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Abstract

It is well known that, in directed Markov fields, the pairwise Markov condition does
not imply the global Markov condition, unless the distribution is strictly positive. We

introduce a stronger version of the pairwise condition which requires that every nonad-
jacent pair be independent conditional on every set that separates the pair in the graph.

We show that this stronger condition is equivalent to the global Markov condition (for
all probability distributions.) We generalize this result to abstract dependency models,
and show that a weaker condition holds for compositional graphoids.

1 Introduction

A probability distribution is said to be Markov relative to a directed acyclic graph (DAG) G if
every d-separation condition in G is confirmed by a corresponding conditional independence
condition in P . This condition is also called “globally Markov” since it applies to all subsets of
variables and, when it holds, we say that P and G are “compatible” (Pearl, 1988; Lauritzen,
1996).

Several local conditions have been devised which apply to singleton variables, among
them the “local Markov condition” and the “pairwise Markov condition.” The local Markov
condition requires that every variable be conditional independent of its non descendants,
given its parents. This condition is often taken as a definition of Bayesian Networks and it
can be shown to be equivalent to the global Markov condition for all probability distributions
Pearl and Verma (1987); Geiger et al. (1990); Lauritzen (1996).1 The pairwise Markov
condition requires that every pair (x, y) of non adjacent variables with y non-descendant of

1This global-local equivalence holds in fact in all dependency models that obey the semi-graphoid axioms,

not necessarily probabilistic.
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x be independent, conditional on all other non-descendants of x (Lauritzen, 1996, p. 50).
This condition, however, while entailed by the global Markov condition, is too weak to ensure
global compatibility unless the distribution is strictly positive (a simple counterexample is
given below).

This idiosyncratic feature of pairwise independencies sets directed Markov fields apart
from their undirected counterparts, in which the global, local and pairwise conditions coincide
Pearl and Paz 1986; Pearl 1988, p. 98; Lauritzen 1996. This note introduces a stronger
version of the pairwise condition, named pairwise compatibility, which requires that every
nonadjacent pair be independent conditional on all its separating sets in the DAG. We show
that this stronger condition is equivalent to the global Markov condition for all probability
distributions, including those that impose logical or equality constraints.

Notation

• Let P be a joint distribution function on a set V of variables, and G a Directed Acyclic
Graph (DAG) with vertices corresponding to variables in V .

• Let X, Y, and Z stand for sets of variables in V , and x, y, z singleton variables in V .

• Let (X, Y, Z)G stand for the assertion “Y d-separates X from Z in G.”

• Let (X, Y, Z)P stand for the assertion: “Y is independent of X given Z in P .”

Definitions

• A DAG G is said to be set-compatible (SP ) with probability function P iff

(X, Y, Z)G =⇒ (X, Y, Z)P (1)

for every three sets X, Y, and Z in V .

• A DAG G is said to be pairwise-compatible (PC) with probability P iff

(x, Y, z)G =⇒ (x, Y, z)P (2)

for every set Y and every pair of singleton variables x and z.

Clearly, set-compatibility implies pairwise compatibility. We will show that the converse is
also true.

Theorem 1 Pairwise-compatibility implies set-compatibility

Proof:

It is enough to prove that pairwise compatibility implies (x, pa(x), nd(x))P , where pa(x) is
the set of parents of x, and nd(x) is the set of nondescendants of x. The reason is that the
condition (x, pa(x), nd(x))P for all x implies set-compatibility (See Causality, Pearl 2009, p.
19, Theorem 1.2.7).
Proof by induction:

Assuming PC , let us prove that (x, pa(x), nd(x))P holds for every variable x, using induction
on the cardinality of sets in nd(x).

Let Ik stand for the hypothesis:

2



Ik: if (x, Y, z)G =⇒ (x, Y, z)P for every set Y and every singletons x and z, then, for
every x we have: (x, pa(x), Sk)P , where Sk is any set of nondescendants of x, such that
card(Sk) ≤ k.

Base: For k = 1, Ik is trivially true, because I1 reduces to an identity. Indeed, I1 says:
if (x, Y, z)G =⇒ (x, Y, z)P for every set Y and every singletons x and z, then, for
every x we have: (x, pa(x), S1)P , where S1 is any set of nondescendants of x, such that
card(S1) ≤ 1. But the sets S1 are all singletons, hence whatever is true for z, would
be true for S1 as well.

The induction step is: Ik ⇒ Ik+1

Let Sk+1 be any set of nondescendants of x, such that card(S) ≤ k + 1.

Let z be any singleton variable in Sk+1, and S = Sk+1\z

Let T stands for the claim of pairwise compatibility, i.e.,:

(x, Y, z)G =⇒ (x, Y, z)P for every singletons x and z,

From Ik we have T ⇒ (x, pa(x), S)P , because the cardinality of S is not exceeding
k. We also have (x, pa(x), z, S)G because S and z are both in nd(x) of G. This implies
(x, pa(x), z, S)G, because d-separation is a graphoid. and any graphoid obeys the weak
union axiom:

(x, pa(x), zS)G ⇒ (x, pa(x)z, S)G,

Thus, T ⇒ (x, pa(x)z, S)P , because S is of card ≤ k. and Ik is assumed to hold.
In summary, We now have

T ⇒ (x, pa(x), S)P ,

and

T ⇒ (x, pa(x)z, S)P ,

from which we conclude, using the contraction axiom for probabilistic independence (Causal-
ity, Pearl 2009, p. 11):

T ⇒ (x, pa(x), Sz)P ,

or

T ⇒ (x, pa(x), Sk+1)P ,

This completes the inductive step QED
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Example 1 Let x = y = z and let w be independent of x with

P (x = 1) = P (x = 0) = P (w = 1) = P (w = 0) = 1/2

This distribution is pair-wise Markov with respect to the graph G1 in Fig. 1(a), because
every non adjunct pair of variables x, y with y nondescendant of x is independent conditional
on all other nondecendants of x (in our case {z, w}). However, this distribution is not set-
compatible with the graph, because (x, w, yz)G holds in G1 while (x, w, yz)P does not hold in
P . Now examine our strong pair-wise condition, PC; (x, y) are nonadjacent in G1, with two
separating sets, {w} and {wz}. PC requires not only (x, wz, y)P but also (x, w, y)P . While
the first requirement holds in P , the second does not, which renders G1 and P pair-wise
incompatible.

In contrast, the graph G2 depicted in Fig. 1(b) is pairwise compatible with P . Here, the
only adjacent pair is (x, z) and it is separated by one set {wy}. Accordingly, pairwise com-
parability requires that x and z be independent conditional on {zw}, a requirement satisfied
in P .
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Figure 1:

2 Conclusions

We showed that a strong version of the pairwise condition is sufficient to guarantee the
global Markov condition in directed Markov fields. The strong version requires that every
pair of nonadjacent nodes be independent conditional on every set that d-separates the pair.
Clearly the ability to replace set-compatibility with pairwise compatibility is not unique to
graphs and probabilities, but extends to dependency models for which the semi-graphoid
axioms hold.
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