equation 
models to make causal inferences is based on this idea.  Granger causation (Geweke 
1984; Granger 1969) extends this approach to time series.”    
 
Other quotations and authors could be presented, but the clear impression created by 
them is that SEM users and developers are assuming that we can derive causality from 
complicated models of partial associations alone. 
 
Is this true?  To address this question, it is valuable to read papers or books that 
present SEMs to see what they actually say.  Duncan (1966:1) was a key work 
introducing path analysis or SEMs into sociology and the social sciences.  His abstract 
states: “Path analysis focuses on the problem of interpretation and does not purport to 
be a method for discovering causes.”    
 
James, Mulaik, and Brett (1982) published a book devoted to causality in models and 
they were far from suggesting that mere association (or lack thereof) equals causality.  
A chapter of Bollen (1989, Ch.3) on SEMs begins by saying that a SEM depends on 
causal assumptions and then goes on to examine the threats to and the consequences 
of violating causal assumptions.  The chapter distinguishes the differences between 
model-data consistency versus model-reality consistency where the latter is essentially 
impossible to prove.  A recent SEM text by Mulaik (2009, Ch.3) devotes a chapter to 
causation in SEM which deals with the meaning of and threats to establishing causality.    



12 

 

 
As we explained in the last section, researchers do not derive causal relations from an 
SEM.  Rather the SEM represents and relies upon the causal assumptions of the 
researcher.  These assumptions derive from the research design, prior studies, 
scientific knowledge, logical arguments, temporal priorities, and other evidence that the 
researcher can marshal in support of them.  The credibility of the SEM depends on the 
credibility of the causal assumptions in each application.   
 
In closing this subsection, it is useful to turn to Henry E. Niles, a critic of Wright’s path 
analysis in 1922.  He too suggested that path analysis was confusing associations with 
causation.  Wright responded that he “never made the preposterous claim that the 
theory of path coefficients provides a general formula for the deduction of causal 
relations …” (Provine 1986:142-143).  Rather as Wright (1921:557) had explained: “The 
method [of path analysis] depends on the combination of knowledge of the degrees of 
correlation among the variables in a system with such knowledge as may be possessed 
of the causal relations.  In cases in which the causal relations are uncertain the method 
can be used to find the logical consequences of any particular hypothesis in regard to 
them.” 
 
The debate from the preceding paragraph occurred 90 years ago.  How is it possible 
that we have the same misunderstandings today?   
 
We see several possible reasons.  One is that the critics were unable to distinguish 
causal from statistical assumptions in SEM, or to detect the presence of the former.  An 
equation from a SEM appears identical to a regression equation, and the assumptions 
of zero covariances among disturbance terms and covariates appeared to be statistical 
in nature.  Accordingly, Pearl (2009:135-138) argues that notational inadequacies and 
the hegemony of statistical thinking solely in terms of probability distributions and partial 
associations contributed to these misunderstandings.  Furthermore, SEM researchers 
were not very effective in explicating both the causal assumptions that enter a model 
and the “logical consequences” of those assumptions, which Wright considered so 
essential.  For example, many SEM authors would argue for the validity of the weak 
causal assumptions of nonzero coefficients instead of attending to the strong ones of 
zero coefficients or covariances.  SEM researchers who highlighted the weak over the 
strong causal assumptions might have contributed to the critics’ misunderstanding of 
the role of causal assumptions in SEM.  The development of graphical (path) models, 
nonparametric structural equations, “do-calculus,” and the logic of counterfactuals now 
makes the causal content of SEM formal, transparent, and difficult to ignore (Pearl 
2009, 2012). 
 
Lest there be any doubt: 
 
SEM does not aim to establish causal relations from associations alone.    
 
Perhaps the best way to make this point clear is to state formally and unambiguously 
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what SEM does aim to establish. SEM is an inference engine that takes in two inputs, 
qualitative causal assumptions and empirical data, and derives two logical 
consequences of these inputs: quantitative causal conclusions and statistical measures 
of fit for the testable implications of the assumptions.  Failure to fit the data casts doubt 
on the strong causal assumptions of zero coefficients or zero covariances and guides 
the researcher to diagnose, or repair the structural misspecifications.  Fitting the data 
does not “prove” the causal assumptions, but it makes them tentatively more plausible.  
Any such positive results need to be replicated and to withstand the criticisms of 
researchers who suggest other models for the same data. 
 
 
Myth # 2  SEM and regression are essentially equivalent. 
 
This second misunderstanding also is traced back to the origins of path analysis.  In a 
biography of Wright, Provine (1986:147) states that Henry Wallace who corresponded 
with Wright “kept trying to see path coefficients in terms of well-known statistical 
concepts, including partial correlation and multiple regression.  Wright kept trying to 
explain how and why path coefficients were different from the usual statistical 
concepts.”  More contemporary writings also present SEM as essentially the same as 
regression.   
 
Consider Holland’s (1995:54) comment on models: “I am speaking, of course, about the 
equation: y = a + bx + ε. What does it mean? The only meaning I have ever determined 
for such an equation is that it is a shorthand way of describing the conditional 
distribution of y given x. It says that the conditional expectation of y given x, E(y |x), is a 
+ bx …).” 
 
More recently the same perspective is expressed by Berk (2004:191): “However, the 
work of Judea Pearl, now summarized in a widely discussed book (Pearl, 2000), has 
made causal inference for structural equation models a very visible issue. Loosely 
stated, the claim is made that one can routinely do causal inference with regression 
analysis of observational data.”  In the same book, Berk (2004:196) says: “The 
language of Pearl and many others can obscure that, beneath all multiple equation 
models, there is only a set of conditional distributions. And all that the data analysis can 
do by itself is summarize key features of those conditional distributions.  This is really no 
different from models using single equations.  With multiple equations, additional 
complexity is just laid on top.  Including some more equations per se does not bring the 
researcher any closer to cause and effect.”   
 
The gap between these critics and the actual writings on SEM is wide.  The critics do 
not directly address the writings of those presenting SEM.  For instance, Goldberger 
(1973:2) has a succinct description of the difference between an SEM and a regression: 
“In a structural equation model each equation represents a causal link rather than a 
mere empirical association.  In a regression model, on the other hand, each equation 
represents the conditional mean of a dependent variable as a function of explanatory 
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variables.”  Admittedly, Goldberger’s quote emphasizes the weak causal assumptions 
over the strong causal assumptions as distinguished by us earlier, but it does point to 
the semantic difference between the coefficients originating with a regression where no 
causal assumptions are made versus from a structural equation that makes strong and 
weak causal assumptions. 
 
In light of the lingering confusion regarding regression and structural equations, it might 
be useful to directly focus on the difference with just a single covariate.  Consider the 
simple regression equation:  

yiiyxyi XY ζβα ++=  
whose aim is to describe a line from which we can “best” predict iY  from iX .  The slope 

yxβ  is a regression coefficient.  If prediction is the sole purpose of the equation, there is 
no reason that we could not write this equation as 
 

xiixyxi YX ζβα ++=  
 
where yyxx αβα 1−−= , 1−= yxxy ββ , and yiyxxi ζβζ 1−−=  and use it to predict X from 
observations of Y.  However, if the first equation, yiiyxyi XY ζβα ++= , is a structural 
equation then yxβ  is a structural coefficient that tells us the causal effect on iY for a one 
unit difference in iX .  With this interpretation in mind, a new structural equation will be 
needed to describe the effect of Y on X (if any); the equation xiixyxi YX ζβα ++=  
(with 1−= yxxy ββ ) will not serve this purpose. 
 
A similar confusion arises regarding the so called “error term” ζ.  In regression analysis 
ζ stands for whatever deviation remains between Y and its prediction iyxXβ .  It is 
therefore a human made quantity, which depends on the goodness of our prediction.  
Not so in structural equations.  There, the “error term” stands for substantive factors and 
an inherent stochastic element omitted from the analysis. Thus, whereas errors in 
regular regression equations are by definition orthogonal to the predictors, errors in 
structural equations may or may not be orthogonal, the status of which constitutes a 
causal assumption which requires careful substantive deliberation.  It is those 
substantive considerations that endow SEM with causal knowledge, capable of offering 
policy-related conclusions (see Pearl 2011b). 
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[FIGURE 4 ABOUT HERE] 

 
The ambiguity in the nature of the equation is removed when a path diagram (graphical 
model) accompanies the equation or, when the equality sign is replaced by an 
assignment symbol  :=, which is used often in programming languages to represent 
asymmetrical transfer of information, and here represents a process by which nature 
assigns values to the dependent variable in response to values taken by the 
independent variables. 
 
In addition to judgments about the correlation of yiζ  with iX , the 
equation yiiyxyi XY ζβα ++= , embodies three causal assumptions that the model builder 
should be prepared to defend: 

1.  linearity – a unit change from X=x to X=x+1 will result in the same increase of 
Y as a unit change from X = x’ to X = x’+1. 
2. exclusion – once we hold X constant, changes in all other variables (say Z) in 

the model will not affect Y. (This assumption applies when the model contains 
other  equations.  For instance, if we added an equation xiixzxi ZX ζβα ++=  
to the model in Figure 4, then changes in Z have no effect on Y once X is held 
constant.) 

3. Homogeneity – every unit in the population has the same causal effect yxβ . 
We can write the first two assumptions in the language of do-calculus as: 
                  E(Y| do(x), do(z)) = yα  + yxβ x 
which can be tested in controlled experiments. The third assumption is counterfactual, 
as it pertains to each individual unit in the population, and cannot therefore be tested at 
the population level. 
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In the path diagram of Fig. 4, the single-headed arrow from iX  to iY , the absence of an 
arrow from iY  to iX , and the lack of correlation of the disturbance with iX  clearly 
represent the causal assumptions of the model in a way that the algebraic equation 
does not.  The causal assumptions can be challenged by researchers or in more 
complicated models, the set of causal assumptions could prove inconsistent with the 
data and hence worthy of rejection.  However, the claim that a structural equation and a 
regression equation are the same thing is a misunderstanding that was present nearly a 
century ago and has lingered to the current day, primarily because many critics are 
either unaware of the difference or find it extremely hard to accept a new type of 
assumptions cast in a language that is not part of standard statistics. 
 
 
Myth #3  No causation without manipulation. 
 
In an influential JASA article, Paul Holland (1986:959) wrote on causal inference, he 
discusses the counterfactual or potential outcome view on causality.  Among other 
points, Holland (1986:959) states that some variables can be causes and others cannot: 
“The experimental model eliminates many things from being causes, and this is 
probably very good, since it gives more specificity to the meaning of the word cause. 
Donald Rubin and I once made up the motto 

NO CAUSATION WITHOUT MANIPULATION 
to emphasize the importance of this restriction.”   
 
Holland uses race and sex as examples of “attributes” that cannot be manipulated and 
therefore cannot be causes and explicitly criticized SEMs and path diagrams for 
allowing arrows to emanate from such attributes.   
 
We have two points with regard to this myth: (1) we disagree with the claim that the “no 
causation without manipulation” restriction is necessary in analyzing causation and (2) 
even if you agree with this motto, it does not rule-out doing SEM analysis. 
 
Consider first that the idea that “no causation without manipulation” is necessary for 
analyzing causation.  In the extreme case of viewing manipulation as something done 
by humans only, we would reach absurd conclusions such as there was no causation 
before humans evolved on earth.  Or we would conclude that the “moon does not cause 
the tides, tornadoes and hurricanes do not cause destruction to property, and so on” 
(Bollen 1989:41).  Numerous researchers have questioned whether such a restrictive 
view of causality is necessary.  For instance, Glymour (1986), a philosopher, 
commenting on Holland’s (1986) paper finds this an unnecessary restriction.   
Goldthorpe (2001:15) states: “The more fundamental difficulty is that, under the  - highly 
anthropocentric – principle of ‘no causation without manipulation’, the recognition that 
can be given to the action of individuals as having causal force is in fact peculiarly 
limited.”    
 
Bhrolchain and Dyson (2007:3) critique this view from a demographic perspective: 
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“Hence, in the main, the factors of leading interest to demographers cannot be shown to 
be causes through experimentation or intervention. To claim that this means they 
cannot be causes, however, is to imply that most social and demographic phenomena 
do not have causes—an indefensible position. Manipulability as an exclusive criterion is 
defective in the natural sciences also.”   Economists Angrist & Pischke (2009:113) also 
cast doubt on this restrictive definition of cause. 
 
A softer view of the “no causation without manipulation” motto is that actual physical 
manipulation is not required.  Rather, it requires that we be able to imagine such 
manipulation.  In sociology, Morgan and Winship (2007:279) represent this view:  “What 
matters is not the ability for humans to manipulate the cause through some form of 
actual physical intervention but rather that we be able, as observational analysts, to 
conceive of the conditions that would follow from a hypothetical (but perhaps physically 
impossible) intervention.”  A difficulty with this position is that the possibility of causation 
then depends on the imagination of researchers who might well differ in their ability to 
envision manipulation of putative causes. 
 
Pearl (2011) further shows that this restriction has led to harmful consequence by 
forcing investigators to compromise their research questions only to avoid the 
manipulability restriction. The essential ingredient of causation, as argued in Pearl 
(2009:361) is responsiveness, namely, the capacity of some variables to respond to 
variations in other variables, regardless of how those variations came about. 
 
Despite this and contrary to some critics, the restriction of “no causation without 
manipulation” is not incompatible with SEMs.  An SEM specification incorporates the 
causal assumptions of the researcher.  If a researcher believes that causality is not 
possible for “attributes” such as “race” and “gender,” then the SEM model of this 
researcher should treat those attributes as exogenous variables and avoid asking any 
query regarding their “effects.”4  Alternatively, if a researcher believes that such 
attributes can serve as causes, then such attributes can act as ordinary variables in the 
SEM, without restrictions on queries that can be asked.   
 
 
 Myth # 4 The potential outcome framework is more principled than SEMs.   
 
The difficulties many statisticians had in accommodating or even expressing causal 
assumptions have led them to reject Sewell Wright’s ideas of path analysis as well as 
the SEMs adapted by econometricians and social scientists in the 1950s to 1970s.  
Instead, statisticians found refuge in Fisher’s invention of randomized trials (Fisher 
1931), where the main assumptions needed were those concerning the nature of 
randomization, and required no mathematical machinery for cause-effect analysis. 
Many statisticians clung to this paradigm as long as they could and, later on, when 
                                                            
4 A researcher could use the specific effects techniques proposed in Bollen (1987) to eliminate indirect effects 
originating with or going through any “attributes” when performing effect decomposition.   
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mathematical analysis of causal relations became necessary, they developed the 
Neyman-Rubin ‘‘potential outcome’’ (PO) notation (Rubin 1974) and continued to 
oppose structural equations as a threat to principled science ( Rubin 2004, 2009, 2010; 
Sobel 2008).  The essential difference between the SEM and PO frameworks is that the 
former encodes causal knowledge in the form of functional relationships among ordinary 
variables, observable as well as latent, while the latter encodes such knowledge in the 
form of statistical relationships among hypothetical (or counterfactual) variables, whose 
value is determined only after a treatment is enacted.  For example, to encode the 
causal assumption that X does not cause Y (represented by the absence of an X→Y 
arrow in SEM) the PO analyst imagines a hypothetical variable Yx (standing for the 
value that Y would attain had treatment X=x been administered) and writes Yx = Y, 
meaning that, regardless of the value of x, the potential outcome Yx will remain 
unaltered, and will equal the observed value Y.  Likewise, the SEM assumption of 
independent disturbances is expressed in the PO framework as an independence 
relationship between counterfactual variables such as Yx_1, Yx_2, Xy_1 , Zx_2, etc.  A 
systematic analysis of the syntax and semantics of the two notational systems reveals 
that they are logically equivalent (Galles and Pearl 1998; Halpern 1998); a theorem in 
one is a theorem in the other, and an assumption in one has a parallel interpretation in 
the other. Although counterfactual variables do not appear explicitly in the SEM 
equations, they can be derived from the SEM using simple rules developed in Pearl 
(2009:101) and illustrated in Pearl (2012). 
 
Remarkably, despite this equivalence, potential outcome advocates have continued to 
view SEM as a danger to scientific thinking, labeling it an “unprincipled” “confused 
theoretical perspective,” “bad practical advice,” “theoretical infatuation,” and 
“nonscientific ad hockery” (Rubin 2009).  The ruling strategy in this criticism has been to 
lump SEM, graphs and regression analysis under one category, called “observed 
outcome notation,” and blame the category for the blemishes of regression practice.  
“The reduction to the observed outcome notation is exactly what regression 
approaches, path analyses, directed acyclic graphs, and so forth essentially compels 
one to do” (Rubin, 2010:39).   
 
The scientific merits of this assault surface in the fact that none of the critics has thus far 
acknowledged the 1998 proofs of the logical equivalence of SEM and PO, and none has 
agreed to compare the cognitive transparency of the two notational systems (which 
favors SEM, since PO becomes  unwieldy when the number of variables exceeds three 
[Pearl 2011]). 
 
Instead, the critics continue to discredit and dismiss SEM without examining its 
properties: “[we] are unconvinced that directed graphical models (DGMs) are generally 
useful for “finding causal relations” or estimating causal effects” (Lindquist and Sobel 
2011). 
 
Notwithstanding these critics, a productive symbiosis has emerged that combines the 
best features of the two approaches (Pearl 2010).  It is based on encoding causal 
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assumptions in the transparent language of (nonparametric) SEM, translating these 
assumptions into counterfactual notation, and then giving the analyst an option of either 
pursuing the analysis algebraically in the calculus of counterfactuals or use the 
inferential machinery of graphical models to derive conclusions concerning 
identification, estimation and testable implications. This symbiosis has revitalized 
epidemiology and the health sciences (Greenland, Pearl, & Robins 1999; Petersen 
2011) and is slowly making its way into the social sciences (Morgan and Winship 2007; 
Muthén 2011).  
 
Myth #5  SEMs are not equipped to handle nonlinear causal relationships. 
 
The SEM presented so far is indeed linear in variables and in the parameters.  We can 
generalize the model in several ways.  First, there is a fair amount of work on including 
interactions and quadratics of the latent variables into the model (e.g., Schumacker and 
Marcoulides 1996).  These models stay linear in the parameters, though they are 
nonlinear in the variables.  Another nonlinear model arises when the endogenous 
observed variables are not continuous.  Here dichotomous, ordinal, counts, censored, 
and multinomial observed variables might be present.  Fortunately, such variables are 
easy to include in SEMs, often by formulating an auxiliary model that links the 
noncontinuous observed variables to an underlying continuous variable via a series of 
thresholds or through formulations that deal directly with the assumed probability 
distribution functions without threshold models (e.g., Muthen 1984; Skrondal and Rabe-
Hesketh 2005).   
 
Despite these ventures into nonlinearity, they are not comprehensive in their coverage 
of nonlinear models.  The classic SEM could be moved towards a more general 
nonlinear or nonparametric form by writing the latent variable model as 

),, iiii f ζξ(=η ηη  
and the two-equation measurement model as  
       

), iiyi f ε(η=y  
), iixi f δ(ξ=x  

 
 
The symbols in these equations are the same as defined earlier.  The new 
representations are the functions which provide a general way to represent the 
connections between the variables within the parentheses to those on the left hand side 
of each equation.   
 
Graphical models are natural for representing nonparametric equations (See the 
chapter by Elwert in  this volume) for they highlight the assumptions and abstract away 
unnecessary algebraic details.  In contrast to the usual linear path diagrams, no 
commitment is made to the functional form of the equations. 
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To illustrate, consider the following model: 
                     x = f(ε1)        z=g(x, ε2)     y=h(z,ε3) 
with ε2 is independent of { ε1, ε3}  (See Pearl 2000, Figure 3.5 ).  Figure 5 is a graph of 
the model where the single headed arrows stand for nonlinear functions and the curved 
two headed arrow connecting { ε1, ε3}  represents statistical dependence between the 
two error terms, coming from an unspecified source. 
 

[FIGURE 5 ABOUT HERE] 
 

 
 
Assume that we face the task of estimating the causal effect of X on Y from sample data 
drawn from the joint distribution Pr(x,y,z) of the three observed variables, X, Y and Z.  
Since the functions f, g, and h are unknown, we cannot define the effect of X on Y, 
written Pr(Y=y | do(X=x)), in terms of a coefficient or a combination of coefficients, as is 
usually done in parametric analysis.  Instead, we need to give the causal effect a 
definition that transcends parameters and captures the essence of intervening on X and 
setting it to X=x, while discarding the equation x = f(ε1) that previously governed X. 
 
This we do by defining Pr(Y=y | do(X=x)) as the probability of Y=y in a modified model, 
in which the arrow from ε1 to X is removed, when X is set to the value x and all the other 
functions and covariances remain intact.  See Figure 5B.  Symbolically, the causal 
effect of X on Y is defined as: 
                  Pr(Y=y | do(X=x)) = Pr[h(g(x,ε2),ε3)=y]] 
which one needs to estimate from the observed distribution Pr(x,y,z). 
 
Remarkably, despite the fact that no information is available on the functions f, g, and h, 
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or the distributions of ε1, ε2 and ε3, we can often identify causal effects and express 
them in terms of estimable quantities.  In the example above (Pearl 2000:81), the 
resulting expression is (assuming discrete variables) 
 

)'Pr(),'|Pr()|Pr())(|Pr(
'

xXzZxXyYxXzZxXdoyY
z x

========= ∑ ∑  

All terms in the right hand side of the equation are estimable from data on the observed 
variables X, Y, and Z.  Moreover, logical machinery (called do-calculus) can derive such 
expressions automatically from any given graph, whenever a reduction to estimable 
quantities is possible. Finally, a complete graphical criterion has been derived that 
enables a researcher to inspect the graph and write down the estimable expression, 
whenever such expressions exist (Shpitser and Pearl, 2008a). 
 
This example also demonstrates a notion of “identification” that differs from its traditional 
SEM aim of finding a unique solution to a parameter, in terms of the means and 
covariances of the observed variables. The new aim is to find a unique expression for a 
policy or counterfactual question in terms of the joint distribution of observed variables.  
This method is applicable to both continuous and discontinuous variables and has been 
applied to a variety of questions, from unveiling the structure of mediation to finding 
causes of effects, to analyzing regrets for actions withheld (Shpitser and Pearl 2009)  
Concrete examples are illustrated in Pearl (2009, 2012). 
 
 
Myth # 6  SEMs are less applicable to experiments with randomized treatments. 
 
This misunderstanding is not as widespread as the previous ones.  However, the heavy 
application of SEMs to observational (nonexperimental) data and its relative infrequent 
use in randomized experiments have led to the impression that there is little to gain from 
using SEMs with experimental data.  This is surprising when we consider that in the 
1960s through 1980s during the early diffusion of SEMs, there were several papers and 
books that pointed to the value of SEMs in the analysis of data from experiments (e.g., 
Blalock 1985; Costner 1971; Miller 1971; Kenny 1979, Ch. 10). 
 
Drawing on these sources, we summarize valuable aspects of applying SEMs to 
experiments.  In brief, SEMs provide a useful tool to help to determine (1) if the 
randomized stimulus actually affects the intended variable (“manipulation check”), (2) if 
the output measure is good enough to detect an effect, (3) if the hypothesized mediating 
variables serves as the mechanism between the stimulus and effect, and (4) if other 
mechanisms, possibly confounding ones, link the stimulus and effect. These tasks 
require assumptions, of course, and SEM’s power lies in making these assumptions 
formal and transparent.  
 
Figure 6a illustrates issues (1) and (2).  Suppose X is the randomized stimulus intended 
to manipulate the latent variable η1 and η2 is the latent outcome variable measured by 
Y.  A social psychologist, for instance, might want to test the hypothesis that frustration 
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(η1) is a cause of aggression (η2).  The stimulus (X) for frustrating the experiment 
subjects is to ask them to do a task at which they fail whereas an easier task is given to 
the control group.  The measure of frustration is Y.   
 
Even if frustration affects aggression (i.e., η1→η2), it is possible that the ANOVA or 
regression results for Y and X are not statistically or substantively significant.  One 
reason for this null result could be that the stimulus (X) has a very weak effect on 
frustration (η1), that is, the X→η1 effect is near zero.  Another reason could be that Y is 
a poor measure of aggression, and the path of η2→Y is near zero.  The usual 
ANOVA/regresson approach would not reveal this. 
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[FIGURE 6 ABOUT HERE] 
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Points (3) and (4) are illustrated with Figures 6b and 6c.  In Figure 6b, the stimulus 
causes another latent variable (η3) besides frustration, which in turn causes aggression 
(η2).  Here frustration is not the true cause of aggression and is not the proper 
mechanism for explaining an association of Y and X.  Rather, it is due to the causal path 
X→η3→η2→Y.  The η3 variable might be demand characteristics where the subject 
shapes her response to please the experimenter or it could represent experimenter 
biases.  Figure 6c is another case with a significant Y and X association, yet the path 
η1→η2 is zero.  Here the stimulus causes a different latent variable (η4) which does not 
cause η2 but instead causes Y.   
 
A SEM approach that explicitly recognizes the latent variables hypothesized to come 
between the experimental stimulus and the outcome measure provides a means to 
detect such problems.  Costner (1971), for instance, suggests that a researcher who 
collects two effect indicators of η1 (say, Y1 and Y2) and two effect indicators of η2 (say, 
Y3 and Y4) can construct a model as in Figure 6d. 
 
This model is overidentified and has testable implications that must hold if it is true.  We 
talk more about testing SEMs below, but for now suffice it to say that under typical 
conditions this model would have a poor fit if Figures 6b or 6c were true.  For instance, 
a stimulus with a weak effect on frustration (η1) would result in a low to zero R-squared 
for η1.  A weak measure of aggression would be reflected in a weak R-squared for the 
measure of aggression.   
 
Our discussion only scratches the surface of the ways in which SEM can improve the 
analysis of experiments.  But this example illustrates how SEM can help aid 
manipulation checks, assess the quality of outcome measures, and test the 
hypothesized intervening mechanisms while controlling for measurement error.   
 
 
Myth # 7 -- SEM is not appropriate for mediation analysis  
 
Mediation analysis aims to uncover causal pathways along which changes are 
transmitted from causes to effects.  For example, an investigator may be interested in 
assessing the extent to which gender disparity in hiring can be reduced by making hiring 
decisions gender-blind, compared with say eliminating gender disparity in education or 
job qualifications.  The former concerns the “direct effect” (of gender on hiring) and the 
latter the “indirect effect” or the “effect mediated via qualification”. 
 
The myth that SEM is not appropriate for mediation analysis is somewhat ironic in that 
much of the development of mediation analysis occurred in the SEM literature.  Wright 
(1923, 1934) used path analysis and tracing rules to understand the various ways in 
which one variable’s effect on another might be mediated through other variables in the 
model.  The spread of path analysis through the social sciences from the 1960s to 
1980s also furthered research on decomposition of effects and the study of mediation.  
Much research concentrated on simultaneous equations without latent variables (e.g., 
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Duncan 1975; Fox 1980; Baron and Kenny 1983).  More general treatments that include 
latent variables also were developed (e.g., Jöreskog and Sörbom 1981) which included 
asymptotic standard error estimates of indirect effects (Folmer 1981; Sobel 1986; Bollen 
and Stine 1990) and the ability to estimate the effects transmitted over any path or 
combination of paths in the model (Bollen 1987).   
 
Although these methods were general in their extension to latent as well as observed 
variable models, they were developed for linear models.  There was some limited work 
on models with interaction terms or quadratic terms (Stolzenberg 1979) and other work 
on limited dependent variable models (Winship and Mare 1983).  But these works 
required a commitment to a particular parametric model and fell short of providing a  
causally justified measure of "mediation". Pearl (2001) has extended SEM mediational 
analysis to nonparametric models in a symbiotic framework based on graphs and 
counterfactual logic. 
 
This symbiotic mediation theory has led to three advances: 

 
1.  Formal definitions of direct and indirect effects that are applicable to models 
with arbitrary nonlinear interactions, arbitrary dependencies among the 
disturbances, and both continuous and categorical variables. 
 
In particular, for the simple mediation model 
              x=f(ε1);    z=g(x,ε2);    y=h(x,z,ε3) 
the following types of effects have been defined:5 

 
a. The Controlled Direct Effect 
      CDE(z) = E[h(x+1,z,ε3)] - E[h(x,z, ε3)] 
b. The Natural Direct Effect 
   NDE = E[h(x+1,g(x, ε2), ε3)] - E[h(x,g(x, ε2), ε3)] 
c. The Natural Indirect Effect 
   NDE = E[h(x,g(x+1, ε2), ε3)] - E[h(x,g(x, ε2), ε3)] 
Where all expectation are taken over the disturbances ε2 and ε3. 

 
These definitions set new, causally-sound standards for mediation analysis, for 
they are universally applicable across domains, and retain their validity 
regardless of the underlying data-generating models. 
 
2. The establishment of conceptually meaningful conditions (or assumptions) 
under which the controlled and natural direct and indirect effects can be 
estimated from either experimental of observational studies, while making no 
commitment to distributional or parametric assumptions. (Pearl 2001, 2012b) 

                                                            
5 Conceptualization of these effects goes back to Robins and Greenland (1992).  Pearl (2001) formalized them in 
counterfactual notation and revised their identification using graphs. 
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3. The derivation of simple estimands, called Mediation Formula, that measures 
(subject to the conditions in (2)) the extent to which the effect of one variable (X) 
on another (Y) is mediated by a set (Z) of other variables in the model. For 
example, in the no-confounding case (independent disturbances): the Mediation 
Formula gives: 
        CDE(z) = E(Y|x+1,z) - E(Y|x,z)   
        NDE = Σz [E(Y|x+1,z) - E(Y|x,z)] P(z|x) 
        NIE = Σz E(Y|x,z) [P(z|x+1) - P(z|x)] 
where z ranges over the values that the mediator variable can take.   

 
The difference between the total effect and the NDE assesses the extent to which 
medation is necessary for explaining the effect, while the NIE assesses the extent to 
which mediation is sufficient for sustaining it. 
 
This development allowed researchers to cross the linear-nonlinear barrier and has 
spawned a rich literature in nonparametric mediation analysis (Imai et al. 2010; Muthen 
2011; Pearl 2011b; VanderWeele and Vansteelandt 2009).  These were shunned 
however by PO researchers who, constrained by the “no causation without 
manipulation” paradigm, felt compelled to exclude a priori any mediator that is not 
manipulable.  Instead, a new framework was proposed under the rubric “Principal Strata 
Framework” which defines direct effect with no attention to structure or mechanisms. 
 
Whereas the structural interpretation of ‘‘direct effect’’ measures the effects that would 
be transmitted in the population with all mediating paths (hypothetically) deactivated, the 
Principal Strata Direct Effect (PSDE) was defined as the effects transmitted in those 
subjects only for whom mediating paths happened to be inactive in the study. This 
seemingly mild difference in definition leads to paradoxical results that stand in glaring 
contradiction to common usage of direct effects, and excludes from the analysis all 
individuals who are both directly and indirectly affected by the causal variable X (Pearl 
2009b, 2011a).  Take, for example, the linear model 
                  y=ax+bz+ε1;    z = cx+ε2;  cov(ε1, ε2)=0 
in which the direct effect of X on Y is given by a, and the indirect effect (mediated by Z) 
by the product bc. The Principal Strata approach denies such readings as metaphysical, 
for they cannot be verified unless Z is manipulable. Instead, the approach requires that 
we seek a set of individuals for whom X does not affect Z, and take the total effect of X 
on Y in those individuals as the definition of the direct effect (of X on Y). Clearly, no 
such individual exists in the linear model, (unless c=0 overall) and, hence, the direct 
effect remains flatly undefined. The same will be concluded for any system in which the 
X→Z relationship is continuous. As another example, consider a study in which we 
assess the direct effect of the presence of grandparent on child development, 
unmediated by the effect grandparents have on the parents. The Principal Strata 
approach instructs us to precludes from the analysis all typical families, in which parents 
and grandfather have simultaneous, complementary influences on children's upbringing, 
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and focus instead on exceptional families in which parents are not influenced by the 
presence of grandparents. The emergence of such paradoxical conclusions 
underscores the absurdity of the manipulability restriction and the inevitability of 
structural modeling in mediation analysis. 
 
Indeed, in a recent discussion concerning the utility of the Principal Strata framework, 
the majority of discussants have concluded that “There is nothing within the principal 
stratification framework that corresponds to a measure of an “indirect” or “mediated” 
effect,” (Vander Weele 2011),that “it is not the appropriate tool for assessing “mediation” 
(ibid), that it contains “good ideas taken too far” (Joffe 2011:1) that “when we focus on 
PSDEs we effectively throw the baby out with the bath-water [and] ... although PSDE is 
a proper causal effect, it cannot be interpreted as a direct effect” (Sjolander 2011:1-2). 
Even discussants who found the principal stratification framework to be useful for some 
purposes, were quick to discount its usefulness in mediation analysis. 
 
As we remarked earlier, the major deficiency of the PO paradigm is its rejection of 
structural equations as a means of encoding causal assumptions and insisting instead 
on expressing all assumptions in the opaque notation of “ignorability” conditions.  Such 
conditions are extremely difficult to interpret (unaided by graphical tools) and “are 
usually made casually, largely because they justify the use of available statistical 
methods and not because they are truly believed.” (Joffe et al. 2010). 
 
Even the most devout advocates of the “ignorability’’ language use “omitted factors’’ 
when the need arises to defend assumptions in any real setting (e.g., Sobel 2008). 
SEM’s terminology of “omitted factors”, “confounders,” “common causes,” and “path 
models” has remained the standard communication channel among mediation 
researchers. 
 
In short, SEM largely originated mediation analysis, and it remains at its core.   
 
Myth #8  SEMs do not test any major part of the theory against the data.  
 
In a frequently cited critique of path analysis, Freedman (1987:112) argues that “path 
analysis does not derive the causal theory from the data, or test any major part of it 
against the data.”6  This statement is both vacuous and complimentary.  It is vacuous in 
that no analysis in the world can derive the causal theory from nonexperimental data; it 
is complimentary because SEMs test ALL the testable implications of the theory, and no 
analysis can do better. 
 
While it is true that no causal assumption can be tested in isolation and that certain 
                                                            
6 The first part of the statement represents an earlier misunderstanding under point (1) above where critics have 
made the false claim that SEM researchers believe that they can derive causal theory from associations in the data 
alone.  See our above discussion under Myth #1 that refutes this view.  The second part, that SEM does not test 
any major part of the causal theory (assumptions) is ambiguous in that we do not know what qualifies as a “major” 
part of the theory. 
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combinations of assumptions do not have testable implications (e.g., a saturated 
model), SEM researchers are assured that those combinations that do have such 
implications will not go untested and those that do not will be recognized as such.  More 
importantly, researchers can verify whether the assumptions necessary for the final 
conclusion have survived the scrutiny of data and how severe that scrutiny was (Pearl 
2004). 
 
What do we mean by testing the causal assumptions of a SEM?  When a researcher 
formulates a specific model it often has empirical implications that must hold if the 
model is true.  For instance, a model might lead to two different formulas to calculate 
the same coefficient.  If the model is true, then both formulas should lead to the same 
value in the population.  Or a model might imply a zero partial correlation between two 
variables when controlling for a third variable.  For example, the model of Figure 2a 
implies a zero partial correlation between Y1 and Y3 when controlling for Y2. 
 
Models typically differ in their empirical implications, but if the empirical implications do 
not hold, then we reject the model.  The causal assumptions are the basis for the 
construction of the model.  Therefore, a rejection of the model means a rejection of at 
least one causal assumption.  It is not always clear which causal assumptions lead to 
rejection, but we do know that at least one is false and can find the minimal set of 
suspect culprits. 
 
Alternatively, failure to reject the empirically testable implications does not prove the 
causal assumptions.  It suggests that the causal assumptions are consistent with the 
data without definitively establishing them.  The causal assumptions perpetually remain 
only a study away from rejection, but the longer they survive a variety of tests in 
different samples and under different contexts, the more plausible they become.   
 
The SEM literature has developed a variety of global and local tests that can lead to the 
rejection of causal assumptions.  In the classic SEM, the best known global test is a 
likelihood ratio test that compares the model implied covariance matrix that is a function 
of the model parameters to the population covariance matrix of the observed variables.  
Formally, the null hypothesis is 
 

)(: θΣΣ =oH  for some θ 
 

where Σ  is the population covariance matrix of the observed variables, )(θΣ  is the 
model implied covariance matrix that is a function of θ, the parameters of the model 
(e.g., Bollen 1989).7  The null hypothesis is that there exists a θ such that Σ = )(θΣ . 
Several estimators (e.g., maximum likelihood) can find an estimate of θ that minimizes 

                                                            
7 If the means and intercepts of the model are included, then the null hypothesis includes a test of whether the 
population means of the observed variables equals the model implied means that are a function of the model 
parameters.    
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the disparity between the sample estimate of Σ  and sample estimate of )(θΣ and thus 
provide a test of )(: θΣΣ =oH .8  The model implied covariance matrix is based on the 
causal assumptions that are embedded in the path diagram or equations of the model.  
Rejection of Ho casts doubt on one or more of the causal assumptions that led to the 
SEM.9 
 
 
One advantage of the chi square likelihood ratio test is that it is a simultaneous test of 
all of the restrictions on the implied covariance matrix rather than a series of individual 
tests.  However, this is a two-edged sword.  If the chi square test is significant, the 
source of the lack of fit is unclear.  The causal relationships of primary interest might 
hold, even though other causal assumptions of the model of less interest do not.  
Additionally, the statistical power of the chi square test to detect a particular 
misspecification is lower than a local test aimed directly at that misspecification.  Nested 
chi square difference tests of the values of specific parameters are possible and these 
provide a more local test of causal assumptions than the test of )(: θΣΣ =oH .   
Simultaneous tetrad tests (Bollen, 1990) that are used in confirmatory tetrad analysis 
(CTA) as proposed in Bollen and Ting (1993) provide another test statistic that is 
scalable to parts or to the whole model.10  A tetrad is the difference in the product of 
pairs of covariances (e.g., σ12σ34-σ13 σ24).  The structure of a SEM typically implies that 
some of the tetrads equal zero whereas others do not.  Rejection of the model implied 
tetrads that are supposed to be zero is a rejection of the specified SEM structure and 
hence a rejection of at least some of its causal assumptions.   
 
 
Another local test  is based on partial correlations or, more generally conditional 

                                                            
8 If some parameters are not identifiable, then the estimator might fail to converge or the run might be interrupted 
by SEM software that detects the identification problem.  It is sometimes possible to estimate values for those 
parameters and functions of parameters that are identified and to test the fit of the overidentified parts of the 
model (see Shapiro, 1986).  But for most researchers, it would be prudent to abandon the test unless they have 
sufficient expertise on the problem.  An alternative is to use a tetrad or partial correlation test statistics for models 
that are under identified as long as vanishing tetrad or vanishing partial correlation are implied by the structure 
(see Bollen and Ting 1993; Pearl 2000:144‐54). 

9 This issue is complicated in that the tests assume a large sample and that certain distributional assumptions are 
satisfied.  Fortunately, there are distributionally robust corrections (e.g., Bollen and Stine 1993; Satorra and 
Bentler 1994) and some small sample corrections (e.g., Bentler and Yuan 1999).  There also is discussion about 
how to take account of the approximate nature of most models when the null hypothesis is one of exact fit where 
fit indexes are often used to supplement the chi square test.   

10 Exploratory tetrad analysis which is designed to look for the different models that are consistent with the data is 
more oriented to creating models rather than testing models.  Generally, ETA using tests single tetrads rather than 
simultaneous tests of multiple tetrads.  See, e.g., Glymour et al. (1987).   
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independence conditions that are implied by the model structure   (e.g., Simon, 1954; 
Blalock, 1961).  Recent advances in graphical models have resulted in a complete 
systematization of conditional independence tests, to the point where they can be used 
to test nonparametric models which include latent variables (see Verma and Pearl 1990, 
Spirtes et al. 1993; Ali et al. 2007).  Nonparametric models with no latent variables and 
zero error covariances further enjoy the fact that ALL testable implications are of the 
conditional independence variety and the number of necessary tests is equal to the 
number of missing edges in the graph.  
  
Yet another way to test the model using one equation at a time comes from the Model 
Implied Instrumental Variable (MIIV) approach proposed in Bollen (1996, 2001).  
Instrumental variables (IVs) are a method to estimate coefficients when one or more of 
the covariates of an equation correlate with the equation disturbance.  IVs should 
correlate with the covariates and be uncorrelated with the equation disturbance.  In 
addition there should be a sufficient number of IVs to permit estimation of effects.  The 
MIIV approach of Bollen begins by transforming all latent variable equations into 
observed variable equations by replacing all latent variables with their scaling indicators 
minus their errors.  Then a set of rules is applied to determine those observed variables 
that are uncorrelated with the disturbance for each equation (Bollen and Bauer 2004). 
This can also be determined with graphical methods (e.g., Kyono 2010).  Those 
equations that have more than the bare minimum of MIIVs permit an overidentification 
test.  The overidentification test reflects the presence of two or more separate ways to 
estimate a coefficient of interest and, if the model is correct the solutions should result in 
the same coefficient values in the population.  The overidentification test is a test of that 
equality (Sargan, 1958; Kirby and Bollen, 2009).  Rejection of the null hypothesis is a 
rejection of the causal assumptions that led to the MIIV for that equation, and means 
that at least one of the IV’s tested is misspecified. 
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[FIGURE 7 ABOUT HERE]  
 
As a simple illustration, consider Figure 7.  In Figure 7a y1 and y2 correlate and both 
have direct effects on y3 which in turn directly affects y4.  Also, the equation errors of y3 
and y4 correlate.  This model is overidentified so that we could test it using the likelihood 
ratio chi square test.  A significant chi square implies that one or more of the causal 
assumptions of this model are false (assuming that the other distributional assumptions 
are satisfied).  A more localized test is possible for the y4 equation using the MIIV 
approach.  Both y1 and y2 are MIIV for y3 in the y4 equation.  Using these MIIVs 
separately we can write  
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),(
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==β  

as two solutions for 43β  that should be identical under the hypothesized model, which 
constitutes an indirect test for the assumption that both MIIVs are uncorrelated with the 
error (ζ4) for y4.  Thus, we have global and local tests of the model readily available.   
 
Now consider the model in Figure 7b.  Here we have a similar structure to Figure 7a 
except we have added all possible correlations among ζ1, ζ2, and ζ3.  ζ1 and ζ2 are still 
uncorrelated with ζ4, and ζ3 and ζ4 are still correlated as in Figure 7a.  However, a 
simple inspection of the graph (using the d-separation criterion; see also the chapter by 
Elwert in this volume) or using the MIIV method of Bollen (1996; Bollen and Bauer 
2004) reveals that y1 and y2 are still MIIV for y3 in the y4 equation and we can apply the 
coefficient identity above as a local test.   
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Graphical methods for enumerating all instrumental variables for a given equation are 
illustrated in Kyono (2010), including variables that turn into instruments by conditioning 
on auxiliary variables (Brito and Pearl 2002).  See also Shpitser and Pearl (2008b) for 
further extensions using "dormant independencies." 
 
In sum, critics imply that the causal assumptions that lead to a SEM are not seriously 
tested.  In fact, there are an abundance of both global and local tests including the 
likelihood ratio chi square test and tests based on partial correlations, conditional 
independence, vanishing tetrads, and MIIV overidentification tests.  When these tests 
fail, then one or more of the causal assumptions of the model fail.  The inability to 
distinguish between equivalent models may place some conclusions at the mercy of 
scientific judgment.  Likewise, issues of statistical power, the treatment of approximate 
models, and the use of fit indexes are all complicating factors.  But, to say that SEM 
provides little empirical information to reject the causal assumptions of a model is false 
in overidentified models. Not less important, and unique to SEM methods, models that 
do not allow such rejection can be identified as such, in which case the credibility of 
their conclusions would be recognized as supported entirely by the plausibility of the 
input assumptions. 
 
 
CONCLUSIONS 
 
SEMs have had a long and turbulent encounter with causality. They were conceived 
and motivated by needs to solve causal inference problems; they were attacked and 
misunderstood on account of these needs; today, they are emerging as a universal 
formalism that unifies nearly all approaches to causation around simple and transparent 
principles. 
 
There are many myths and misunderstandings about SEMs.  In this chapter, we have 
addressed just eight of them.  Repetition of these myths among critics has led some to 
believe they are true.  Our goal was to point out the inaccuracies of these beliefs and 
what the actual limitations of SEM are. 
 
Indeed, we have our own critiques of common practices in the application of SEMs 
beyond those mentioned in the preceding discussion.  Several come to mind.  For one, 
practitioners give insufficient attention to the strong causal assumptions that are part of 
their models, and even seasoned analysts are often not clear on what those 
assumptions are.  The rationale for them is not always provided, and plausible 
alternative structures are not considered.  A related point is that SEM researchers tend 
to focus too heavily on global tests of model fit, such as the likelihood ratio chi square 
test, and often ignore local tests such as partial correlations, MIIV tests, and tetrad tests 
which are indispensable for model diagnosis and respecification.  These can be 
improved significantly through the advent of graphical models.  We also feel that 
insufficient attention is given to the replication of models in different settings and among 
different populations.  This handicaps the cumulative development of knowledge.  
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Finally, measurement issues are often given short shrift where the dimensionality of 
measures and appropriateness of indicators are not always discussed.  This list of our 
criticisms is not complete, but it is enough to illustrate that we see much room for 
improvement in SEM applications.   
 
Part of the way to improve SEM practice is to better separate the true from the false 
limitations of SEMs and, not less important, to make the unique advantages of SEMs 
explicit and vivid to practitioners.  We hope that the current paper goes some ways 
towards accomplishing this goal.  
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