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Abstract

The study of transportability aims to identify conditions un-
der which causal information learned from experiments can
be reused in a different environment where only passive ob-
servations can be collected. The theory introduced in [Pearl
and Bareinboim, 2011] (henceforth [PB, 2011]) defines for-
mal conditions for such transfer but falls short of providing
an effective procedure for deciding whether transportability
is feasible for a given set of assumptions about differences
between the source and target domains. This paper provides
such procedure. It establishes a necessary and sufficient con-
dition for deciding when causal effects in the target domain
are estimable from both the statistical information available
and the causal information transferred from the experiments.
The paper further provides a complete algorithm for comput-
ing the transport formula, that is, a way of fusing experimen-
tal and observational information to synthesize an estimate of
the desired causal relation.

Motivation
The problem of transporting knowledge from one environ-
ment to another has been pervasive in many data-driven
sciences. Invariably, when experiments are performed on a
group of subjects, the issue arises whether the conclusions
are applicable to a different but somehow related group.
When a robot is trained in a simulated environment, the
question arises whether it could put the acquired knowledge
into use in a new environment where relationships among
agents, objects and features are different.

Surprisingly, the conditions under which this extrapola-
tion can be legitimized were not formally articulated. Al-
though the problem has been discussed in many areas of
statistics, economics, and the health sciences, under rubrics
such as “external validity” [Campbell and Stanley, 1963;
Manski, 2007], “meta-analysis” [Glass, 1976; Hedges and
Olkin, 1985; Owen, 2009], “heterogeneity” [Hofler, Gloster,
and Hoyer, 2010], “quasi-experiments” [Shadish, Cook, and
Campbell, 2002, Ch. 3; Adelman, 1991], these discussions
are limited to verbal narratives in the form of heuristic guide-
lines for experimental researchers – no formal treatment of
the problem has been attempted.
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AI is in a unique position to tackle this problem formally.
First, the distinction between statistical and causal knowl-
edge has received syntactic representation through causal di-
agrams [Pearl, 1995; Spirtes, Glymour, and Scheines, 2001;
Pearl, 2009; Koller and Friedman, 2009]. Second, graphical
models provide a language for representing differences and
commonalities among domains, environments, and popula-
tions [PB, 2011]. Finally, the inferential machinery provided
by the do-calculus [Pearl, 1995; 2009; Koller and Friedman,
2009] is particularly suitable for combining these two fea-
tures into a coherent framework and developing effective al-
gorithms for knowledge transfer.

Following [PB, 2011], we consider transferring causal
knowledge between two environments Π and Π∗. In en-
vironment Π, experiments can be performed and causal
knowledge gathered. In Π∗, potentially different from Π,
only passive observations can be collected but no experi-
ments conducted. The problem is to infer a causal relation-
ship R in Π∗ using knowledge obtained in Π. Clearly, if
nothing is known about the relationship between Π and Π∗,
the problem is unsolvable. Yet the fact that all experiments
are conducted with the intent of being used elsewhere (e.g.,
outside the laboratory) implies that scientific progress relies
on the assumption that certain environments share common
characteristics and that, owed to these commonalities, causal
claims would be valid even where experiments were never
performed.

To formally articulate commonalities and differences be-
tween environments, a graphical representation named se-
lection diagrams was devised in [PB, 2011], which repre-
sent differences in the form of unobserved factors capable
of causing such differences. Given an arbitrary selection di-
agram, our challenge is to algorithmically decide whether
commonalities override differences to permit the transfer of
information across the two environments.

Previous Work and Our Contributions
Consider Fig. 1(a) which concerns the transfer of experi-
mental results between two locations. We first conduct a ran-
domized trial in Los Angeles (LA) and estimate the causal
effect of treatment X on outcome Y for every age group
Z = z, denoted P (y|do(x), z). We now wish to generalize
the results to the population of New York City (NYC), but
we find the distribution P (x, y, z) in LA to be different from
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the one in NYC (call the latter P ∗(x, y, z)). In particular, the
average age in NYC is significantly higher than that in LA.
How are we to estimate the causal effect ofX on Y in NYC,
denoted R = P ∗(y|do(x))? 1,2

The selection diagram for this example (Fig. 1(a)) con-
veys the assumption that the only difference between the two
population are factors determining age distributions, shown
as S → Z, while age-specific effects P (y|do(x), Z = z) are
invariant across cities. Difference-generating factors are rep-
resented by a special set of variables called selection vari-
ables S (or simply S-variables), which are graphically de-
picted as square nodes (�). From this assumption, the over-
all causal effect in NYC can be derived as follows 3

R =
∑

z

P ∗(y|do(x), z)P ∗(z)

=
∑

z

P (y|do(x), z)P ∗(z)

The last line is the transport formula for R. It combines
experimental results obtained in LA, P (y|do(x), z), with
observational aspects of NYC population, P ∗(z), to obtain
an experimental claim P ∗(y|do(x)) about NYC.

In this trivial example the transport formula amounts to
a simple re-calibration of the age-specific effects to account
for the new age distribution. In more elaborate examples,
however, the full power of formal analysis would be re-
quired. For instance, [PB, 2011] showed that, in the prob-
lem depicted in Fig. 1(b), where both the Z-determining
mechanism and the U -determining mechanism are suspect
of being different, the transport formula for the relation
R = P ∗(y|do(x)) is given by∑

z

P (y|do(x), z)
∑
w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t)

This formula instructs us to estimate P (y|do(x), z) and
P (w|do(x), t) in the experimental domain, then combine
them with the estimates of P ∗(z|w) and P ∗(t) in the target
domain.

[PB, 2011] derived this formula using the following theo-
rem, which translates the property of transportability to the
existence of a syntactic reduction using a sequence of do-
calculus operations.

1We will use Px(y) interchangeably with P (y | do(x)).
2We use the structural interpretation of causal diagrams. For

example, Fig. 1(a) describes the following system of structural
equations: z ← f1(s; uz; uzx), x ← f2(z; ux; uzx), y ←
f3(y; z; uy; uxy); each variable in the l.h.s. is assigned a value
given by the respective deterministic function on the r.h.s. The ex-
ogenous (hidden) variables U are assigned a probability function
which induces in turn, a probability distribution on all variables
in the model. See Appendix 1 for a gentle introduction to the do-
calculus and more details on this representation.

3This result can be derived by purely graphical operations
if we write P ∗(y|do(x), z) as P (y|do(x), z, s), thus attributing
the difference between Π and Π∗ to a fictitious event S = s.
The invariance of the age-specific effect then follows from the
conditional independence (S ⊥⊥ Y |Z, X)G

X
, which implies

P (y|do(x), z, s) = P (y|do(x), z), and licenses the derivation of
the transport formula.
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Figure 1: Selection diagrams illustrating different facets
of the transportability problem. (a) A selection diagram in
which transportability is trivial. (b) A selection diagram in
which the causal relation R is more involved and shown to
be transportable using Theorem 1. (c) A selection diagram
in which the procedure given in [PB, 2011] is unable to rec-
ognize a transportable relation R.

Theorem 1 (Do-calculus characterization dbPB, 2011ec). Let
D be the selection diagram characterizing Π and Π∗, and
S a set of selection variables in D. The relation R =
P ∗(y|do(x), z) is transportable from Π to Π∗ if and only if
the expression P (y|do(x), z, s) is reducible, using the rules
of do-calculus, to an expression in which S appears only as
a conditioning variable in do-free terms.4

Theorem 1 is declarative but not computationally effec-
tive, for it does not specify the sequence of rules leading to
the needed reduction, nor does it tell us if such a sequence
exists.

To overcome this deficiency, [PB, 2011] proposed a recur-
sive procedure (their Theorem 3) which can handle many ex-
amples, among them Fig. 1(b), but is not complete. We will
show5, for example, that their procedure fails to recognize
R as “transportable” in the diagram of Fig. 1(c) whereas the
procedures developed in this paper will recognize it as such
and will support it with the transport formula:

R =
∑

z

P (z|do(x))
∑
w

P (w|do(x, z))
∑

v

P ∗(v|w)P ∗(y|v, w)

We summarize our contributions as follows:
• We derive a general graphical condition for deciding

transportability of causal effects. We show that transporta-
bility is feasible if and only if a certain graph structure
does not appear as an edge subgraph of the inputted se-
lection diagram.
• We provide necessary or sufficient graphical conditions

for special cases of transportability, for instance, con-
trolled direct effects.
• Finally, we construct a complete algorithm for deciding

transportability of joint causal effects and returning the
correct transport formula whenever those effects are trans-
portable.

Preliminary Results
The basic semantical framework in our analysis rests on
probabilistic causal models as defined in [Pearl, 2000, pp.
205], also called structural causal models or data-generating

4The only if part is proven in Corollary 4.
5See Corollary 5 in Appendix 2 .



models. In the structural causal framework [Pearl, 2000, Ch.
7], actions are modifications of functional relationships, and
each action do(x) on a causal model M produces a new
model Mx = 〈U,V,Fx, P (U)〉, where Fx is obtained af-
ter replacing fX ∈ F for every X ∈ X with a new function
that outputs a constant value x given by do(x).

Key to the analysis of transportability is the notion of
“identifiability,” defined below, which expresses the require-
ment that causal effects be computable from a combination
of data P and assumptions embodied in a causal graph G.
Definition 1 (Causal Effects Identifiability dbPearl, 2000, pp.
77ec). The causal effect of an action do(x) on a set of vari-
ables Y such that Y ∩X = ∅ is said to be identifiable from
P in G if Px(y) is uniquely computable from P (V ) in any
model that induces G.

Causal models and their induced graphs are normally as-
sociated with one particular domain (also called setting,
study, population, environment). In the transportability case,
we extend this representation to capture properties of sev-
eral domains simultaneously. This is made possible if we
assume that there are no structural changes between the do-
mains, that is, all structural equations share the same set of
arguments, though the functional forms of the equations may
vary arbitrarily. 6, 7

Definition 2 (Selection Diagram). Let 〈M,M∗〉 be a pair
of structural causal models [Pearl, 2000, pp. 205] relative
to domains 〈Π,Π∗〉, sharing a causal diagram G. 〈M,M∗〉
is said to induce a selection diagram D if D is constructed
as follows:

1. Every edge in G is also an edge in D;
2. D contains an extra edge Si → Vi whenever there might

exist a discrepancy fi 6= f∗i or P (Ui) 6= P ∗(Ui) between
M and M∗.
In words, the S-variables locate the mechanisms where

structural discrepancies between the two domains are sus-
pected to take place.8 Alternatively, one can see a selec-
tion diagram as a carrier of invariance claims between the
mechanisms of both domains – the absence of a selection
node pointing to a variable represents the assumption that
the mechanism responsible for assigning value to that vari-
able is the same in the two domains.

Armed with a selection diagram and the concept of iden-
tifiability, transportability of causal effects (or transportabil-
ity, for short) can be defined as follows:

Definition 3 (Causal Effects Transportability). Let D be a
selection diagram relative to domains 〈Π,Π∗〉. Let 〈P, I〉

6This definition was left implicit in [PB, 2011].
7The assumption that there are no structural changes between

domains can be relaxed starting with D = G∗ and adding S-nodes
following the same procedure as in Def. 2, while enforcing acyclic-
ity.

8Transportability assumes that enough structural knowledge
about both domains is known in order to substantiate the pro-
duction of their respective causal diagrams. In the absence of
such knowledge, causal discovery algorithms can be used to in-
fer the diagrams from data [Pearl and Verma, 1991; Pearl, 2000;
Spirtes, Glymour, and Scheines, 2001].

be the pair of observational and interventional distributions
of Π, and P ∗ be the observational distribution of Π∗. The
causal effect R = Px(y) is said to be transportable from Π
to Π∗ inD if Px(y) is uniquely computable from P, P ∗, I in
any model that induces D.

The problem of transportability generalizes the problem
of identifiability, to witness note that all identifiable causal
relations in (G∗, P ∗) are also transportable, because they
can be computed directly from Π∗ and require no experi-
mental information from Π. This observation engender the
following definition of trivial transportability.
Definition 4. (Trivial Transportability)
A causal relation R is said to be trivially transportable from
Π to Π∗, if R(Π∗) is identifiable from (G∗, P ∗).

The following observation establishes another connec-
tion between identifiability and transportability. For a given
causal diagram G, one can produce a selection diagram D
such that identifiability in G is equivalent to transportability
inD. First setD = G, and then add selection nodes pointing
to all variables inD, which represents that the target domain
does not share any commonality with its pair – this is equiv-
alent to the problem of identifiability because the only way
to achieve transportability is to identify R from scratch in
the target domain.

Another special case of transportability occurs when a
causal relation has identical form in both domains – no re-
calibration is needed. This is captured by the following def-
inition.
Definition 5. (Direct Transportability)
A causal relation R is said to be directly transportable from
Π to Π∗, if R(Π∗) = R(Π).

A graphical test for direct transportability of R =
P (y|do(x), z) follows from do-calculus and reads: (S ⊥⊥
Y |X,Z)GX

; in words, X blocks all paths from S to Y once
we remove all arrows pointing to X and condition on Z. As
a concrete example, the z-specific effects in Fig. 1(a) is the
same in both domains, hence, it is directly transportable.

These two cases will act as a basis to decompose the prob-
lem of transportability into smaller and more manageable
subproblems (to be shown later on).

The following lemma provides an auxiliary tool to prove
non-transportability and is based on refuting the uniqueness
property required by Definition 3.
Lemma 1. Let X,Y be two sets of disjoint variables, in
population Π and Π∗, and let D be the selection diagram.
Px(y) is not transportable from Π to Π∗ if there exist two
causal models M1 and M2 compatible with D such that
P1(V) = P2(V), P ∗1 (V) = P ∗2 (V), P1(V\W|do(W)) =
P2(V\W|do(W)), for any set W, all families have positive
distribution, and P ∗1 (y|do(x)) 6= P ∗2 (y|do(x)).
Proof. Let I be the set of interventional distributions P (V\
W|do(W)), for any set W. The latter inequality rules out
the existence of a function from P, P ∗, I to Px(y).

While the problems of identifiability and transportabil-
ity are related, Lemma 1 indicates that proofs of non-
transportability are more involved than those of non-
identifiability. Indeed, to prove non-transportability requires



the construction of two models agreeing on 〈P, I, P ∗〉, while
non-identifiability requires the two models to agree solely on
the observational distribution P .

The simplest non-transportable structure is an extension
of the famous ‘bow arc’ graph named here ‘s-bow arc’, see
Fig. 2(a). The s-bow arc has two endogenous nodes: X , and
its child Y , sharing a hidden exogenous parent U , and a S-
node pointing to Y . This and similar structures that prevent
transportability will be useful in our proof of completeness,
which requires a demonstration that whenever the algorithm
fails to transport a causal relation, the relation is indeed non-
transportable.
Theorem 2. P ∗x (y) is not transportable in the s-bow arc
graph.
Proof. The proof will show a counter-example to the trans-
portability of P ∗x (Y ) through two models M1 and M2 that
agree in 〈P, P ∗, I〉 and disagree in P ∗x (y).

Assume that all variables are binary. Let the model M1

be defined by the following system of structural equations:
X1 = U, Y1 = ((X⊗U)⊗S), P1(U) = 1/2, andM2 by the
following one: X2 = U, Y2 = S ∨ (X ⊗ U), P2(U) = 1/2,
where ⊗ represents the exclusive or function.
Lemma 2. The two models agree in the distributions
〈P, P ∗, I〉.
Proof. We show that the following equations must hold for
M1 and M2:{

P1(X|S) = P2(X|S), S = {0, 1}
P1(Y |X,S) = P2(Y |X,S), S = {0, 1}
P1(Y |do(X), S = 0) = P2(Y |do(X), S = 0)

for all values of X,Y . The equality between Pi(X|S) is ob-
vious since (S ⊥⊥ X) and X has the same structural form in
both models. Second, let us construct the truth table for Y :

X S U Y1 Y2

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

To show that the equality between Pi(Y = 1|X,S =
0), X = {0, 1} holds, we rewrite it as follows:

Pi(Y = 1|X,S = 0) =
Pi(Y = 1|X,S = 0, U = 1)Pi(X|U = 1)Pi(U = 1)

Pi(X)
+

Pi(Y = 1|X,S = 0, U = 0)Pi(X|U = 0)Pi(U = 0)
Pi(X)

(1)

In eq. (1), the expressions for X = {0, 1} are functions of
the tuples {(X = 1, S = 0, U = 1), (X = 0, S = 0, U =
0)}, which evaluate to the same value in both models. Sim-
ilarly, the expressions Pi(Y = 1|X,S = 1) for X = {0, 1}
are functions of the tuples {(X = 1, S = 1, U = 1), (X =
0, S = 1, U = 0)}, which also evaluate to the same value in
both models.

X YZ
(b)

S S

(a)
X Y

Figure 2: (a) Smallest selection diagram in which
P (y|do(x)) is not transportable (s-bow graph). (b) A selec-
tion diagram in which even though there is no S-node point-
ing to Y , the effect of X on Y is still not-transportable due
to the presence of a sC-tree (see Corollary 2).

We further assert the equality between the interventional
distributions in Π, which can be written using the do-
calculus as
Pi(Y = 1|do(X), S = 0) =∑

U

Pi(Y |do(X), S = 0, U)Pi(U |do(X), S = 0) =

Pi(Y = 1|X,S = 0, U = 1)Pi(U = 1) +
Pi(Y = 1|X,S = 0, U = 0)Pi(U = 0), X = {0, 1} (2)

Evaluating this expression points to the tuples {(X =
1, S = 0, U = 1), (X = 1, S = 0, U = 0) and (X =
0, S = 0, U = 1), (X = 0, S = 0, U = 0)}, which map to
the same value in both models.
Lemma 3. There exist values of X,Y such that
P1(Y |do(X), S = 1) 6= P2(Y |do(X), S = 1).

Proof. Fix X = 1, Y = 1, and let us rewrite the desired
quantity Ri = Pi(Y = 1|do(X = 1), S = 1) in Π∗ as

Ri = Pi(Y = 1|X = 1, S = 1, U = 1)Pi(U = 1)+
Pi(Y = 1|X = 1, S = 1, U = 0)Pi(U = 0) (3)

Since Ri is a function of the tuples (X = 1, S = 1, U =
1), (X = 1, S = 1, U = 0), it evaluates in M1 to {1, 1} and
in M2 to {1, 0}.

Hence, together with the uniformity of P (U), it follows
that R1 = 1 and R2 = 1/2, which finishes the proof.

Lemma 1, Lemmas 2 and 3 prove Theorem 2.

Characterizing Transportable Relations
The concept of confounded components (or C-components)
was introduced in [Tian and Pearl, 2002] to represent clus-
ters of variables connected through bidirected edges, and
was instrumental in establishing a number of conditions for
ordinary identification (Def. 1). If G is not a C-component
itself, it can be uniquely partitioned into a set C(G) of C-
components. We now recast C-components in the context of
transportability.9

Definition 6 (sC-component). Let G be a selection diagram
such that a subset of its bidirected arcs forms a spanning tree
over all vertices in G. Then G is a sC-component (selection
confounded component).

9C-components can itself be seen as an extension of the more
elementary notion of inducing path, which was introduced much
earlier in [Verma and Pearl, 1990].



A special subset of C-components that embraces the an-
cestral set of Y was noted by [Shpitser and Pearl, 2006b] to
play an important role in deciding identifiability – this obser-
vation can also be applied to transportability, as formulated
in the next definition.

Definition 7 (sC-tree). Let G be a selection diagram such
that C(G) = {G}, all observable nodes have at most one
child, there is a node Y , which is a descendent of all nodes,
and there is a selection node pointing to Y . ThenG is called
a Y -rooted sC-tree (selection confounded tree).

The presence of this structure (and generalizations) will
prove to be an obstacle to transportability of causal effects.
For instance, the s-bow arc in Fig. 2(a) is a Y -rooted sC-tree
where we know Px(y) is non-transportable.

In certain classes of problems, the absence of such struc-
tures will prove sufficient for transportability. One such class
is explored below, and consists of models in which the setX
coincides with the parents of Y .

Theorem 3. Let G be a selection diagram. Then for any
node Y , the causal effects P ∗Pa(Y )(y) is transportable if
there is no subgraph of G which forms a Y -rooted sC-tree.

Proof. See Appendix 2.

Theorem 3 provides a tractable transportability condition
for the Controlled Direct Effect (CDE) – a key concept in
modern mediation analysis, which permits the decompo-
sition of effects into their direct and indirect components
[Pearl, 2001; 2012]. CDE is defined as the effect of X on
Y when all other parents of Y are held constant, and it is
identifiable if and only if PPa(Y )(y) is identifiable [Pearl,
2009, pp. 128].

The selection diagram in Fig. 1(a) does not contain any Y -
rooted sC-trees as subgraphs, and therefore the direct effects
(causal effects of Y ’s parents on Y ) is indeed transportable.
In fact, the transportability of CDE can be determined by a
more visible criterion:

Corollary 1. Let G be a selection diagram. Then for any
node Y , the direct effect P ∗Pa(Y )(y) is transportable if there
is no S node pointing to Y .

Proof. See Appendix 2.

Generalizing to arbitrary effects, the following result pro-
vides a necessary condition for transportability whenever the
whole graph is a sC-tree.

Theorem 4. Let G be a Y -rooted sC-tree. Then the effects
of any set of nodes in G on Y are not transportable.

Proof. See Appendix 2.

The next corollary demonstrates that sC-trees are obsta-
cles to the transportability of Px(y) even when they do not
involve Y , i.e., transportability is not a local problem – if
there exists a node W that is an ancestor of Y but not nec-
essarily “near” it, transportability is still prohibited (see Fig.
2(b)). This fact anticipates that transporting causal effects of
singleton Y is not necessarily easier than the general prob-
lem of transportability.

X YA B C

Figure 3: Example of a selection diagram in which
P (Y |do(X)) is not transportable, there is no sC-tree but
there is a s∗-tree.

Corollary 2. Let G be a selection diagram, and X and Y a
set of variables. If there exists a node W that is an ancestor
of some node Y ∈ Y such that there exists a W -rooted sC-
tree which contains any variables in X, then Px(y) is not
transportable.

Proof. See Appendix 2.

We now generalize the definition of sC-trees (and The-
orem 4) in two ways: first, Y is augmented and can be a
set of variables; second, S-nodes can point to any variable
within the sC-component, not necessarily to root nodes. For
instance, consider the graphG in Fig. 3. Note that there is no
Y -rooted sC-tree nor W -rooted sC-tree in G (where W is
an ancestor of Y ), and so the previous results cannot be ap-
plied even though the effect of X on Y is not transportable
in G – still, there exists a Y -rooted s∗-tree in G, which will
prevent the transportability of the causal effect.

Definition 8 (s∗-tree). Let G be a selection diagram, where
Y is the maximal root set. ThenG is a Y-rooted s∗-tree ifG
is a sC-component, all observable nodes have at most one
child, and there is a selection node pointing to some vertex
of G (not necessarily in Y).

We next conveniently introduce a structure that wit-
nesses non-transportability characterized by a pair of s∗-
trees. Transportability will be shown impossible whenever
such structure exists as an edge subgraph of the given selec-
tion diagram.

Definition 9 (s-hedge). Let X,Y be set of variables in G.
Let F, F ′ be R-rooted s∗-trees such that F ∩X 6= 0, F ′ ∩
X = 0, F ′ ⊆ F , R ⊂ An(Y)GX

. Then F and F ′ form a
s-hedge for Px(Y) in G.

For instance, in Fig. 3, the s∗-trees F ′ = {C, Y }, and
F = F ′ ∪ {X,A,B} form a s-hedge to Px(y).

We state below the formal connection between s-edges
and non-transportability.

Theorem 5. Assume there exist F, F ′ that form a s-hedge
for Px(y) in Π and Π∗. Then Px(y) is not transportable from
Π to Π∗.

Proof. See Appendix 2.

To prove that the s-hedges characterize non-
transportability in selection diagrams, we construct in
the next section an algorithm which transport any causal
effects that do not contain a s-hedge.



A Complete Algorithm For Transportability of
Joint Effects

The algorithm proposed to solve transportability is called
sID (see Fig. 4) and extends previous analysis and algo-
rithms of identifiability given in [Pearl, 1995; Kuroki and
Miyakawa, 1999; Tian and Pearl, 2002; Shpitser and Pearl,
2006b; Huang and Valtorta, 2006]. We build on two obser-
vations developed along the paper:

(i) Transportability: Causal relations can can be parti-
tioned into trivially and directly transportable.

(ii) Non-transportability: The existence of a s-hedge as an
edge subgraph of the inputted selection diagram can be
used to prove non-transportability.

The algorithm sID first applies the typical c-component de-
composition on top of the inputted selection diagramD, par-
titioning the original problem into smaller blocks (call these
blocks sc-factors) until either the entire expression is trans-
portable, or it runs into the problematic s-hedge structure.

More specifically, for each sc-factor Q, sID tries to di-
rectly transport Q. If it fails, sID tries to trivially transport
Q, which is equivalent to solving an ordinary identification
problem. sID alternates between these two types of trans-
portability, and whenever it exhausts the possibility of apply-
ing these operations, it exits with failure with a counterex-
ample for transportability – that is, the graph local to the
faulty call witnesses the non-transportability of the causal
query since it contains a s-hedge as edge subgraph.

Before showing the more formal properties of sID, we
demonstrate how sID works through the transportability of
Q = P (y|do(x)) in the graph in Fig. 1(c).

Since D = An(Y ) and C(D \ {X}) = (C0, C1, C2),
where C0 = D({Z}), C1 = D({W}), and C2 =
D({V, Y }), we invoke line 4 and try to transport respec-
tively Q0 = P ∗x,w,v,y(z), Q1 = P ∗x,z,v,y(w), and Q2 =
P ∗x,z,w(v, y). Thus the original problem reduces to transport-
ing
∑

z,w,v P
∗
x,w,v,y(z)P ∗x,z,v,y(w)P ∗x,z,w(v, y).

Evaluating the first expression, we trigger line 2, noting
that nodes that are not ancestors of Z can be ignored. This
implies that P ∗x,w,v,y(z) = P ∗x (z) with induced subgraph
G0 = {X → Z,X ← Uxz → Z}, where Uxz stands for
the hidden variable between X and Z. sID goes to line 5, in
which in the local call C(D\{X}) = {G0}. Note that in the
ordinary identifiability problem the procedure would fail at
this point, but sID proceeds to line 6 testing whether (S ⊥
⊥ Z|X)DX

. The test comes true, which makes sID directly
transportQ0 with data from the experimental domain Π, i.e.,
P ∗x (z) = Px(z).

Evaluating the second expression, we again trigger line
2, which implies that P ∗x,z,v,y(w) = P ∗x,z(w) with induced
subgraph G1 = {X → Z,Z → W,X ← Uxz → Z}. sID
goes to line 5, in which in the local call C(D \ {X}) =
{G1}. Thus it proceeds to line 6 testing whether (S ⊥⊥
W |X,Z)DX,Z

. The test comes true again, which makes sID
directly transport Q1 with data from the experimental do-
main Π, i.e., P ∗x,z(w) = Px,z(w).

Evaluating the third expression, sID goes to line 5 in
which C(D \ {X,Z,W}) = {G2}, where G2 = {V →

function SID(y,x, P ∗, I,D)
INPUT: x,y value assignments, P ∗ observational distribu-
tion in Π∗, I set of interventional distributions in Π, D a
selection diagram, S set of selection nodes.
OUTPUT: Expression for P ∗x (y) in terms of P ∗, I or
FAIL(F, F ′).
1 if x = ∅, return

∑
V\Y P ∗(V)

2 if V \An(Y)D 6= ∅,
return SID(y,x ∩An(Y)D,

∑
V\An(Y)D

P ∗, An(Y)D)
3 Set W = (V \X) \An(Y)DX

.
if W 6= ∅, return SID(y,x ∪w, P ∗, D)

4 if C(D \X) = {C0, C1, ..., Ck},
return

∑
V\{Y,X}

∏
i SID(ci,V \ ci, P ∗, D)

5 if C(D \X) = {C0}
6 if (S ⊥⊥ Y | X)DX

, return P (y|do(x))
7 if C(D) = {D}, FAIL(D,C0)
8 if C0 ∈ C(D), return

∑
s\Y

∏
i|Vi∈S P

∗(vi|V (i−1)
D )

9 if (∃C ′)C0 ⊂ C ′ ∈ C(D), return SID(y,x ∩ C ′,∏
i|Vi∈C′ P ∗(Vi|V (i−1)

D ∩ C ′, v(i−1)
D \ C ′), C ′).

Figure 4: Modified version of identification algorithm capa-
ble of recognizing transportable relations.

Y, S → V, V ← Uvy → Y }. It proceeds to line 6 testing
whether (S ⊥⊥ W |X,Z)DX,Z

, which is false in this case.
It tests the other conditions until it reaches line 9, in which
C ′ = G0∪G2∪{X ← Uxy → Y }. Thus it tries to transport
Q′2 = P ∗x,z(v, y) over the induced graph C ′, which stands
for ordinary identification, and trivially yields (after simpli-
fication)

∑
v P
∗(v|w)P ∗(y|v, w). The return of these calls

composed indeed coincide with the expression provided in
the first section.

We prove next soundness and completeness of sID.

Theorem 6 (soundness). Whenever sID returns an expres-
sion for Px(y), it is correct.

Proof. See Appendix 2.

Theorem 7. Assume sID fails to transport Px(y) (executes
line 7). Then there exists X′ ⊆ X, Y′ ⊆ Y, such that the
graph pair D,C0 returned by the fail condition of sID con-
tain as edge subgraphs s∗-trees F , F ′ that form a s-hedge
for Px′(y′).

Proof. See Appendix 2.

Corollary 3 (completeness). sID is complete.

Proof. See Appendix 2.

Corollary 4 (do-calculus characterization). The rules of do-
calculus, together with standard probability manipulations
are complete for establishing transportability of all effects
of the form P ∗x (y).

Proof. See Appendix 2.



Conclusions
We provide a complete (necessary and sufficient) graphical
condition for deciding when the causal effect of one set of
variables on another can be transported from experimental to
non-experimental environment. We further provide a com-
plete algorithm for computing the correct transport formula
whenever this graphical condition holds.

Appendix 1
The do-calculus [Pearl, 1995] consists of three rules that per-
mit us to transform expressions involving do-operators into
other expressions of this type, whenever certain conditions
hold in the causal diagramG. (See footnote 1 for semantics.)

We consider a DAG G in which each child-parent fam-
ily represents a deterministic function xi = fi(pai, εi), i =
1, . . . , n, where pai are the parents of variables Xi in G;
and εi, i = 1, . . . , n are arbitrarily distributed random dis-
turbances, representing background factors that the investi-
gator chooses not to include in the analysis.

Let X , Y , and Z be arbitrary disjoint sets of nodes
in a causal DAG G. An expression of the type E =
P (y|do(x), z) is said to be compatible with G if the inter-
ventional distribution described by E can be generated by
parameterizing the graph with a set of functions fi and a set
of distributions of εi, i = 1, . . . , n

We denote by GX the graph obtained by deleting from
G all arrows pointing to nodes in X . Likewise, we denote
by GX the graph obtained by deleting from G all arrows
emerging from nodes inX . To represent the deletion of both
incoming and outgoing arrows, we use the notation GXZ .

The following three rules are valid for every interven-
tional distribution compatible with G.
Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w)
if (Y ⊥⊥ Z|X,W )GX

Rule 2 (Action/observation exchange):
P (y|do(x), do(z), w) = P (y|do(x), z, w)

if (Y ⊥⊥ Z|X,W )GXZ

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w)
if (Y ⊥⊥ Z|X,W )G

XZ(W )
,

where Z(W ) is the set of Z-nodes that are not ancestors of
any W -node in GX .

The do-calculus was proven to be complete [Shpitser and
Pearl, 2006a; Huang and Valtorta, 2006], in the sense that if
an equality cannot be established by repeated application of
these three rules, it is not valid.

Appendix 2
Lemma 4. Let X,Y be sets of variables. Let M,M∗ be a
pair of causal models and G the respective selection dia-
gram. Then Q = P ∗x (Y) is transportable in G if and only if
Q is transportable in GAn(Y).

Proof. See [Tian, 2002, Chapter 5] that provides analogous
construction.

Theorem 3. Let G be a selection diagram. Then for any
node Y , the direct effect P ∗Pa(Y )(y) is transportable if there
is no subgraph of G which forms a Y -rooted sC-tree.

Proof. We known from [Tian, 2002, Theorem 22] that
whenever there exists no subgraph GT of G satisfying all of
the following: (i) Y ∈ T ; (ii)GT has only one c-component,
T itself; (iii) All variables in T are ancestors of Y inGT , the
direct effect on Y is identifiable, as sC-trees are structures
of this type. Further [Shpitser and Pearl, 2006b, Theorem 2]
showed that the same holds for C-trees, which also implies
the inexistence of a sC-trees. Since such structure does not
show up in G, the target quantity is identifiable, and hence
transportable.

It remains to show that the same holds whenever there ex-
ists a subgraph that is aC-tree and in which no S node points
to Y , i.e., there is no Y -rooted sC-tree at all. It is true that
(S ⊥⊥ Y |Pa(Y ))G

P a(Y )
, given that all paths from S to Y

are closed. This follows from the following facts: 1) all paths
from S passing through Y ’s ancestors were cut in G

Pa(Y )
;

2) all bidirected paths were also closed given that the condi-
tioning set contains only root nodes, and a connection from
S must pass through at least one collider; 3) by Lemma 4,
transportability does not depend on descendants of Y . Thus,
it follows that we can write P ∗Pa(Y )(Y ) = PPa(Y )(Y |S) =
PPa(Y )(Y ), concluding the proof.

Corollary 1. Let G be a selection diagram. Then for any
node Y , the direct effect P ∗Pa(Y )(y) is transportable if there
is no S node pointing to Y .

Proof. Follows directly from Theorem 3.

Lemma 5. The exclusive OR (XOR) function is commutative
and associative.

Proof. Follows directly from the definition of the XOR
function.

Remark 1. Despite the fact of being a strict generalization
of Theorem 2, the construction provided below is still worth
to make for two reasons: first, it will provide a simplified
construction of the one given in Theorem 2; second, it will
set the tone for proofs of generic graph structures which
will in the sequel show to be instrumental in proving non-
transportability in arbitrary structures.

Theorem 4. Let G be a Y -rooted sC-tree. Then the effects
of any set of nodes in G on Y are not transportable.

Proof. The proof will proceed by constructing a family of
counterexamples. For any such G and any set X, we will
construct two causal models M1 and M2 that will agree
on 〈P, P ∗, I〉, but disagree on the interventional distribution
Px(y).

Let the two models M1, M2 agree on the following fea-
tures. All variables in U∪V are binary. All exogenous vari-
ables are distributed uniformly. All endogenous variables



except Y are set to the bit parity (xor) of the values of their
parents. The two models differ is respect to Y ’s definition.
Consider the function for Y , fY : U,Pa(Y ) → Y to be
defined as follows:{

M1 : Y =
(
(pa(Y )⊗ u)⊗ s

)
M2 : Y =

(
(pa(Y )⊗ u) ∨ s

)
Lemma 6. The two models agree in the distributions
〈P, P ∗, I〉.

Proof. Since the two models agree on P (U) and all func-
tions except fY , it suffices to show that fY maintains the
same input/output behavior in both models for each do-
mains.
Subclaim 1: Let us show that both models agree in the ob-
servational and interventional distributions relative to do-
main Π, i.e., the pair 〈P, I〉. The index variable S is set to 0
in Π, and fY evaluates to (pa(Y )⊗u) in both models, which
proves the subclaim.
Subclaim 2: Let us show that both models agree in the ob-
servational distribution relative to Π∗, i.e., P ∗. The index
variable S is set 1 in Π∗, and fY evaluates to ((pa(Y ) ⊗
u) ⊗ 1) in M1, and 1 in M2. Since the evaluation in M1

can be rewritten as ¬((pa(Y ) ⊗ u), it remains to show that
(pa(Y )⊗ u) always evaluates to 0.

This fact is certainly true, consider the following obser-
vations: a) each variable in U has exactly two endogenous
children; b) the given tree has Y as the root; c) all functions
are XOR – these imply that Y is computing the bit parity of
the sum of all U nodes, which turns out to be even, and so
evaluates to 0 and proves the subclaim.

Lemma 7. For any set X, P1(Y |do(X), S = 1) 6=
P2(Y |do(X), S = 1).

Proof. Given the functional description and the discussion
in the previous Lemma, the function fY evaluates always to
1 in M2.

Now let us consider M1. Note that performing the inter-
vention and cutting the edges going toward X creates an
asymmetry on the sum of the bidirected edges departing
from U , and consequently in the sum performed by Y . It
will be the case that some U′ will appear only once in the
expression of Y . Therefore, depending on the assignment
X = x, we will need to evaluate the sum (mod 2) over U′ in
Y or its negation, which given the uniformity of the distri-
bution of U will yield P1(Y |do(X), S = 1) = 1/2 in both
cases.

By Lemma 1, Lemmas 6 and 7 together prove Theorem
4.

Corollary 2. Let G be a selection diagram, let X and Y
be set of variables. If there exists a node W which is an
ancestor of some node Y ∈ Y and such that there exists a
W -rooted sC-tree which contains any variables in X, then
Px(y) is not transportable.

Proof. Fix aW -rooted sC-tree T, and a path p fromW to Y .
Consider the graph p ∪ T . Note that in this graph P ∗x (Y ) =∑

w P
∗
x (w)P ∗(Y |w). From the last Theorem P ∗x (w) is not

X Y

(a)

X Y

(b)

Z

Z

S

S

Figure 5: Selection diagrams in which P (y|do(x)) is not
transportable, there is no sC-tree but there is a s∗-tree. These
diagrams will be used as basis for the general case; the first
diagram is named sp-graph and the second one sb-graph.

transportable, it is now easy to construct P ∗(Y |W ) in such a
way that the mapping from Px(W ) to Px(Y) is one to one,
while making sure all distributions are positive.

Remark 2. The previous results comprised cases in which
there exist sC-trees involved in the non-transportability of Y
– i.e., Y or some of its ancestors were roots of a given sC-
tree. In the problem of identifiability, the counterpart of sC-
tree (i.e., C-tree) suffices to characterize non-identifiability
for singleton Y . But transportability is more subtle and this
is not the case here – it depends not only on X and Y “loca-
tions” in the graph, but also the relative position of S. Con-
sider Figures 3 and 5(a) (sp-graph). In these graphs there is
no sC-tree but the effect ofX on Y is still non-transportable.

The main technical subtlety here is that in sC-trees, a S-
node combines its effect with a X-node intersecting in the
root node (considering only the bidirected edges), which is
not the case for non-transportability in general. Note that in
the graphs in Figures 3 and the sp-graph, the nodes S and
X intersect first through ordinary edges and meet through
bidirected edges only on the Y node. This implies a certain
“asynchrony” because in the structural sense when we have
a S-node this implies a difference in the structural equa-
tions between domains. But only a difference in the struc-
tural sense does not imply non-transportability, for instance,
P ∗x (z) is transportable in the sp-graph even though the equa-
tions of Z being different in both models.

The key idea to produce a proof for non-transportability in
these cases is to keep the effect of S-nodes after intersecting
with X “dormant” until they reach the target Y and then
manifest. We implement this idea in the next proof, which
is one base case and should pavement the way for the most
general problem.

Theorem 8. P ∗x (Y ) is not transportable in the sp-graph
(Fig. 5(a)).

Proof. We will construct two causal models M1 and M2

compatible with the sp-graph that will agree on 〈P, P ∗, I〉,
but disagree on the interventional distribution Px(Y ).

Let us assume that all variables in U ∪V are binary, and
let U1 be the common cause of X and Y , U2 be the com-
mon cause of Z and Y , and U3 be the random disturbance



exclusive to Z. Let M1 and M2 be defined as follows:

M1 =


X = U1

Z =
((

(X ⊗ U2 ⊗ 1)⊗ U3

)
∨ S
)
⊗
(
S ∧ (X ⊗ U2)

)
Y = Z ⊗ U1 ⊗ U2

and:

M2 =


X = U1

Z =
((

(U2 ⊗ 1)⊗ U3

)
∨ S
)
⊗
(
S ∧ U2

)
Y = Z ⊗ U2

Both models agree in respect to P (U), which is defined as
follows: P (U1) = P (U2) = P (U3) = 1/2.

Lemma 8. The two models agree in the distributions
〈P, P ∗, I〉.

Proof. Subclaim 1: Let us show that both models agree in
the observational and interventional distributions relative to
domain Π, i.e., the pair 〈P, I〉. In both models X has the
same expression, which entails the same probabilistic behav-
ior in both cases. The index variable S is set to 0 in Π, and
Z evaluates to (X ⊗U2⊗ 1⊗U3) in M1 and (U2⊗ 1⊗U3)
in M2. Since U is equal and uniformly distributed in both
models, we obtain the same input/output probabilistic be-
havior inM1 andM2. In similar way, Y evaluates to (1+R)
in both models, which entails the same input/output proba-
bilistic behavior in both models.
Subclaim 2: Let us show that both models agree in the ob-
servational distribution P ∗ relative to Π∗. The index vari-
able S is set 1 in Π∗, fZ evaluates to (X ⊗ U2 ⊗ 1) in
M1, and (U2⊗ 1) in M2. Together with the uniformty of U,
P (Z = 1|X = x) = 1/2 in both models. Further, fY evalu-
ates to 1 in both models, which yields the same input/output
behavior in both models.

Lemma 9. There exist values of X,Y such that
P1(Y |do(X), S = 1) 6= P2(Y |do(X), S = 1).

Proof. Fix X = 1, Y = 1. First notice that fZ evaluates
to U2 in M1 and U2 in M2. Given that U2 is distributed
uniformly, both quantities coincide (and they represent the
effect of X on Z, which is transportable in G). Now the
evaluation of fY in M1 reduces to U1, while it reduces to 1
in M2, which show disagreement and finishes the proof of
this Lemma.

By Lemma 1, Lemmas 8 and 9 together prove Theorem
8.

Remark 3. We have a different sort of asymmetry in the
case of Fig. 5(b) (called sb-graph). In this case, the nodes
X and S do not intersect before meeting Y – i.e., they have
disjoint paths and Y lies precisely in their intersection.

Still, this case is not the same of having a sC-tree because
in sb-graphs we need to keep the equality from the S nodes
to Y until S intersects X on Y . Employing a similar con-
struct as in the sp-graph, we keep the effect of S dormant
until it reaches Y and then emerges.

Theorem 9. P ∗x (Y ) is not transportable in the sb-graph
(Fig. 5(b)).

Proof. We construct two causal models M1 and M2 com-
patible with the sb-graph that will agree on 〈P, P ∗, I〉, but
disagree on the interventional distribution Px(Y ).

Let us assume that all variables in U ∪V are binary, and
let U1 be the common cause of X and Y , U2 be the com-
mon cause of Z and Y , and U3 be the random disturbance
exclusive to X . Let M1 and M2 agree with the following
definitions:

M1,M2 =
{
X = U1 ⊗ U3

Y = X ⊗ Z ⊗ U1 ⊗ U2

and disagree in respect to Z as follows:{
M1 : Z = U2 ⊗ S
M2 : Z =

(
(U2 ∨ S

)
⊗
(
S ∧ (U2)

)
Both models also agree in respect to P (U), which is defined
as follows: P (U1) 6= 1/2, P (U2) = P (U3) = 1/2.

Lemma 10. The two models agree in the distributions
〈P, P ∗, I〉.

Proof. Subclaim 1: Let us show that both models agree in
the observational and interventional distributions relative to
domain Π, i.e., the pair 〈P, I〉. The index variable S is set to
0 in Π, and Z evaluates to (X ⊗ U2) in both models. Since
the two models agree on P (U) and all other other functions,
the two models generate the same distributions for Π.
Subclaim 2: Let us show that both models agree in the ob-
servational distribution P ∗ relative to Π∗. The index variable
S is set 1 in Π∗, fZ evaluates to

(
(U2 ⊗ 1

)
in M1, and U2

in M2. Given that these variables are uniformly distributed,
both models agree in P (Z). Now let us consider the behav-
ior of fY , it evaluates to U3 in M1, and U3 in M2, and since
P (U3) is uniformly distributed, it is the same in both mod-
els.

Lemma 11. There exist values of X,Y such that
P1(Y |do(X), S = 1) 6= P2(Y |do(X), S = 1).

Proof. Fix X = 1, Y = 1. First notice that fZ evaluates to
U2 inM1 andU2 inM2. The evaluation of fY inM1 reduces
to U1, while it reduces to U1 in M2. It follows that in M1,
fY evaluates to 1 with probability P (U1 = 1), while in M2

it evaluates with probability P (U1 = 0), which disagree by
construction, finishing the proof of this Lemma.

By Lemma 1, Lemmas 10 and 11 together prove Theorem
9.

Remark 4. We have two complementary components
to forge a general scheme to prove arbitrary non-
transportability. First, the construct of Theorem 4 shows
how to prove non-transportability for general structures
such as sC-trees. In the sequel, the specific proofs of non-
transportability for the sp-graph (Theorem 8) and sb-graph
(Theorem 9) partition the possible interactions between X ,
S and Y . In the former, X and S intersect before meeting
with Y , while in the latter they have disjoint paths and Y



lies in their intersection. Not surprisingly, the proof for the
general case basically combines these analyses, which we
show below.

Theorem 5. Assume there exist F, F ′ that form a s-hedge
for Px(y) in Π and Π∗. Then Px(y) is not transportable from
Π to Π∗.

Proof. We first consider counterexamples with the induced
graph H = De(F )G∩An(Y)GX

, and assume, without loss
of generality, that H is a forest. We construct two causal
models M1 and M2 that will agree on 〈P, P ∗, I〉, but dis-
agree on the interventional distribution P ∗x (y).

Let F be an R-rooted sC-forest, let V′ be the set of ob-
servable variables and U′ be the set of unobservable vari-
ables in F . Let us assume that all variables in U′ ∪V′ are
binary. Call W the set of variables pointed by S-nodes in
F ′, which by the definition of sC-forest is guaranteed to be
non-empty.

In model 1, let each Vi ∈ V′ \W compute the bit parity
of all its observable and unobservable parents (i.e., f (1)

i =
⊗(
⋃

Vj∈Pai
Vj), where the xor is applied for each element

of the set and the result computed so far), while in model
2, let Vi compute the bit parity of all its parents except that
any node in F ′ disregards the parents values if the parent
is in F (i.e., f (2)

i = ⊗(
⋃

Vj∈Pai∩F ′ Vj) if Vi is in F ′, and

f
(2)
i = f

(1)
i , otherwise).

Define W ∈W as follows:
M1 : W =

((
f

(1)
w ⊗ U∗w

)
∨ S
)
⊗
(
S ∧

(
1⊗ f (1)

w

))
M2 : W =

((
f

(2)
w ⊗ U∗w

)
∨ S
)
⊗
(
S ∧

(
1⊗ f (2)

w

))
where fw is constructed in similar way as fi in M1 and M2

above, and U∗w is an additional fair coin exclusively pointing
to W . Let us call Uw the collection of such coins. Further-
more, let us assume that each Ui ∈ {U′ \Uw} is also a fair
coin (i.e., P (Ui) = 1/2).

Lemma 12. The two models agree in the distribution of
P ∗ and there exists a value assignment x for X such that
P1(Y|do(x), S = 1) 6= P2(Y|do(x), S = 1).

Proof. For S = 1, the result follows directly since the sys-
tems of equations in both models reduce to the construction
given in Theorem 4 at [Shpitser and Pearl, 2006b].

Lemma 13. The two models agree in the distributions
〈P, I〉.

Proof. Let us show that both models agree in the obser-
vational distribution P relative to domain Π. The selection
variable S is set to 0 in Π, and note that both systems are the
same as in Π∗ except that now each variable W ∈ W has
an extra variable U∗w pointing to it that should be taken into
account in W ’s evaluation, and in turn in the whole system.

We have a forest over the endogenous nodes and all func-
tions compute the bit parity of the value of their parents, and
so we can view each node as computing the sum mod 2 of

its exogenous ancestors in H . We want to show that the dis-
tribution of each family is equally likely for each possible
assignment (i.e., P (vi|pai) = 1/2, for all vi,pai).

Let us partition the analysis in two cases. First consider
the case of Vi ∈ R in which there exists a S-node in the
respective sC-tree. Note that that the evaluation of Vi relies
only on the value of U∗w ∈ Uw in its respective tree since
U ∈ {U′\Uw} has an even number of endogenous children
in F , and it is counted twice, so evaluates to zero (i.e., it
does not affect Vi’s evaluation). For now, let us assume that
there is only one U∗w that affects the evaluation of Vi. Given
the uniformity of U∗w, it suffices to show that U∗w can vary
independently for any configuration of the parents of Vi.

For any configuration of U′ = (U1 = u1, ..., U
∗
w =

u∗w, ...), consider the corresponding evaluation of Pai =
pai, and also Vi = u∗w. We want to show that it is possi-
ble to flip the current value of U∗w from u∗w to ¬u∗w while
preserving the parents’ evaluation pai. Assume this is not
so. This implies that the evaluation of Pai and Vi count the
same U’s, contradiction.

To see why, consider Pa∗i ⊆ Pai the set of parents of Vi

that are descendents of U∗w. Now, for each of these parents
flip the minimum number of variables from U \ Uw, and
call this set U∗. (Note that this is always possible since we
need at most one U for each parent, which should exist by
construction of sC-forest.) Now, make U∗w = ¬u∗w, and note
that Pai = pai since flipping the values of U∗ compensates
the flip of U∗w. But it is also true now that Vi evaluates to
¬u∗w since, in the same way as before, all other variables in
{U\Uw} are cancelled out in Vi’s evaluation, including the
ones in U∗. This proves the claim.

Consider the following two facts: Subclaim 1: Let X
and Y be two binary variables such that P (X = x) =
p 6= 1/2 and P (Y = y) = q = 1/2. Then the proba-
bilistic input/output behavior of Z = XOR(X,Y ) is the
same of Y . The variable Z = 1 whenever {(X = 1, Y =
0), (X = 0, Y = 1)}, which happens with probability
pq + (1 − p)(1 − q). Since q = 1/2, the expression re-
duces to p ∗ 1/2 + (1 − p) ∗ 1/2 = 1/2. Subclaim 2: Let
X and Y be two binary variables such that P (X = x) =
P (Y = y) = p = 1/2. Then the probabilistic input/output
behavior of Z = XOR(X,Y ) is the same ofX (or Y ). This
follows directly from Subclaim 1. It is clear that if there are
multiple nodes from Uw in the evaluation of Vi, the same
construction is also valid given the subclaim above. It is also
not difficult to generalize this argument to consider root set
that are not singleton, including roots in which there are not
S-nodes as ancestors.

Finally, let us consider the case of Vi ∈ {F \R}. It suf-
fices to show that the function from U′ \Uw to V′ \ R is
1-1 when we fix Uw = uw. We use the same argument as
Shpitser. Assume this is not so, and fix two instantiations of
U′ \Uw that map to the same value of V′\R, and differ by
the set U∗ = {U1, ..., Uk}. Since the bidirected edges form
a spanning tree, there exists V∗ with an odd number of par-
ents in U∗ (and were not in R, by construction). Order them
topologically and let the topmost be called X . Note that if
we flip all values in U∗, the value ofX will also flip, contra-
diction. Given the uniformity of U′, the claim follows. We



can put this together with the previous claim, and the result
follows. We can add fair coins as the input to all other vari-
ables outside F , which will imply the claim for the whole
graph G.

In regard to the equality between I , note that given that
the equality of both models holds for P , and removing
edges due to interventions will just make some nodes from
U′ \ Uw to have an odd number of children, it it not dif-
ficult to see based on the previous argument that this just
creates more variables that are free to vary, which will en-
tail the same probabilistic uniform behavior in both models.
Another way to see this fact is to consider the new exoge-
nous variables from {U \Uw} that have only one children
after the intervention as analogous to U∗w, and so the same
argument follows.

Finally, Lemma 1 together with Lemmas 12 and 13 prove
Theorem 5.

Theorem 6 (soundness). Whenever sID returns an expres-
sion for Px(y), it is correct.

Proof. The correctness of the identifiability calls were al-
ready established elsewhere [Huang and Valtorta, 2006;
Shpitser and Pearl, 2006b], which are performed by sID over
Π∗ and called trivial transportability.

It remains to show the correctness of the test in line 6
of sID. First note that, by construction, X is always a set
of pre-treatment covariates. But now the correctness follows
directly by S-admissibility of X together with Corollary 1 in
[PB, 2011].

Remark 5. The next results are similar to the analogous
ones for identification given in [Tian and Pearl, 2002] and
[Shpitser and Pearl, 2006a].

Theorem 7. Assume sID fails to transport Px(y) (executes
line 7). Then there exists X′ ⊆ X, Y′ ⊆ Y, such that the
graph pair D,C0 returned by the fail condition of sID con-
tain as edge subgraphs s∗-trees F , F ′ that form a s-hedge
for Px′(y′).

Proof. Before failure sID evaluated false consecutively at
line 5 and 6, so D local to this call is a sC-component, and
let R be its root set. We can remove some directed arrows
from D while preserving R as root, yielding a R-rooted s∗-
tree F . Since by construction F ′ = F ∩ C0 is closed under
descendants and only directed arrows were removed, both
F, F ′ are s∗-trees. Also by construction, R ⊂ An(Y)DX

together with the fact that X and Y from the recursive call
are clearly subsets of the original input, finish the proof.

Lemma 14. Let X,Y be sets of variables. If Q = P ∗x (Y)
is not transportable in G, then Q is not transportable in the
graph resulted from adding a directed or bidirected edge to
G. Equivalently, if Q is transportable in G, then it is also
transportable in graph resulted from removing a directed or
bidirected edge from G.

Proof. This result is obvious, see [Tian, 2002, Chapter 5]
that provides an analogous construction.

Lemma 15. Let X,Y be sets of variables. If Q = P ∗x (Y)
is not transportable in respect to the selection diagram G,
thenQ is not transportable in the selection diagram resulted
from adding selection nodes toG. Equivalently, ifQ is trans-
portable in G, then it is also transportable in graph resulted
from removing selection nodes from G.

Proof. This proof is also obvious and follows the same
structure of Lemmas 4 and 14.

Corollary 3 (completeness). sID is complete.

Proof. The result follows from Theorem 5 together with
Lemmas 4, 14, and 15.

Corollary 4 (do-calculus characterization). The rules of do-
calculus, together with standard probability manipulations
are complete for establishing transportability of all effects
of the form P ∗x (y).

Proof. It was shown elsewhere [Shpitser and Pearl, 2006a]
that the steps of sID but line 6, 7 correspond to sequences
of standard probability manipulations and applications of
the rules of do-calculus. The line 6 is constituted by a con-
ditional independence judgement, and standard probability
operations for the replacement of the functions based on the
invariance allowed by the S-admissibility of the local X′ in
each recursive call. Note that by Theorem 7, for all graphs
in which the failure conditions is triggered (line 7), it is pos-
sible to construct a counterexample for transportability.

Corollary 5. Theorem 3 in [PB, 2011] is incomplete.

Proof. Figure 1(c) demonstrates a selection diagram in
which the relation R = P ∗(y|do(x)) is transportable, but
Theorem 3 is not capable of recognizing it.

Let us test the applicability of each of its conditions:

Step 1. R is not trivially transportable due to the confound-
ing arc X ↔ Z due to Tian’s identifiability [Tian
and Pearl, 2002];

Step 2. There is no S-admissible set because the confound-
ing arc V ↔ Y and Verma’s inducing path condi-
tion [Verma and Pearl, 1990];

Step 3. There is no set W which makes (X ⊥⊥ Y |W ) to
hold, this is due to the confounding arc X ↔ Y ;

Since there is no remaining actions to be taken, the algorithm
exits without returning any expression.
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