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Abstract

The study of transportability aims to identify conditions un-
der which causal information learned from experiments can
be reused in a different environment where only passive ob-
servations can be collected. The theory introduced in [Pearl
and Bareinboim, 2011] (henceforth [PB, 2011]) defines for-
mal conditions for such transfer but falls short of providing
an effective procedure for deciding, given assumptions about
differences between the source and target domains, whether
transportability is feasible. This paper provides such proce-
dure. It establishes a necessary and sufficient condition for de-
ciding when causal effects in the target domain are estimable
from both the statistical information available and the causal
information transferred from the experiments. The paper fur-
ther provides a complete algorithm for computing the trans-
port formula, that is, a way of fusing experimental and obser-
vational information to synthesize an estimate of the desired
causal relation.

Motivation

The problem of transporting knowledge from one environ-
ment to another has been pervasive in many data-driven
sciences. Invariably, when experiments are performed on a
group of subjects, the issue arises whether the conclusions
are applicable to a different but somewhat related group.
When a robot is trained in a simulated environment, the
question arises whether it could put the acquired knowledge
into use in a new environment where relationships among
agents, objects and features are different.

Surprisingly, the conditions under which this extrapola-
tion can be legitimized were not formally articulated. Al-
though the problem has been discussed in many areas of
statistics, economics, and the health sciences, under rubrics
such as “external validity” [Campbell and Stanley, 1963;
Manski, 2007], “meta-analysis” [Glass, 1976; Hedges and
Olkin, 1985; Owen, 20091, “heterogeneity” [Hofler, Gloster,
and Hoyer, 2010], “quasi-experiments” [Shadish, Cook, and
Campbell, 2002, Ch. 3; Adelman, 1991], these discussions
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are limited to verbal narratives in the form of heuristic guide-
lines for experimental researchers — no formal treatment of
the problem has been attempted.

Al is in a unique position to tackle this problem formally.
First, the distinction between statistical and causal knowl-
edge has received syntactic representation through causal di-
agrams [Pearl, 1995; Spirtes, Glymour, and Scheines, 2001;
Pearl, 2009; Koller and Friedman, 2009]. Second, graphical
models provide a language for representing differences and
commonalities among domains, environments, and popula-
tions [PB, 2011]. Finally, the inferential machinery provided
by the do-calculus [Pearl, 1995; 2009; Koller and Friedman,
2009] is particularly suitable for combining these two fea-
tures into a coherent framework and developing effective al-
gorithms for knowledge transfer.

Following [PB, 2011], we consider transferring causal
knowledge between two environments II and II*. In en-
vironment II, experiments can be performed and causal
knowledge gathered. In II*, potentially different from II,
only passive observations can be collected but no experi-
ments conducted. The problem is to infer a causal relation-
ship R in IT* using knowledge obtained in II. Clearly, if
nothing is known about the relationship between II and IT*,
the problem is unsolvable. Yet the fact that all experiments
are conducted with the intent of being used elsewhere (e.g.,
outside the laboratory) implies that scientific progress relies
on the assumption that certain environments share common
characteristics and that, owed to these commonalities, causal
claims would be valid even where experiments were never
performed.

To formally articulate commonalities and differences be-
tween environments, a graphical representation named se-
lection diagrams was devised in [PB, 2011], which repre-
sent differences in the form of unobserved factors capable
of causing such differences. Given an arbitrary selection di-
agram, our challenge is to algorithmically decide whether
commonalities override differences to permit the transfer of
information across the two environments.

Previous Work and Our Contributions

Consider Fig. 1(a) which concerns the transfer of experi-
mental results between two locations. We first conduct a ran-
domized trial in Los Angeles (LA) and estimate the causal
effect of treatment X on outcome Y for every age group



7 = z, denoted P(y|do(x),z). We now wish to generalize
the results to the population of New York City (NYC), but
we find the distribution P(z,y, z) in LA to be different from
the one in NYC (call the latter P*(x, y, 2)). In particular, the
average age in NYC is significantly higher than that in LA.
How are we to estimate the causal effectof X on Y in NYC,
denoted R = P*(y|do(x))? 12

The selection diagram for this example (Fig. 1(a)) con-
veys the assumption that the only difference between the two
population are factors determining age distributions, shown
as S — Z, while age-specific effects P(y|do(x), Z = z) are
invariant across cities. Difference-generating factors are rep-
resented by a special set of variables called selection vari-
ables S (or simply S-variables), which are graphically de-
picted as square nodes (H). From this assumption, the over-
all causal effect in NYC can be derived as follows *

R > Pr(yldo(x), z)P*(2)
> Plyldo(x), z) P (2)

The last line is the transport formula for R. It combines
experimental results obtained in LA, P(y|do(x), z), with
observational aspects of NYC population, P*(z), to obtain
an experimental claim P*(y|do(x)) about NYC.

In this trivial example the transport formula amounts to
a simple re-calibration of the age-specific effects to account
for the new age distribution. In more elaborate examples,
however, the full power of formal analysis would be re-
quired. For instance, [PB, 2011] showed that, in the prob-
lem depicted in Fig. 1(b), where both the Z-determining
mechanism and the U-determining mechanism are suspect
of being different, the transport formula for the relation
R = P*(y|do(x)) is given by

ZP (y|do( ZP* (z|w) ZPw|d0 ),t)P

This formula instructs us to estimate P(y|do(z),z) and
P(w|do(z),t) in the experimental domain, then combine
them with the estimates of P*(z|w) and P*(¢) in the target
domain.

(1)

'We will use P, (y) interchangeably with P(y | do(z)).

2We use the structural interpretation of causal diagrams. For
example, Fig. 1(a) describes the following system of structural
equations: z < f1(s;uz;Uza), T < [2(2; Ui Usw) Uny), Y <
f3(x; 2; uy; ugy); each variable in the Lh.s. is assigned a value
given by the respective deterministic function on the r.h.s. The hid-
den (exogenous) variables U are assigned a probability function
which induces in turn, a probability distribution on all variables
in the model. See Appendix 1 for a gentle introduction to the do-
calculus and more details on this representation.

3This result can be derived by purely graphical operations
if we write P*(y|do(z),2) as P(y|do(x), z, s), thus attributing
the difference between II and II* to a fictitious event S = s.
The invariance of the age-specific effect then follows from the
conditional independence (S 1L Y|Z, X)c, which implies
P(y|do(z), z,s) = P(y|do(z), z), and licenses the derivation of
the transport formula.
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Figure 1: Selection diagrams illustrating different facets
of the transportability problem. (a) A selection diagram in
which transportability is trivial. (b) A selection diagram in
which the causal relation R is more involved and shown to
be transportable using Theorem 1. (c) A selection diagram
in which the procedure given in [PB, 2011] is unable to rec-
ognize a transportable relation R.

[PB, 2011] derived this formula using the following theo-
rem, which translates the property of transportability to the
existence of a syntactic reduction using a sequence of do-
calculus operations.

Theorem 1 (Do-calculus characterization [PB, 2011]).
Let D be the selection diagram characterizing 11 and 11%,
and S a set of selection variables in D. The relation R =
P*(y|do(x)) is transportable from 11 to 11* if and only if
the expression P(y|do(x),s) is reducible, using the rules of
do-calculus, to an expression in which S appears only as a
conditioning variable in do-free terms.

Theorem 1 is declarative but not computationally effec-
tive, for it does not specify the sequence of rules leading to
the needed reduction, nor does it tell us if such a sequence
exists.

To overcome this deficiency, [PB, 2011] proposed a recur-
sive procedure (their Theorem 3) which can handle many ex-
amples, among them Fig. 1(b), but is not complete. We will
show?, for example, that their procedure fails to recognize
R as “transportable” in the diagram of Fig. 1(c) whereas the
procedures developed in this paper will recognize it as such
and will support it with the transport formula:

R= ZP z|do(x ZPw|doxz ZP

We summarize our contributions as follows:

e We derive a general graphical condition for deciding
transportability of causal effects. We show that transporta-
bility is feasible if and only if a certain graph structure
does not appear as an edge subgraph of the inputted se-
lection diagram.

e We provide necessary or sufficient graphical conditions
for special cases of transportability, for instance, con-
trolled direct effects.

e Finally, we construct a complete algorithm for deciding
transportability of joint causal effects and returning the
correct transport formula whenever those effects are trans-
portable.

*See Corollary 4 in [Bareinboim and Pearl, 2012a].

(ylv, w)



Preliminary Results

The basic semantical framework in our analysis rests on
probabilistic causal models as defined in [Pearl, 2000, pp.
205], also called structural causal models or data-generating
models. In the structural causal framework [Pearl, 2000, Ch.
71, actions are modifications of functional relationships, and
each action do(x) on a causal model M produces a new
model M, = (U, V,Fy, P(U)), where Fx is obtained af-
ter replacing fx € F for every X € X with a new function
that outputs a constant value x given by do(x).

Key to the analysis of transportability is the notion of
“identifiability,” defined below, which expresses the require-
ment that causal effects be computable from a combination
of data P and assumptions embodied in a causal graph G.

Definition 1 (Causal Effects Identifiability [Pearl, 2000,
pp- 77)). The causal effect of an action do(x) on a set of
variables Y such that Y N X = ( is said to be identifiable
Sfrom P in G if Py(y) is uniquely computable from P(V) in
any model that induces G.

Causal models and their induced graphs are normally as-
sociated with one particular domain (also called setting,
study, population, environment). In the transportability case,
we extend this representation to capture properties of sev-
eral domains simultaneously. This is made possible if we
assume that there are no structural changes between the do-
mains, that is, all structural equations share the same set of
arguments, though the functional forms of the equations may
vary arbitrarily. > ©

Definition 2 (Selection Diagram). Let (M, M*) be a pair
of structural causal models [Pearl, 2000, pp. 205] relative
to domains (11, 11*), sharing a causal diagram G. (M, M*)
is said to induce a selection diagram D if D is constructed
as follows:

1. Every edge in G is also an edge in D;

2. D contains an extra edge S; — V; whenever there might
exist a discrepancy f; # f or P(U;) # P*(U;) between
M and M*.

In words, the S-variables locate the mechanisms where
structural discrepancies between the two domains are sus-
pected to take place.” Alternatively, one can see a selec-
tion diagram as a carrier of invariance claims between the
mechanisms of both domains — the absence of a selection
node pointing to a variable represents the assumption that
the mechanism responsible for assigning value to that vari-
able is the same in the two domains.

SThis definition was left implicit in [PB, 2011].

The assumption that there are no structural changes between
domains can be relaxed starting with D = G and adding S-nodes
following the same procedure as in Def. 2, while enforcing acyclic-
ity.

"Transportability assumes that enough structural knowledge
about both domains is known in order to substantiate the pro-
duction of their respective causal diagrams. In the absence of
such knowledge, causal discovery algorithms can be used to in-
fer the diagrams from data [Pearl and Verma, 1991; Pearl, 2000;
Spirtes, Glymour, and Scheines, 2001].
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Armed with a selection diagram and the concept of iden-
tifiability, transportability of causal effects (or transportabil-
ity, for short) can be defined as follows:

Definition 3 (Causal Effects Transportability). Ler D be
a selection diagram relative to domains (I1,IT*). Let (P, I)
be the pair of observational and interventional distributions
of I, and P* be the observational distribution of 11*. The
causal effect R = P (y) is said to be transportable from 11
to IT* in D if Pi(y) is uniquely computable from P, P* 1
in any model that induces D.

The problem of transportability generalizes the problem
of identifiability, to witness note that all identifiable causal
relations in (G*, P*) are also transportable, because they
can be computed directly from II* and require no experi-
mental information from II. This observation engender the
following definition of trivial transportability.

Definition 4. (Trivial Transportability)
A causal relation R is said to be trivially transportable from
I to 1%, if R(I1*) is identifiable from (G*, P*).

The following observation establishes another connec-
tion between identifiability and transportability. For a given
causal diagram G, one can produce a selection diagram D
such that identifiability in G is equivalent to transportability
in D. First set D = G, and then add selection nodes pointing
to all variables in D, which represents that the target domain
does not share any commonality with its pair — this is equiv-
alent to the problem of identifiability because the only way
to achieve transportability is to identify 2 from scratch in
the target domain.

Another special case of transportability occurs when a
causal relation has identical form in both domains — no re-
calibration is needed. This is captured by the following def-
inition.

Definition 5. (Direct Transportability)

A causal relation R is said to be directly transportable from
IT 7o TT*, if R(IT*) = R(T).

A graphical test for direct transportability of R
P*(yldo(x), z) follows from do-calculus and reads: (S 1L
Y|X, Z)G; in words, X blocks all paths from S to Y once
we remove all arrows pointing to X and condition on Z. As
a concrete example, the z-specific effects in Fig. 1(a) is the
same in both domains, hence, it is directly transportable.

These two cases will act as a basis to decompose the prob-
lem of transportability into smaller and more manageable
subproblems (to be shown later on).

The following lemma provides an auxiliary tool to prove
non-transportability and is based on refuting the uniqueness
property required by Definition 3.

Lemma 1. Letr X, Y be two sets of disjoint variables, in
population 11 and 11*, and let D be the selection diagram.
P} (y) is not transportable from 11 to II* if there exist two
causal models M"' and M? compatible with D such that
Py(V) = Py(V), P (V) = P5(V), P(V\W]do(W)) =
Py, (V\W/|do(W)), for any set W, all families have positive
distribution, and Py (y|do(x)) # Py (y|do(x)).



Proof. Let I be the set of interventional distributions P(V '\
W|do(W)), for any set W. The latter inequality rules out
the existence of a function from P, P*, I to P;(y). O

While Lemma 1 may sound cumbersome, it is nothing
more than a formalization of the statement: “query Q can-
not be computed from information set IS alone.” Naturally,
when IS has three components, (P*, P, I'), the lemma be-
comes lengthy. But conceptually it is nothing more than the
definition of non-identifiability which is standard in com-
puter science, statistics and econometrics.

Even though the problems of identifiability and trans-
portability are related, Lemma 1 indicates that proofs of
non-transportability are more involved than those of non-
identifiability. Indeed, to prove non-transportability requires
the construction of two models agreeing on (P, I, P*), while
non-identifiability requires the two models to agree solely on
the observational distribution P.

The simplest non-transportable structure is an extension
of the famous ‘bow arc’ graph named here ‘s-bow arc’, see
Fig. 2(a). The s-bow arc has two endogenous nodes: X, and
its child Y, sharing a hidden exogenous parent U, and a S-
node pointing to Y. This and similar structures that prevent
transportability will be useful in our proof of completeness,
which requires a demonstration that whenever the algorithm
fails to transport a causal relation, the relation is indeed non-
transportable.

Theorem 2. P} (y) is not transportable in the s-bow arc
graph.

Proof. The proof will show a counter-example to the trans-
portability of P (Y') through two models M; and M, that
agree in (P, P* I) and disagree in P} (y).

Assume that all variables are binary. Let the model M;
be defined by the following system of structural equations:
X1 =UY1 = ((XoU)®S), P, (U) =1/2, and M by the
following one: Xo = U, Y2 =SV (X @ U), P(U) =1/2,
where & represents the exclusive or function.

Lemma 2. The two models agree in the distributions
(P, P*,I).

Proof. We show that the following equations must hold for
M7 and Ms:

Py(X]S) = P,(X|S), S={0,1}
{ P(Y]X,S) = P(Y]X,S), §={0,1
Py(Y]do(X), S = 0) = Py(Y|do(X), S = 0)

for all values of X, Y. The equality between P;(X|S) is ob-
vious since (S 1L X') and X has the same structural form in
both models. Second, let us construct the truth table for Y:

X S Ul Y
0 0 0]0 |0
0o 0 1 |1 1
0 1 0|1 1
0 1 110 1
1 0 0 |1 1
1 0 1]0 |0
1 1 0|0 1
1 I 1 |1 1
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Figure 2: (a) Smallest selection diagram in which
P(y|do(z)) is not transportable (s-bow graph). (b) A selec-
tion diagram in which even though there is no S-node point-
ing to Y, the effect of X on Y is still not-transportable due
to the presence of a sC-tree (see Corollary 2).

To show that the equality between P;(Y = 1|X,S =

0), X = {0, 1} holds, we rewrite it as follows:
P(Y =1|X,8 =0) =
PY = 11X, S =0.U = YP(X|U = )P(U =1) ,
Pi(X)
P(Y =1X,5=0,U=0)P(X|U =0)P, (U:O)(l)
Pi(X)

In eq. (1), the expressmns for X = {0, 1} are functions of
the tuples {(X = 1,8 = 0,U = 1), (X 0,S=0,U=
0)}, which evaluate to the same value in both models. Sim-
ilarly, the expressions P;(Y = 1|X,S = 1) for X = {0,1}
are functions of the tuples {(X = 1,5 =1,U =1), (X =
0,5 =1,U = 0)}, which also evaluate to the same value in
both models.

We further assert the equality between the interventional
distributions in II, which can be written using the do-
calculus as

Pi(Y = 1]do(X),S = 0) =

> Pi(Y]do(X),S = 0,U)P;(U]do(X), S = 0) =

U

P(Y =1|X,5=0,U =1)P(U =1) +

P(Y =1|X,8=0,U =0)P,(U =0), X =1{0,1} (2)

Evaluating this expression points to the tuples {(X =
1,S = 0,U = 1),(X = 1,8 = 0,U = 0) and (X =
0,$=0,U=1),(X=0,5=0,U=0)}, which map to
the same value in both models.

O

Lemma 3. There exist values of X,Y such that

Py (Y|do(X),S =1) # P,(Y|do(X),S =1).
Proof. Fix X = 1,Y = 1, and let us rewrite the desired
quantity R; = P;(Y = 1]do(X =1),5 = 1) in IT* as
R =P(Y=1X=1,S=1,U=1)PU =1)+
PY=1X=1,5S=1LU=0FRU=0) (3
Since R; is a function of the tuples (X = 1,5 = 1,U =

1),(X =1,8 =1,U = 0), it evaluates in M to {1,1} and
in M> to {1,0}.

Hence, together with the uniformity of P(U), it follows
that Ry = 1 and Ry = 1/2, which finishes the proof. ]

By Lemma 1, Lemmas 2 and 3 prove Theorem 2. O



Characterizing Transportable Relations

The concept of confounded components (or C-components)
was introduced in [Tian and Pearl, 2002] to represent clus-
ters of variables connected through bidirected edges, and
was instrumental in establishing a number of conditions for
ordinary identification (Def. 1). If G is not a C-component
itself, it can be uniquely partitioned into a set C(G) of C-
components. We now recast C'-components in the context of
transportability.®

Definition 6 (sC-component). Let G be a selection dia-
gram such that a subset of its bidirected arcs forms a span-
ning tree over all vertices in G. Then G is a sC-component
(selection confounded component).

A special subset of C'-components that embraces the an-
cestral set of Y was noted by [Shpitser and Pearl, 2006] to
play an important role in deciding identifiability — this obser-
vation can also be applied to transportability, as formulated
in the next definition.

Definition 7 (sC-tree). Let G be a selection diagram such
that C(G) = {G}, all observable nodes have at most one
child, there is a node Y, which is a descendent of all nodes,
and there is a selection node pointing to'Y . Then G is called
a Y -rooted sC-tree (selection confounded tree).

The presence of this structure (and generalizations) will
prove to be an obstacle to transportability of causal effects.
For instance, the s-bow arc in Fig. 2(a) is a Y -rooted sC-tree
where we know P (y) is non-transportable.

In certain classes of problems, the absence of such struc-
tures will prove sufficient for transportability. One such class
is explored below, and consists of models in which the set X
coincides with the parents of Y.

Theorem 3. Let G be a selection diagram. Then for any
node Y, the causal effects P}’;a(y)(y) is transportable if

there is no subgraph of G which forms a 'Y -rooted sC-tree.

See the full version [Bareinboim and Pearl, 2012a] for the
complete proofs.

Theorem 3 provides a tractable transportability condition
for the Controlled Direct Effect (CDE) — a key concept in
modern mediation analysis, which permits the decompo-
sition of effects into their direct and indirect components
[Pearl, 2001; 2012]. CDE is defined as the effect of X on
Y when all other parents of Y are held constant, and it is
identifiable if and only if Pp,yy(y) is identifiable [Pearl,
2009, pp. 128].

The selection diagram in Fig. 1(a) does not contain any Y -
rooted sC'-trees as subgraphs, and therefore the direct effects
(causal effects of Y’s parents on Y') is indeed transportable.
In fact, the transportability of CDE can be determined by a
more visible criterion:

Corollary 1. Let G be a selection diagram. Then for any
node'Y, the direct effect Pp,, - (y) is transportable if there
is no S node pointing to'Y .

8C-components can itself be seen as an extension of the more
elementary notion of inducing path, which was introduced much
earlier in [Verma and Pearl, 1990].
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Figure 3: Example of a selection diagram in which
P(Y|do(X)) is not transportable, there is no sC-tree but
there is a s*-tree.

Generalizing to arbitrary effects, the following result pro-
vides a necessary condition for transportability whenever the
whole graph is a sC-tree.

Theorem 4. Let G be a Y -rooted sC-tree. Then the effects
of any set of nodes in G on'Y are not transportable.

The next corollary demonstrates that sC'-trees are obsta-
cles to the transportability of P, (y) even when they do not
involve Y, i.e., transportability is not a local problem — if
there exists a node W that is an ancestor of Y but not nec-
essarily “near” it, transportability is still prohibited (see Fig.
2(b)). This fact anticipates that transporting causal effects of
singleton Y is not necessarily easier than the general prob-
lem of transportability.

Corollary 2. Let G be a selection diagram, and X and Y a
set of variables. If there exists a node W that is an ancestor
of some node Y € Y such that there exists a W -rooted sC-
tree which contains any variables in X, then Px(y) is not
transportable.

We now generalize the definition of sC-trees (and The-
orem 4) in two ways: first, Y is augmented and can be a
set of variables; second, S-nodes can point to any variable
within the sC-component, not necessarily to root nodes. For
instance, consider the graph G in Fig. 3. Note that there is no
Y -rooted sC'-tree nor W-rooted sC-tree in G (where W is
an ancestor of Y), and so the previous results cannot be ap-
plied even though the effect of X on Y is not transportable
in GG — still, there exists a Y -rooted s*-tree in G, which will
prevent the transportability of the causal effect.

Definition 8 (s*-tree). Let G be a selection diagram, where
Y is the maximal root set. Then G is a 'Y -rooted s*-tree if G
is a sC-component, all observable nodes have at most one
child, and there is a selection node pointing to some vertex
of G (not necessarily in Y ).

We next conveniently introduce a structure that witnesses
non-transportability characterized by a pair of s*-trees,
which extends Shpitser’s hedge used for ordinary identifi-
ability. Transportability will be shown impossible whenever
such structure exists as an edge subgraph of the given selec-
tion diagram.

Definition 9 (s-hedge). Let X, Y be set of variables in G.
Let F, F’ be R-rooted s*-trees such that F N X # 0, F' N
X =0 F CF RCAn(Y)gy Then F and F' form a
s-hedge for P(Y) in G.

For instance, in Fig. 3, the s*-trees I/ = {C,Y}, and
F =F U{X, A, B} form a s-hedge to P} (y).

We state below the formal connection between s-edges
and non-transportability.



Theorem 5. Assume there exist I, F' that form a s-hedge
for P} (y) in I and 11*. Then P}(y) is not transportable
from 11 to TT*.

To prove that the s-hedges characterize non-
transportability in selection diagrams, we construct in
the next section an algorithm which transport any causal
effects that do not contain a s-hedge.

A Complete Algorithm For Transportability of
Joint Effects

The algorithm proposed to solve transportability is called
sID (see Fig. 4) and extends previous analysis of identifi-
ability given in [Pearl, 1995; Kuroki and Miyakawa, 1999;
Tian and Pearl, 2002; Shpitser and Pearl, 2006; Huang and
Valtorta, 2006]. We choose to modify the version provided
by Shpitser since the hedge structure is explicitly employed,
which will show to be instrumental to prove completeness.
We build on two observations developed along the paper:

(i) Transportability: Causal relations can be partitioned
into trivially and directly transportable.

(i) Non-transportability: The existence of a s-hedge as an
edge subgraph of the inputted selection diagram can be
used to prove non-transportability.

The algorithm sID first applies the typical c-component de-
composition on top of the inputted selection diagram D, par-
titioning the original problem into smaller blocks (call these
blocks sc-factors) until either the entire expression is trans-
portable, or it runs into the problematic s-hedge structure.

More specifically, for each sc-factor @), sID tries to di-
rectly transport Q. If it fails, sID tries to trivially transport
@, which is equivalent to solving an ordinary identification
problem. sID alternates between these two types of trans-
portability, and whenever it exhausts the possibility of apply-
ing these operations, it exits with failure with a counterex-
ample for transportability — that is, the graph local to the
faulty call witnesses the non-transportability of the causal
query since it contains a s-hedge as edge subgraph.

Before showing the more formal properties of sID, we
demonstrate how sID works through the transportability of
Q = P*(y|do(x)) in the graph in Fig. 1(c).

Since D = An(Y) and C(D \ {X}) = (Cy, C1,Cs),
where Cy = D({Z}), C1 = D{{W}), and Cy =
D({V,Y}), we invoke line 4 and try to transport respec-

tively QO = P.;,w,v,y(z)’ Ql = P.;,z,v,y(w)’ and QQ =
Pr . ., (v,y). Thus the original problem reduces to transport-

il’lg Ez,w,v P;:w,v,y(Z)P;zm,y(w)P::,z,w(v’ y)

Evaluating the first expression, we trigger line 2, noting
that nodes that are not ancestors of Z can be ignored. This
implies that Py, , . (2) = P;(z) with induced subgraph
Go={X - Z,X « U,. — Z}, where U, stands for
the hidden variable between X and Z. sID goes to line 5, in
which in the local call C(D\ {X}) = {Gy}. Note that in the
ordinary identifiability problem the procedure would fail at
this point, but sID proceeds to line 6 testing whether (S L
1 Z|X)p. The test comes true, which makes sID directly
transport () with data from the experimental domain I, i.e.,
Pi(2) = Pu(2).
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function SID(y, x, P*, I, D)
INPUT: x,y value assignments, P* observational distribu-
tion in IT*, I set of interventional distributions in II, D a
selection diagram, S set of selection nodes.
OUTPUT: Expression for Pj(y) in terms of P*,I or
FAIL(F,F").
1 ifx = 0, return 3y, y P*(V)
2 ifV\An(Y)p #0,
return SID(y,x N An(Y)p, > 3 an(y)p, £ An(Y) D)
3 SetW = (V\X)\ An(Y)py-
if W # (), return SID(y,x U w, P*, D)
4 ifC(D\X)={CyC,...,Cr},
return } .y, (v x3 [1; SID(ci, V' \ i, P*, D)
ifC(D\ X) = {Co}
if (S 1LY | X)pg, return P(y|do(x))
if C(D) = {D}, FAIL(D, Cy)
if Co € C(D), return 3y [T;jv.es P*(vi|Vg_1))
if (3C")Cy C C" € C(D), return SID(y,x N C’,
[Lv.ecr PEVilVE Y ner v P\ o), e,

Nolie N e V)|

Figure 4: Modified version of identification algorithm capa-
ble of recognizing transportable relations.

Evaluating the second expression, we again trigger line
2, which implies that Py , ,  (w) = P; ,(w) with induced
subgraph G1 = {X —» Z,Z - W, X « U, — Z}.sID
goes to line 5, in which in the local call C(D \ {X}) =
{G1}. Thus it proceeds to line 6 testing whether (S L
W|X, Z)p,. The test comes true again, which makes sID
directly tranéport (1 with data from the experimental do-
main 11, i.e., Py (w) = Py . (w).

Evaluating the third expression, sID goes to line 5 in
which C(D \ {X,Z,W}) = {Gy}, where G2 = {V —
Y, S - V.,V « U,y — Y}. It proceeds to line 6 testing
whether (S 1L WX, Z)p__, which is false in this case.
It tests the other conditions until it reaches line 9, in which
C" = GoUG2U{X + U,y — Y}. Thus it tries to transport
Q3 = P _(v,y) over the induced graph C’, which stands
for ordinary identification, and trivially yields (after simpli-
fication) > P*(v|w)P*(y|v,w). The return of these calls
composed indeed coincide with the expression provided in
the first section.

We state next soundness and completeness of sID, see the
proofs in [Bareinboim and Pearl, 2012].

Theorem 6 (soundness). Whenever sID returns an expres-
sion for PE(y), it is correct.

Theorem 7. Assume sID fails to transport P} (y) (executes
line 7). Then there exists X' C X, Y’ C Y, such that the
graph pair D, Cy returned by the fail condition of sID con-
tain as edge subgraphs s*-trees IV, I that form a s-hedge

for P (y').

Corollary 3 (completeness). sID is complete.



Conclusions

We formally study the problem of “transportability,” or “ex-
ternal validity,” which we view as a license to transfer causal
information learned in experimental studies to a different en-
vironment, in which only observational studies can be con-
ducted. °

More specifically, we provide a complete (necessary and
sufficient) graphical condition for deciding when the causal
effect of one set of variables on another can be transported
from experimental to non-experimental environment. We
further provide a complete algorithm for computing the cor-
rect transport formula whenever this graphical condition
holds.

Appendix 1

The do-calculus [Pearl, 1995] consists of three rules that per-
mit us to transform expressions involving do-operators into
other expressions of this type, whenever certain conditions
hold in the causal diagram G.

We consider a DAG G in which each child-parent fam-
ily represents a deterministic function x; = f;(pa;, €;),i =
1,...,n, where pa; are the parents of variables X; in G,
and €;,¢ = 1,...,n are arbitrarily distributed random dis-
turbances, representing background factors that the investi-
gator chooses not to include in the analysis.

Let X, Y, and Z be arbitrary disjoint sets of nodes
in a causal DAG G. An expression of the type £ =
P(y|do(z), z) is said to be compatible with G if the inter-
ventional distribution described by E can be generated by
parameterizing the graph with a set of functions f; and a set
of distributions of ¢;,7 = 1,...,n

We denote by G+ the graph obtained by deleting from
G all arrows pointing to nodes in X. Likewise, we denote
by G x the graph obtained by deleting from G all arrows
emerging from nodes in X. To represent the deletion of both
incoming and outgoing arrows, we use the notation G ,.

The following three rules are valid for every interven-
tional distribution compatible with G:

Rule 1: Py(y|z, w) = Px(y|w) if (Y 1L Z|X, W)g,.
Rule 2: Py ,(y|w) = Px(y|z,w) if (Y 1L Z|X, W)
Rule 3: P, ,(y|w) =
where Z* = Z \ Anc(W)gy,.

Gxz:

Pye(ylw) if (Y 1L Z|X, W)g__

x,z*’
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