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Abstract

This paper reviews the foundations of causal mediation analysis and offers a general
and transparent account of the conditions necessary for the identification of natural di-
rect and indirect effects, thus facilitating a more informed judgment of the plausibility
of these conditions in specific applications. We show that the conditions usually cited
in the literature are overly restrictive, and can be relaxed substantially, without com-
promising identification. In particular, we show that natural effects can be identified
by methods that go beyond standard adjustment for confounders, applicable to obser-
vational studies in which treatment assignment remains confounded with the mediator
or with the outcome. These identification conditions can be validated algorithmically
from the diagramatic description of one’s model, and are guaranteed to produce unbi-
ased results whenever the description is correct. The identification conditions can be
further relaxed in parametric models, possibly including interactions, and permit us
to compare the relative importance of several pathways, mediated by interdependent
variables.
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1 Introduction

Mediation analysis aims to uncover causal pathways along which changes are transmitted
from causes to effects. Interest in mediation analysis stems from both scientific and practical
considerations. Scientifically, mediation tells us “how nature works,” and practically, it
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enables us to predict behavior under a rich variety of conditions and policy interventions.
For example, in coping with the age-old problem of gender discrimination (Bickel et al.,
1975; Goldberger, 1984) a policy maker may be interested in assessing the extent to which
gender disparity in hiring can be reduced by making hiring decisions gender-blind, compared
with eliminating gender inequality in education or job qualifications. The former concerns
the direct effect of gender on hiring while the latter concerns the indirect effect or the effect
mediated via job qualification.

The example illustrates two essential ingredients of modern mediation analysis. First,
the indirect effect is not merely a modeling artifact formed by suggestive combinations of
parameters, but an intrinsic property of reality that has tangible policy implications. In this
example, reducing employers’ prejudices and launching educational reforms are two con-
tending policy options that involve costly investments and different implementation efforts.
Knowing in advance which of the two, if successful, has a greater impact on reducing hiring
disparity is essential for planning, and depends critically on mediation analysis for resolution.
Second, the policy decisions in this example concern the enabling and disabling of processes
(hiring vs education) rather than lowering or raising values of specific variables. These two
considerations lead to the analysis of natural direct and indirect effects.

Mediation analysis has its roots in the literature of structural equation models (SEM),
going back to Wright’s (1923; 1934) method of path analysis and continuing in the social
sciences from the 1960s to 1980s through the works of Baron and Kenny (1986), Bollen (1989),
Duncan (1975), and Fox (1980). The bulk of this work was carried out in the context of linear
models, in which effect sizes are represented as sums and products of structural coefficients.
The definition, identification, and estimation of these coefficients required a commitment
to a particular parametric and distributional model and fell short of providing a general,
causally defensible measure of mediation (Glynn, 2012; Hayes, 2009; Kraemer et al., 2008;
MacKinnon, 2008).

This has changed in the past two decades. Counterfactual thinking in statistics (Holland,
1988; Rubin, 1974) and epidemiology (Robins and Greenland, 1992), together with a formal
semantics based on non-parametric structural equations (Balke and Pearl, 1995; Halpern,
1998; Pearl, 2001) have given causal mediation analysis a sound theoretical basis and have
extended its scope from linear to nonlinear models. The definitions of direct and indirect
effects that emerge from this graphical-counterfactual symbiosis (summarized in Section 2.3)
require no commitment to functional or distributional forms and are therefore applicable
to models with arbitrary nonlinear interactions, arbitrary dependencies among the random
variables, and both continuous and categorical variables.

This article concerns the conditions under which direct and indirect effects can be esti-
mated from observational studies. In particular, we will focus on the natural mediated effect,
which is defined (roughly) as the expected change in the output when we let the mediator
change as if the input did (see Section 2.3 for formal definition). This counterfactual entity,
which has engendered the transition from linear to nonlinear models, cannot, in general,
be estimated from controlled experiments, even when it is feasible to randomize both the
treatment and the mediating variables.1 This limitation, noted by Robins and Greenland in

1This is because we have no way to rerun history and measure each subject’s response under conditions
he/she has not actually experienced.
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1992, resulted in nine years of abandonment, during which natural effects were considered
void of empirical content and were not investigated (Kaufman et al., 2009).

Interest in natural effects rekindled when identification conditions were uncovered which
circumvented this limitation, mediation formulas were derived, and the role of natural ef-
fects in policy making was made explicit (Pearl, 2001). While the identification conditions
relied on untestable assumptions, those assumptions were conceptually meaningful, and not
substantially different from standard requirements of no confounding or no common causes
that are made routinely in causal analysis.2

These developments, coupled with the capability of expressing and visualizing causal
assumptions in graphical forms, have given rise to an explosion of mediation papers that
have taken natural effects as the gold standards for analysis (e.g., Albert and Nelson, 2011;
Coffman and Zhong, 2012; Hafeman and Schwartz, 2009; Huber, 2012; Imai et al., 2010b,
2011b; Jo et al., 2011; Joffe et al., 2007; Kaufman, 2010; Mortensen et al., 2009; Petersen
et al., 2006; Richiardi et al., 2013; Robins, 2003; Sobel, 2008; Ten Have et al., 2004; Valeri and
VanderWeele, 2013; VanderWeele and Vansteelandt, 2009; Vansteelandt et al., 2012). These
papers have also adopted the mediation formulas of natural effects as targets for estimation
and as benchmarks for sensitivity analysis (Imai et al., 2010b; Sjölander, 2009).

However, although the identification conditions invoked in current mediation analysis are
based on the same formal principles (Appendix B),3 the articulation of these conditions in
common scientific terms become highly varied and unreliable, making it hard for researchers
to judge their plausibility in any given application. This stems from the difficulty of discern-
ing conditional independencies among counterfactual variables, which must be undertaken
by rank-and-file researchers whenever natural effects need be identified (Imai et al., 2010b;
Pearl, 2001; Petersen et al., 2006; Robins, 2003; VanderWeele and Vansteelandt, 2009). The
verification of such independencies, often called strong ignorability, conditional ignorabil-
ity, or sequential ignorability, presents a formidable judgmental task to most researchers if
unaided by structural models (Joffe et al., 2010).

Recently, efforts have been made to interpret these conditions in more conceptually mean-
ingful way, so as to enable researchers to judge whether the necessary assumptions are sci-
entifically plausible (Coffman and Zhong, 2012; Imai et al., 2010a, 2011a; Muthén, 2011;
Richiardi et al., 2013; Valeri and VanderWeele, 2013; VanderWeele, 2009). Invariably, these
efforts strive to replace ignorability vocabulary with notions such as no unmeasured con-
founders, no unmeasured confounding, as if randomized, effectively randomly assigned, or
essentially random, which are clearly more meaningful to empirical researchers.

Unfortunately, these interpretations are marred by two sources of ambiguity. First, the
notion of a confounder varies significantly from author to author. Some define a confounder
(say of X and Y ) as a variable that affects both X and Y . Some define confounder as a

2Discussion about the philosophical and practical implications of this limitation can be found in Pearl
(2009b, pp. 35 and 391) and Robins and Richardson (2011). The rest of the paper will assume that the
investigator is in possession of scientific knowledge to judge the plausibility of no confounding type of as-
sumptions which underly all current research on mediation whether under the rubric of sequential ignorability
(e.g., Imai et al., 2010b) or uncorrelated error terms.

3Imai et al. (2010b, 2011b) discuss similarities and differences among several versions of the identifying
assumptions, and Shpitser and VanderWeele (2011) delineate the context under which a restricted version
of the conditions established in (Pearl, 2001) coincide with those established in (Imai et al., 2010b).
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variable that is associated with both X and Y . Others allow for a confounder to affect X and
be associated with Y . Worse yet, the expression no unmeasured confounders is sometimes
used to exclude the very existence of such confounders and sometimes to affirm our abil-
ity to neutralize them by controlling other variables, not necessarily confounders. Second,
the interpretations have taken sequential ignorability as a starting point and consequently
are overly stringent – sequential ignorability is a sufficient but not necessary condition for
identifying natural effects. Weaker conditions can be articulated in a transparent and un-
ambiguous language which provide a greater identification power and a greater conceptual
clarity.

A typical example of overly stringent conditions that can be found in the literature reads
as follows:

The sequential ignorability assumption must be satisfied in order to identify the
average mediation effects. This key assumption implies that the treatment assign-
ment is essentially random after adjusting for observed pre-treatment covariates
and that the assignment of mediator values is also essentially random once both
observed treatment and the same set of observed pre-treatment covariates are
adjusted for.’(Imai et al., 2011a, pp. 863–864)4

I shall show that milder conditions are sufficient for identification. First, there is no need
to require that covariates be pre-treatment, as long as they are causally unaffected by the
treatment. Second, the treatment assignment need not be random under any adjustment;
identification can be achieved with treatment assignment remaining highly confounded under
every set of observed covariates. Finally, we need not insist on using “the same set of observed
pre-treatment covariates”; two or three different sets can sometimes accomplish what the
same set can not.

On the other extreme, there is also a tendency among researchers to treat the necessary
adjustments as totally independent of each other. A common misconception presumes that
control of confounding between the treatment and the mediator can be accomplished inde-
pendently of how we control confounding between the mediator and the outcome. We will
show this not be the case; adjusting for mediator-outcome confounders may constrain the
choices of covariates admissible for the treatment-mediator adjustment.

The main purpose of this paper is to offer a concise list of conditions that are sufficient
for identifying the natural direct effect (the same holds for the indirect effect), and are milder
than those articulated in the mainstream literature (Imai et al., 2010a; Coffman and Zhong,
2012; Valeri and VanderWeele, 2013) yet still expressible in familiar and precise terms. With
the help of these conditions we will extend mediation analysis to models in which standard
control for confounders is infeasible, including models using auxiliary, treatment-dependent
covariates and models with multiple mediators.

A second and perhaps equally important aim of this paper is to present readers with a
methodology that frees investigators from the need to understand, articulate, examine, and
judge the plausibility of the assumptions needed for identification. Instead, the method can
confirm or disconfirm these assumptions algorithmically from a deeper set of assumptions, as

4A formal description of this and other identification strategies can be found in (Imai et al., 2010a, Section
3.3) and (Imai et al., 2011b); the latter supplements the description with graphs to facilitate communication.



INTERPRETATION AND IDENTIFICATION OF CAUSAL MEDIATION 5

encoded in the structural, or data-generating model itself. We will show through examples
that standard causal diagrams, no different from those invoked in conventional SEM studies,
allow simple path-tracing routines to replace much of the human judgment deemed necessary
in mediation analysis; the judgment invoked in the construction of the diagrams is sufficient.

2 The Structural Approach to Mediation

In this section we will introduce mediation analysis from the perspective of non-parametric
structural equation models.5 This approach integrates the potential outcome framework
of Neyman (1923) and Rubin (1974) with that of SEM, thus combining mathematical rigor
with the merits of staying intimately informed by the data-generating process or its graphical
representation.

2.1 Mediation analysis in the parametric tradition

Figure 1 depicts the basic mediation structure that we will later embed in wider contexts.
It consists of three random variables: T , often called treatment; Y , the outcome; and M , the
mediator, whose role in transmitting the effect of T on Y we wish to assess. As a running
example, we could imagine an encouragement design (Holland, 1988) where T stands for a
type of educational program that a student receives, M stands for the amount of homework
a student does, and Y stands for a student’s score on the exam. In the linear case (Fig.
1(a)), the causal relationships in this example would be modeled in three linear equations:

t = u
T

m = αt+ u
M

y = βt+ γm+ u
Y

(1)

where lower-case symbols (t,m, y) represent the values that the variables (T,M, Y ) may
take, and U

T
, U

M
, and U

Y
stand for omitted factors that explain variations in T,M, and Y .

The coefficients α, β, γ represent the structural parameters which need to be estimated from
the data and which define the direct (β), indirect (αγ) and total (τ = β + αγ) effects of T
on Y .

As structural parameters, α, β, and γ are causal quantities whose meaning is independent
of the methods used in their estimation. γ, for example, stands for the increase in a student’s
score (Y ) per unit increase in study time (M), keeping all other factors (T and UY ) constant.
This unit-based, ceteris paribus definition of structural parameters may lend itself to exper-
imental verification when certain conditions hold. The assumption of linearity, for example,
renders structural coefficients constant across individuals and permits us to estimate them
by controlled experiments at the population level. We can imagine, for example, an investi-
gator going to a district where T is not available, recruiting interested students (and their
parents) and then randomly assigning T = 1 to some and T = 0 to others, and estimating
α through the difference in the mean of M between the two experimental groups, which we

5Readers familiar with non-parametric SEM as introduced in (Pearl, 2009b, 2010b, 2012a; Petersen et al.,
2006; VanderWeele, 2009) may go directly to Section 3.
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Figure 1: (a) The basic (unconfounded) mediation model. (b) A confounded version of
(a), showing correlation between UM and UY . Solid bullets represent observed variables,
hollow circles represent unobserved (or latent) variables. M = Mediator; T = Treatment;
Y = Outcome; W = Covariates; U = Omitted Factors; Z = Covariate; α = T −M Effect
Coefficient; β = Direct T−Y Effect Coefficient; γ = M−Y Effect Coefficient; f = Structural
Function; t = Value of T ; m = value of M .

write as E[M |do(T = 1)]−E[M |do(T = 0)].6 At the same experiment, the investigator can
also measure students’ scores, Y , and estimate the total effect

τ = E[Y |do(T = 1)]− E[Y |do(T = 0)] = β + αγ

To estimate γ would require a more elaborate experiment in which both T and M are
simultaneously randomized, thus deconfounding all three relationships in the model and
permitting an unbiased estimate of γ:

γ = E[Y |do(T = 0), do(M + 1)]− E[Y |do(T = 0), do(M)]

The latter can also be estimated in an encouragement design where M is not controlled
directly, but through a randomized incentive for homework. However, most traditional work
on mediation focused on non-experimental estimation, treating the structural equations in
(1) as regression equations, assuming that each U term is uncorrelated with the predictors
in the same equation.

The regression analysis of mediation, most notably the one advanced by Baron and
Kenny (1986), can be stated as follows: To test the contribution of a given mediator M to
the effect of T on Y , first regress Y on T and estimate the regression coefficient RY T , to be
equated with the total effect τ . Second, include M in the regression and estimate the partial
regression coefficient RY T ·M when M is controlled for (or conditioned on or adjusted for).
The difference between the two slopes, RY T − RY T ·M , would then measure the reduction in
the total effect due to controlling for M and should quantify the effect mediated through M .

The rational behind this estimation scheme follows from Fig. 1(a). If the total effect of
T on Y through both pathways is τ = β+αγ, by adjusting for M , we sever the M -mediated

6It is of utmost importance to emphasize that the mean difference between treatment and control groups
in the experiment is not equal to the difference E[M |X = 1]− E[M |X = 0] which would obtain where T is
available to students as an optional service. The two will differ substantially when X and M are confounded
as, for example, when students who are highly motivated for self-study (M) are more likely to choose the
treatment option. The do-operator was devised to make this distinction formal (Pearl, 1993).
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path, and the effect will be reduced to β. The difference between the two regression slopes
gives the indirect, or mediated effect

τ − β = αγ (2)

Alternatively, one can venture to estimate α and γ independently of τ . This is done by
first estimating the regression slope of M on T to get α, then estimating the regression slope
of Y on M controlling for T , which gives us γ; multiplying the two slopes together gives us
the mediated effect αγ.

The validity of these two estimation methods depends of course on the assumption that
the error terms, U

T
, U

M
, and U

Y
, are uncorrelated. Otherwise, some of the structural pa-

rameters might not be estimable by simple regression, and both the difference-in-coefficients
and product-of-coefficients methods will produce biased results. In randomized trials, where
U

T
can be identified with the randomized treatment assignment, we are assured that U

T
is

uncorrelated with both U
M

and U
Y

, so the regressional estimates of τ and α will be unbi-
ased. However, randomization does not remove correlations between U

M
and U

Y
. If such

correlation exists (as depicted in Fig. 1(b)), adjusting for M will create spurious correlation
between T and Y which will prevent the proper estimate of γ or β. In other words, the re-
gression coefficient RY Z·X will no longer equal γ, and the difference RY X −RMXRYM ·X will
no longer equal β. This follows from thepearl:98-r253 fact that controlling or adjusting for
M in the analysis (by including M in the regression equation) does not physically disable the
paths going through M ; it merely matches samples with equal M values, and thus induces
spurious correlations among other factors in the analysis (see Bullock et al., 2010; Cole and
Hernán, 2002; Pearl, 1998; VanderWeele and Vansteelandt, 2009).7 Such correlations cannot
be detected by statistical means, so theoretical knowledge must be invoked to identify the
sources of these correlations and control for common causes (so called “confounders”) of M
and Y whenever they are observable.8

This approach to mediation has two major drawbacks. One (mentioned above) is its
reliance on the untested assumption of uncorrelated errors, and the second is its reliance on
linearity and, in particular, on a property of linear systems called effect constancy (or no
interaction): The effect of one variable on another is independent of the level at which we
hold a third. This property does not extend to nonlinear systems; in such systems, the level
at which we control M would in general modify the effect of T on Y . For example, if the
output Y requires both T and M to be present, then holding M at zero would disable the
effect of T on Y , while holding M at a high value would enable the latter.

As a consequence, additions and multiplications are not self-evident in nonlinear systems.
It may not be appropriate, for example, to define the indirect effect in terms of the difference
in the total effect, with and without control. Nor would it be appropriate to multiply the
effect of T on M by that of M on Y (keeping X at some level) – multiplicative composi-
tions demand their justifications. Indeed, all attempts to define mediation by generalizing

7This can be readily shown using classical path-tracing rules (Pearl, 2013); if UM and UY are correlated,
the regression coefficient RY X·Z will not equal γ. Remarkably, the regressional estimates of the difference-
in-coefficients and the product-of-coefficients will always be equal.

8Although Judd and Kenny (1981) recognized the importance of controlling for mediator-output con-
founders, the point was not mentioned in the influential article of Baron and Kenny (1986), and as a result,
it has been ignored by most researchers in the social and psychological sciences (Judd and Kenny, 2010).
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the difference and product strategies to nonlinear system have resulted in distorted and
irreconcilable results (MacKinnon et al., 2007a,b; Glynn, 2012; Pearl, 2012b).

The next section removes these nonlinear barriers by defining effect as a counterfactual
notion, independent of any statistical or parametric manifestation, thus availing mediation
analysis to a broad spectrum of new applications, primarily those involving categorical data
and highly nonlinear processes. The first limitation, the requirement of error independence
(or no unmeasured confounders, as it is often called) will also be relaxed, since the new
definition will open new ways of overcoming correlations among the U terms.

2.2 Causes and counterfactuals in non-parametric structural mod-
els

In the most general case, the structural mediation model will have the form of Fig. 2(b):

M

YT

(c)

UU MM

UU

(a) (b)

M(        )

YT

Y
f    t, m,

YT

M

Y
u

Y
M

u
Y

u
u

Mf     t, f    t, 
M

(        )
(           )f   t, m,(           )

YT Y T
UU

M

Figure 2: (a) The basic nonparametric mediation model; (b) A confounded mediation model
in which dependence exists between U

M
and (U

T
, U

Y
); (c) A shorthand notation for (b). M

= Mediator; T = Treatment; U = Omitted Factors; Y = Outcome; f = Structural Function;
t = Value of T ; u = Value of U ; m = Value of M .

t = f
T
(u

T
) m = f

M
(t, u

M
) y = f

Y
(t,m, u

Y
) (3)

where T , M , Y are discrete or continuous random variables, f
T
, f

M
, and f

Y
are arbitrary

functions, and U
T
, U

M
, U

Y
represent respectively omitted factors that influence T,M, and

Y , but are not influenced by them. In our example, U
M

represents all factors that explain
variations in study time (M) among students at the same treatment (T ). The triplet U =
(U

T
, U

M
, U

Y
) is a random vector that accounts for all variations between individual students.

It is sometimes called unit, for it offers a complete characterization of a subject’s behavior
as reflected in T,M, and Y . The distribution of U , denoted P (U = u), uniquely determines
the distribution P (t,m, y) of the observed variables through the three functions in Eq. (3).

In Fig. 2(a) the omitted factors are assumed to be arbitrarily distributed but mutually
independent, written U

T
⊥⊥U

M
⊥⊥U

Y
. In Fig. 2(b) the dashed arcs connecting U

T
and U

M
(as

well as U
M

and U
T
) encode the understanding that the factors in question may be dependent.

Figure 2(c) is a short hand notation for Fig. 2(b). Here the U factors are not shown explicitly,
and their dependencies are encoded in the form of dashed arcs going directly to the affected
variables.
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Referring to our student-encouragement example, it is not hard to imagine sources of
possible dependencies among the omitted factors. For example, if U

Y
includes student’s

intelligence and the amount of time studied varies systematically with intelligence, U
M

and
U

Y
will be dependent, as shown in the model of Fig. 2(b). Likewise, if U

T
includes the

propensity of students to enter the program (T ) and this propensity depends on whether
students have adequate conditions for home studies (U

M
), then an arc between U

T
and U

M
is

needed to encode their dependence (Fig.2(b)). In general, as soon as one associates a diagram
to a research context, interesting issues arise of possible associations among measured and
unmeasured variables. Some can be decided by scientific considerations and some may be
debated by experts in the field. The purpose of the diagram is to provide an unambiguous
description of the scientific context of a given application. And while the application itself
is usually shrouded in ambiguities and disagreements, the diagram represents a hypothetical
consensus on what is plausible and important versus that which is deemed negligible or
implausible.

In this paper, we will emphasize the use of diagrams as faithful conveyers of the scientific
context in any given applications, with the understanding that the actual causal story behind
the context may vary from problem to problem and that questions regarding the statistical
and counterfactual implications of the diagrams can be answered mechanically by simple
path-tracing routines.9 Notably, a model like that shown in Fig. 2(c) allows for the existence
of millions of unobserved subprocesses that make up the functions f

T
, f

M
, and f

Y
; these do

not alter questions concerning the mediating role of M .
Since every structural equation model can be translated into an equivalent counterfactual

(or potential outcome) model (Pearl, 2009b, Def. 7.1.5) we can give the mediation model of
Eq. (3) a counterfactual interpretation as follows. Define the counterfactual variables Mt, Yt,
and Yt,m by:

Mt = f
M

(t, U) Yt = f
Y

(t,Mt, U) Yt,m = f
Y

(t,m, U) (4)

where U = (U
T
, U

M
, U

Y
) is the random variable representing all omitted factors. In other

words, the counterfactual variable Mt stands for the value that M would take, when we set
the subscripted variable T to a constant t, and allow the other variables in the equation
(i.e., U) to vary. Similarly, Yt,m stands for the value that Y would take, when we set the
subscripted variables T and M to constants, t and m, and allow U to vary. Accordingly, the
independence assumption U

T
⊥⊥(U

M
, U

Y
) depicted in Fig. 1(b) and Fig. 2(a) can be given a

counterfactual form (called treatment ignorability):

T⊥⊥(Mt, Yt′,m)(10) for all t and t′ (5)

while (U
T
, U

M
)⊥⊥U

Y
(depicted in Fig. 2(a)) conveys the independence:

(T,Mt)⊥⊥Yt′,m for all t and t′ (6)

9Readers who wish to read the statistical dependencies that a given context entails are advised to do
so through the tool of d-separation (gently introduced in Appendix A) but this is not absolutely necessary,
since d-separation and other graph-based techniques are mechanized on several available software programs
(e.g., Kyono, 2010; Textor et al., 2011).

10Assumption U
T
⊥⊥U

M
is in fact stronger than T⊥⊥Mt and implies T⊥⊥(Mt1 ,Mt2 , . . . ,Mtn) where

{t1, t2, . . . , tn} are the values of T (Pearl, 2009b, p. 101). To keep the notation simple, we will use a
single generic subscript (e.g., t) to convey joint counterfactual independencies.
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This translation from independence of omitted factors into independence of counterfactuals
reflects the fact that the statistical variations of Yt,m are caused solely by variations in U

Y
,

since t and m are constants and, similarly, variations of Mt are caused solely by those of U
M

.
Since the functions f

T
, f

M
, and f

Y
are unknown to investigators, mediation analysis

commences by first defining total, direct, and indirect effects in terms of those functions
and, then, asking whether they can be expressed in terms of the available data, which we
assume are given in the form of random samples (t,m, y) drawn from the joint probability
distribution P (t,m, y). Whenever such a translation is feasible, we say that the respective
effect is identifiable.

2.3 Natural direct and indirect effects

Using the structural model of Eq. (3), four types of effects can be defined for the transition
from T = 0 to T = 1:11

(a) Total Effect –

TE = E{f
Y

[1, f
M

(1, u
M

), u
Y

]− f
Y

[0, f
M

(0, u
M

), u
Y

]}
= E[Y1 − Y0]
= E[Y |do(T = 1)]− E[Y |do(T = 0)]. (7)

TE measures the expected increase in the outcome Y as the treatment changes from T = 0
to T = 1, while the mediator is allowed to track the change in T as dictated by the function
f
M

.

(b) Controlled Direct Effect –

CDE(m) = E{f
Y

[1,M = m,u
Y

]− f
Y

[0,M = m,u
Y

]}
= E[Y1,m − Y0,m]

= E[Y |do(T = 1,M = m)]− E[Y |do(T = 0,M = m)]. (8)

CDE measures the expected increase in the outcome Y as the treatment changes from T = 0
to T = 1, while the mediator is set to a pre-specified level M = m uniformly over the entire
population.

(c) Natural Direct Effect –

NDE = E{f
Y

[1, f
M

(0, u
M

), u
T
]− f

Y
[0, f

M
(0, u

M
), u

T
]}

= E[Y1,M0 − Y0,M0 ]. (9)

11Generalizations to arbitrary reference point, say from T = t to T = t′, are straightforward. These
definitions apply at the population levels; the unit-level effects are given by the expressions under the
expectation. All expectations are taken over the factors U

M
and U

Y
.
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NDE measures the expected increase in Y as the treatment changes from T = 0 to T =
1, while setting the mediator variable to whatever value it would have attained (for each
individual) prior to the change, i.e., under T = 0.

(d) Natural Indirect Effect –

NIE = E{f
Y

[0, f
M

(1, u
M

), u
Y

]− f
Y

[0, f
M

(0, u
M

), u
Y

]}
= E[Y0,M1 − Y0,M0 ]. (10)

NIE measures the expected increase in Y when the treatment is held constant, at T = 0,
and M changes to whatever value it would have attained (for each individual) under T = 1.

Semantically, NDE measures the portion of the total effect that would be transmitted to
Y absent M ’s ability to respond to T , while NIE measures the portion transmitted absent
Y ’s ability to respond to changes in T , except those transmitted through M . The difference
TE − NDE quantifies the extent to which the response of Y is owed to mediation, while
NIE quantifies the extent to which it is explained by mediation. These two components of
mediation, the necessary and the sufficient, coincide into one in models void of interactions
(e.g., linear), but differ substantially under moderation (see example, Section 4.2).

We remark that a controlled version of NIE does not exist because there is no way of
disabling the direct effect of T on Y by setting a variable to a constant. Note also that
the natural effects, NDE and NIE, are not accompanied by do-expressions, because these
effects are defined counterfactually and cannot be estimated from controlled experiments.
The choice of the appropriate effect type in policy making is discussed in Pearl (2001, 2011),
Robins and Richardson (2011), and VanderWeele (2009) and will be illustrated in Section
4. Whereas the controlled direct effect is of interest when policy options exert control over
values of variables (e.g., raising the level of a substance in patients’ blood to a pre-specified
concentration) the natural direct effect is of interest when policy options enhance or weaken
mechanisms or processes (e.g., freezing a substance at its current level of concentration (for
each patient), but preventing it from responding to a given stimulus).

This is an appropriate point to relate the definitions of natural effects to the standard
definitions of direct and indirect effects used in parametric structural equation. When we
apply the definitions above to the linear system of Eq. (1) we readily obtain the expected
results:

TE = β + αγ, NDE = CDE(m) = β, NIE = αγ (11)

A key conceptual difference between the causal and the traditional approaches is that,
in the former every effect is defined a priori, in a way that makes it applicable to any model,
including confounded, unidentified or nonlinear models. The statistical approach, on the
other hand, requires that the model satisfies certain restrictions before the definition (of
effects) obtains its legitimacy. This is somewhat paradoxical, for we must know what we
seek to estimate before imposing the appropriate restrictions on the model.

The equalities in (11), for example, are derived from the basic definitions of Eqs. (6–9)
and the linearity of Eq. (1); they are sustained therefore in all linear systems, even when we
do not make the assumption of no omitted variables (or ignorability). Likewise, the constancy
of the controlled direct effect in linear system, CDE(m) = α, is not an assumption, but a
consequence of how CDE(m) is defined, Eq. (8).
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In the classical approach, on the other hand, the assumption of no omitted variables
must precede all definitions (Judd and Kenny, 1981, 2010), because the classical vocabulary
was restricted to the statistical notion of controlling for M instead of the intended causal
notion of setting M to a constant, and the two coincide only under the no omitted variables
assumption.12 (See Bollen and Pearl (2013), for further discussion of this important observa-
tion which is often overlooked in the potential-outcome literature (e.g., Rubin, 2010; Sobel,
2008).)

Finally, we note that, in general, the total effect can be decomposed as

TE = NDE −NIEr (12)

where NIEr stands for the natural indirect effect under the reverse transition, from T = 1
to T = 0. This implies that NIE is identifiable whenever NDE and TE are identifiable. In
linear systems, where reversal of transitions amounts to negating the signs of their effects,
we have the standard additive formula, TE = NDE + NIE. Moreover, since each term in
Eq. (12) is based on an independent operational definition, this equality constitutes a formal
justification for the additive formula taken for granted in linear systems.13

2.4 The counterfactual derivation of natural effects

To make this paper self-contained, Appendix B provides a formal proof of the conditions
for direct effect identification, as it appeared in (Pearl, 2001). It starts with the counter-
factual definition of the natural direct effect, and then goes through three steps. First, it
seeks a set of covariates W that reduces nested counterfactuals to simple counterfactuals.
Second, it reduces all counterfactuals to do-expressions, that is, expressions that are es-
timable from controlled randomized experiments. Finally it poses conditions for identifying
the do-expressions from observational studies. These three steps are echoed in the informal
conditions articulated in the next section. (See also Shpitser and VanderWeele (2011) and
especially Shpitser (2013) for refinements and elaborations.)

3 Interpretable Conditions for Identification

3.1 Preliminary notation and nomenclature

In this section, I will provide precise identification conditions based solely on the notion
of unconfoundedness. I will say that the relationship between T and Y is unconfounded if

12It is interesting to note that (10) remains valid under temporal reversal of the T →M relationship, i.e.,
α = 0 and T = δM +UT . In such a model, definitions (7–10) give the correct result: TE = NDE = CDE =
β,NIE = 0. The statistical definition, on the other hand, with its vocabulary confined to regression slopes,
would not recognize NIE as zero, because the regression slope of M on T is non-zero.

13Some authors (e.g., VanderWeele 2009; Vansteelandt 2012, Ch. 4.4), take NIE = TE − NDE as
the definition of the natural indirect effect, which ensures additivity a priori, but presents a problem of
interpretation; the resulting indirect effect, aside from being redundant, does not represent the same direction
of change, from T = 0 to T = 1, as do the total and direct effects. This makes it hard to compare the effect
attributed to mediating paths with that attributed to unmediated paths, under the same conditions of
change.
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the factors that influence T are independent of all factors that influence Y when T is held
fixed. Given a set W of covariates, I say that W renders a relationship unconfounded if the
relationship is unconfounded in every stratum W = w of W . Finally, I use the expression
W deconfounds a relationship as a shorthand substitute for W renders a relationship un-
confounded. This definition also provides a model-based interpretation of conditional strong
ignorability, written T⊥⊥(Y1, Y0)|W , and can be given a simple graphical representation called
backdoor (Appendix A), as will be illustrated in Section 3.2. Deconfounding occurs, for ex-
ample, if W consists of all common causes of T and Y , but may hold for other types of
covariates as well (known as sufficient or admissible (Appendix A)), which neutralize the ef-
fect of common causes. Figuratively, such deconfounders can be recognized by intercepting,
or blocking all spurious (noncausal) paths between T and Y , namely, all paths that end with
an arrow towards T (also called backdoor paths).14

In Fig. 1(a), for example, the relationship between M and Y is confounded by T , the
common cause of M and Y . T is also a deconfounder of this relationship because T blocks
the (one and only) backdoor path between M and Y . In Fig. 1(b), on the other hand,
the relationship between M and Y is confounded by T as well as by latent common causes
represented by the dashed arc between them. In fact, no measured set W exists that de-
confounds this relationships, because the latent backdoor path cannot be blocked by any
measured variable. However, if U

M
were to be observed, then the set W = {T, U

M
} (simi-

larly W = {T, U
Y
}) would deconfound the M → Y relationship, by blocking all backdoor

paths from M to Y . Note that U
M

in this case is a deconfounder though it is not a common
cause of M and Y .

We will focus our discussion on the natural direct effect, NDE, though all conditions
are applicable to the indirect effect as well, by virtue of the pseudo-additive decomposition
of the total effect (Eq. (12)). We will assume that readers are familiar with the notion of
identifiability as applied to causal or counterfactual relations (see, for example, Appendix
A). In particular, I will say that the W -specific causal effect of T on Y is identifiable, if
the effect is consistently estimable from non-experimental data for every stratum level w.
In other words, the causal effect P (y|do(t), w) can be expressed in terms of conditional
probabilities of observed variables.15 It is important to note that the problem of deciding
whether such reduction exists has been fully solved using the do-calculus (Shpitser and
Pearl, 2008; Tian and Shpitser, 2010). Consequently, effective algorithms are available that,
given any causal diagram, can reduce any do-expression (in particular, TE,CDE(m) and
P (y|do(t1, t2, . . . , tk, ), w1, w2, . . . , wk))) to regression expressions, whenever such reduction
exists. We will therefore regard the identifiability of do-expressions as a solved problem, and
will focus our attention on the question of whether NDE and NIE can be thus expressed,

14By path I mean any sequence of adjacent edges, regardless of directionality. By blocking, I mean discon-
necting the path in the d-separation sense (see Appendix A).

15The expression P (y|do(t), w) stands for the conditional probability Pt(Y = y|T = t,W = w) obtained
in a controlled experiment in which T is randomized and in which only units for which W = w are recorded.
TE and CDE(m) are do-expressions and can, therefore be estimated from experimental data; not so the
natural effects. NDE and NIE can be estimated from experimental data only when additional no confouding
conditions hold (see footnote 1 1) to be explicated below. The do-calculus (Pearl, 1995; Pearl, 2009b, pp.
85–88) is a method of systematically reducing do-expressions to ordinary conditional probabilities, but will
not be needed for this paper.
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and how.

3.2 Sufficient conditions for identifying natural effects

The following are two sets of assumptions or conditions, marked A and B, that are sufficient
for identifying both direct and indirect natural effects. Each condition is communicated by a
verbal description followed by its formal expression. Each set of conditions is followed by its
graphical version, marked AG and BG, with all graphs representing non-parametric structural
equation models,16 as in Fig. 2. Assumption set B is the stronger of the two, and represents
assumptions commonly invoked in the mediation literature (Coffman and Zhong, 2012; Imai
et al., 2010b, 2011a; Shpitser and VanderWeele, 2011; VanderWeele and Vansteelandt, 2009;
Vansteelandt and Lange, 2012; Vansteelandt et al., 2012). Assumption set A is weaker, and
echoes more faithfully the derivation in Appendix B. For completeness, we also present a third
assumption set, C, representing a compromise between A and B, which and is based solely
on the presence of deconfounding covariates, thus echoing more closely the way assumptions
are articulated in the literature (e.g., Valeri and VanderWeele, 2013). Following a listing
of the three assumption sets, Theorem 1 then presents the general formula for the natural
direct effect (NDE) that results from assumption set A. The corresponding formula that
results from assumption set B is given in Corollary 2. The corresponding formulas for the
NIE follow from (Eq. (12)), and is explicated in Eq. (14b).

Assumption set A

There exists a set W of measured covariates such that:

A-1 No member of W is affected by treatment.

A-2 W deconfounds the mediator-outcome relationship (holding T constant).

[Mt⊥⊥Yt′,m | W ] (alternatively, [U
M
⊥⊥U

Y
|W ])

A-3 The W -specific effect of the treatment on the mediator is identifiable by some means.

[P (m | do(t), w) is identifiable]

A-4 The W -specific joint effect of {treatment+mediator} on the outcome is identifiable by
some means.

[P (y | do(t,m), w) is identifiable]

16The distinction between graphs representing structural equations vs. interventional models is discussed
at length in Pearl (2009b, pp. 22–38) and is further elaborated in Robins and Richardson (2011). The latter
are also known as causal Bayesian networks; they represent experimental findings (i.e., do-expressions) but
do not sanction counterfactual inferences.
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Graphical version of assumption set A

There exists a set W of measured covariates such that:

AG-1 No member of W is a descendant of T .

AG-2 W blocks all backdoor paths from M to Y not traversing T .17

AG-3 The W -specific effect of T on M is identifiable (possibly using auxiliary variables).

AG-4 The W -specific joint effect of {T,M} on Y is identifiable (possibly using auxiliary
variables).

Illustration of AG

W3

W1W2

T Y

W3

W1W2

(b)

Homework
M

Socio−Economic Reading Skill

ScoreProgram

Intelligence

(a)

T Y

M

Figure 3: (a) A mediation model with three independent confounders, permitting the de-
composition of Eq. (18). (b) A model with dependent deconfounders, satisfying conditions
A and B. M = Mediator; T = Treatment; W = Covariates; Y = Outcome.

Figure 3(a) provides an example where all AG conditions are satisfied by W = W1. First,
W1 satisfies AG-1 and AG-2 by virtue of being a non-descendant of T and blocking the path
M ← W1 → Y , the only backdoor path from M to Y that does not traverse T → M or
T → Y , or that is not already blocked (by {∅}). Next, AG-3 is satisfied because the set
(W1,W2) deconfounds the T →M relationship. This renders the W1-specific causal effect of
T onM identifiable by adjusting forW2, and yields P (m|do(t), w1) =

∑
w2
P (m|t, w2, w1)P (w2).

The same applies to AG-4, using adjustment for W3 to identify the W1-specific effect of
{T,M} on Y , yielding P (y|do(t,m), w1) =

∑
w3
P (y|t,m,w3, w1)P (w3).

Assumption set B (sequential ignorability, Imai et al. (2010b)

There exists a set W of measured covariates such that:

17This provision reflects the constancy of T in assumption A-2 as depicted in Fig. 2(b). Both UM and UY

are defined relative to the condition where T is held constant, a condition that precludes T from passing
information (or creating dependencies) between UM and YY .
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B-1 W and T deconfound the mediator-outcome relationship, keeping T fixed.

[Yt′,m⊥⊥Mt | T,W ]

B-2 W deconfounds the treatment-{mediator, outcome} relationship.

[T⊥⊥(Yt′,m,Mt) | W ]

Graphical version of assumption set B

There exists a set W of measured covariates such that:

BG-1 W and T block all T -avoiding backdoor paths from M to Y .

BG-2 W blocks all backdoor paths from T to M or to Y , and no member of W is a descendant
of T .

Illustration of BG

Figure 3(a) provides an example where allBG conditions are satisfied usingW = {W1,W2,W3}.
First, we examine all T -avoiding backdoor paths from M to Y (in particular, M ← W1 → Y )
and note that {W,T} = {W1,W2,W2, T} block those paths, thus satisfying BG-1. Next, com-
plying with BG-2, the set {W1,W2,W3} blocks the paths T ← W2 →M and T ← W3 ← Y ,
the only ones with arrows into T . Finally, none of W1,W2,W3 is a descendant of T , thus
satisfying BG-2.

Note that conditions A-3 and B-2 are automatically satisfied in T is randomized and A-4
is satisfied when both T and M are randomized, the same is not true of A-2 and B-1; these
may not hold even when we randomize both T and M (see footnote 1).

If we limit the identification conditions to only those that invoke adjustment for covariates
(giving up the options of using more elaborate identification methods, as in A-3 and A-4)
assumption set A can be articulated more concisely thus:

Assumption set C (piecemeal deconfounding)

There exists three sets of measured covariates W = {W1,W2,W3} such that:

C-1 No member of W1 is affected by the treatment.

C-2 W1 deconfounds the M →Y relationship (holding T constant)

C-3 {W2,W1} deconfounds the T →M relationship

C-4 {W3,W1} deconfounds the {T,M} → Y relationship

Note that C-4 is sufficient for identifying the controlled direct effect (Eq. 8), C-3 and
C-4 are sufficient for identifying the total effect (Eq. 7) and all four conditions are needed
for the natural effects.
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Theorem 1 (Pearl, 2001)
When conditions A-1 through A-2 hold, the natural direct effect is identified and is given by18

NDE =
∑
m

∑
w

[E(Y |do(T = 1,M = m)),W = w)− E(Y |do(T = 0,M = m),W = w)]

P (M = m|do(T = 0),W = w)P (W = w). (13)

Corollary 1 If conditions A-1 and A-2 are satisfied by a set W that also deconfounds the
relationships in A-3 and A-4, then the do-expressions in (13) are reducible to conditional
expectations, and the natural direct and indirect effects become:19

NDE =
∑
m

∑
w

[E(Y |T = 1,M = m,W = w)− E(Y |T = 0,M = m,W = w)]

P (M = m|T = 0,W = w)P (W = w). (14a)

NIE =
∑
m

∑
w

[P (M = m|T = 1,W = w)− P (M = m|T = 0,W = w)]

E(Y |T = 0,M = m,W = w)P (W = w). (14b)

Equations (14a) and (14b) are the averages (over w) of the mediation formula (i.e., Eqs.
(17) and (27) in Pearl, 2001, see footnote 20 below), and were called adjustment formula in
Shpitser and VanderWeele (2011).

Corollary 2 If conditions B-1 and B-2 are satisfied by a set W , then the natural direct and
indirect effects are identified and are given by Eqs. (14a) and (14b).

Corollary 2 follows from Theorem 1 by noting that, in structural models, any set W that
satisfies B-1 and B-2 also deconfounds the relationships in A-3 and A-4 (Shpitser and Van-
derWeele, 2011).

Corollary 3 If conditions A-1 and A-2 are satisfied with W = {∅} and two other sets of
covariates exist, W2 and W3, such that W2 deconfounds the T → M relationship and W3

deconfounds the {TM} → Y relationship, then, regardless of possible dependencies between
W2 and W3, then the natural direct effect is identified and is given by

NDE =
∑
m

∑
w3

[E(Y |T = 1,M = m,W3 = w3)− E(Y |T = 0,M = m,W3 = w3)]P (W3 = w3)∑
w2

P (M = m|T = 0,W = w2)P (W = w2). (15)

18Summations should be replaced by integration when applied to continuous variables, as in (Imai et al.,
2010b). Note that Eq. 13 is still valid if only A-1 and A-2 are satisfied by W ; A-3 and A-4 are needed solely
for identifying the do-expressions in the equation.

19Equations (14a–b) are identical to the ones derived by Imai et al. (2010b) using sequential ignorability
(i.e., assumptions B-1 and B-2) and subsequently re-derived by a number of other authors (Lindquist, 2012;
Wang and Sobel, 2013).



INTERPRETATION AND IDENTIFICATION OF CAUSAL MEDIATION 18

Remarks

Assumption set A differs from Assumption set B on two main provisions. First, A-3 and
A-4 permit the identification of these causal effects by all methods, while B-2 and B-3 insist
that identification be accomplished by adjustment. Second, whereas A-3 and A-4 allow for
the invocation of any set of covariates in order to identify the W -specific effect in question,
B requires that the same set W of covariates deconfound both the mediator-outcome and
treatment-{mediator, outcome} relationships.

It should be noted that, whereas this paper concerns identification in observational stud-
ies, conditions A-3 and A-4 open the door to experimental studies, when such are feasible.
For example, one may venture to estimate the causal effect of T on M by randomizing T or
by using instrumental variables or auxiliary intermediate variables. Only the latter will be
considered here. The restrictions on all such designs are the same, namely, that they lead
to the identification of W -specific effects, where W is a set of attributes satisfying A-1 and
A-2. Assumption A-2, on the other hand, cannot be satisfied by any experimental design
since it involves cross-world independence, from t-worlds to t′-worlds. Identifiability requires
that such independencies hold naturally in the population under study, not in a population
crafted by design (see footnote 1).

Appendix C explains why we must insist that W be unaffected by the treatment. This
requirement is implicit in B-2 but not in A-2; it must therefore be stated explicitly in A-1
(and BG-2) for, otherwise, A-3 and A-4 will not be sufficient for identifying NDE, as will
be shown below.

4 Illustrations

T Y T Y

M

(b)(a)

M

W

Figure 4: (a) The basic unconfounded mediation model, (same as Fig. 1(b), with omitted
factors not shown). (b) A confounded mediation model with covariate set W that decon-
founds both the T → M,T → Y and the M → Y relationships. M = Mediator; T =
Treatment; W = Covariate; Y = Outcome.

To illustrate and compare the conditions articulated in the previous section we start with
simple models that satisfy the strong conditions of B (and BG), and then examine how the
process of identification can benefit from the relaxed conditions given in A (and AG).
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4.1 How the natural effects are identified

Figure 4(a) illustrates the classical mediation model, with no confounding; all omitted factors
(not shown in the diagram) affecting T,M, and Y are assumed to be independent, so both
the mediator process, T → M , and the outcome process {T,M} → Y , are unconfounded.
In this model, the null set W = {∅} satisfies the conditions in B (as well as in A), and Eqs.
(13) and (14a) are reduced to:

NDE =
∑
m

[E(Y | T = 1,M = m)− E(Y | T = 0,M = m)]P (M = m | T = 0). (16)

Likewise, the natural indirect effect (Eq. (14a)) becomes(20)

NIE =
∑
m

E(Y | T = 0,M = m)[P (M = m | T = 1)− P (M = m | T = 0)] (17)

The intuition behind Eq. (16) is simple; the natural direct effect is the weighted average of
the controlled direct effect CDE(m), shown in the square brackets, using the no-treatment
distribution P (M = m|T = 0) as a weighting function. Equation (16) can be estimated by
a two-step regression, as will be shown below. The intuition behind Eq. (17) is somewhat
different and unveils a non-parametric version of the product-of-coefficients estimator (Sec-
tion 2.1). The term E(Y |T = 0,M = m) plays the role of γ in Fig. 1(a) for it describes how
Y responds to M for fixed treatment condition (T = 0). The term in the square brackets
plays the role of α, for it captures the impact of the transition from T = 0 to T = 1 on
the probability of M . We see that what was a simple product operation in linear systems
is replaced by a composition operator that involves summation over all values of M , and
thus allows for heterogeneous populations where both M and its effect on Y may vary from
individual to individual.

Figure 4(b) illustrates a confounded mediation model in which a variable, W , (or a set
of variables) confounds all three relationships in the model. Because W is not affected by T
and is observed, adjusting for W renders all relationships unconfounded and the conditions
of B (as well as A) are satisfied. Accordingly, the natural direct effect estimand is given by
Eq. (14b), which invokes the mediation formula (16) in each stratum of w of W , averaged
over w.

4.2 Numerical example

To anchor these mediation formulas in a concrete example, we return to the encouragement-
design example of Section 1 and assume that T = 1 stands for participation in an enhanced
training program, Y = 1 for passing the exam, and M = 1 for a student spending more than
three hours per week on homework. Assume further that the data described in Table 1 were
obtained in a randomized trial with no mediator-to-outcome confounding (Fig. 4(a)). The
data shows that training tends to increase both the time spent on homework and the rate

20Equations (16) and (17) were called the mediation formula in (Pearl 2009b, p. 132; Pearl 2009a, 2012a).
Since the NDE and NIE are connected to each other via Eq. (12), all our discussions concerning the
identification of NDE should apply to NIE as well (Pearl, 2009b, p. 132; Pearl, 2009a, 2012a).
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Treatment Homework Success rate
T M E(Y |T = t,M = m)
1 1 0.80
1 0 0.40
0 1 0.30
0 0 0.20

Treatment Homework
T E(M |T = t)
0 0.40
1 0.75

Table 1

of success on the exam. Moreover, training and time spent on homework together are more
likely to produce success than each factor alone.

Our research question asks for the extent to which students’ homework contributes to
their increased success rates. The policy implications of such questions lie in evaluating
policy options that either curtail or enhance homework efforts, for example by counting
homework effort in the final grade or by providing students with adequate work environments
at home. An extreme explanation of the data, with significant impact on educational policy,
might argue that the program does not contribute substantively to students’ success, save
for encouraging students to spend more time on homework, an encouragement which could
be obtained through less expensive means. Opposing this theory we may have teachers who
argue that the program’s success is substantive, achieved mainly due to the unique features of
the curriculum covered, while the increase in homework efforts, although catalytical, cannot
alone account for the success observed.

Substituting these data into Eqs. (16)-(17) gives:

NDE = (0.40− 0.20)(1− 0.40) + (0.80− 0.30)0.40 = 0.32,

NIE = (0.75− 0.40)(0.30− 0.20) = 0.035,

TE = 0.80× 0.75 + 0.40× 0.25− (0.30× 0.40 + 0.20× 0.10) = 0.46,

NIE/TE = 0.07, NDE/TE = 0.696, 1−NDE/TE = 0.304.

We conclude that the program as a whole has increased the success rate by 46% and that a
significant portion, 30.4%, of this increase is due to the capacity of the program to stimulate
improved homework effort. At the same time, only 7% of the increase can be explained by
stimulated homework alone without the benefit of the program itself.

Let us now illustrate the use of Eq. (14a) in cases marred by confounding. Assume
that W stands for gender which, as shown in Fig. 4(b), confounds all three relations in the
models. Eq. (14a) instructs us to conduct the analysis separately on males (W = 1) and
females (W = 0) and average the results according to the gender mix in the population. For
example, if the data in Table 1 represent the male population, and a similar yet different
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table represents females, we take our estimate NDE(W = 1) = 0.32 and the corresponding
NDE(W = 0) from the female table and form the overall NDE by taking the weighted
average of the two.

The purpose of this example is to demonstrate how the linear barriers which restricted
classical mediation analysis can be broken by nonparametric formulas, Eqs. (16) and (17),
that have emerged from the structural-counterfactual analysis. It shows how these mediation
formulas are applicable to highly interacting variables, both continuous and categorical,
without making any assumptions about the error distribution or about the functions which
tie the variables together. Imai et al. (2010b) further analyzed the asymptotic variance of
the estimands in Eqs. (16) and (17), and have developed powerful software for sensitivity
analysis.

In the next section, we will deal with more intricate patterns of confounders, both mea-
sured and unmeasured, and show how the conditions AG-1 to AG-4 can guide us towards
identification in the presence of those confounders.

4.3 The benefits of independent adjustments

A benefit of the weaker conditions expressed in A is that A-3 and A-4 allow for covariates
outside W to assist in the identification. This results in a greater flexibility in allocating
covariates for the various adjustments invoked in expression (14a). It also simplifies the
process of justifying the assumptions supported by these adjustments, and leads, in turns, to
a simpler overall estimand. Specifically, in choosing covariates to deconfound the {T,M} →
Y relationship one is free to ignore those chosen to deconfound the T →M relationship.

The model in Fig. 3(a) demonstrates this flexibility. Although the set W = {W1,W2,W3}
satisfies all the conditions in A and B, assumption set A permits us to handle each of the
three covariates individually, so as to simplify the resulting estimand. Since W1 alone renders
the mediator-to-outcome relationship unconfounded (for fixed T ), we are at liberty to choose
W1 to satisfy conditions A-1 and A-2. In the next step, we seek a set of covariates that,
together with W1, would deconfound the T → M relationship and, since W2 alone meets
this requirement, we can remove W3 from the factor P (M = m|T = 0,W = w) = P (M =
m|T = 0,W1 = w1,W2 = w2,W3 = w3) of Eq. (14a). Next, we seek a set of covariates that,
together with W1, would deconfound the {T,M} → Y relationship and, realizing that W3

meets this requirement, we can remove W2 from the factors E(Y |T = 1,M = m,W = w)
and E(Y |T = 0,M = m,W = w) of Eq. (14a). The resulting estimand for NDE becomes:

NDE =
∑
m

∑
w2,w3,w1

P (W2 = w2,W3 = w3,W1 = w1)P (M = m|T = 0,W2 = w2,W1 = w1)

× [E(Y | T = 1,M = m,W1 = w,W3 = w3)

− E(Y | T = 0,M = m,W1 = w,W3 = w3)], (18)

with only one of W3 and W2 appearing in each of the last two factors.
Note that covariates need not be pre-treatment to ensure identification; B and A require

merely that W be causally unaffected by the treatment. Indeed, W3 in Fig. 3 may well be a
post-treatment variable, the control of which is essential for identifying NDE.
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Figure 3(b) associates a research context to the model of Fig. 4(a) using our running ex-
ample of student-encouragement design. Here we assume that W1 = Reading Skill is the sole
confounder of the Homework → Score relation. Likewise, we assume that Socio-Economic
background confounds Program (T ) and Homework (M) ostensibly because students from
high socio-economic backgrounds are more likely to have facilities which are conducive to
doing homework, and they (or their parents) are more likely to seek out the educational
programs offered (T ). Finally, we associate W3 with students’ natural intelligence, argu-
ing that this is a significant factor in enticing students to enroll in the program (T ) and
simultaneously enables students to learn faster and score higher on exams.

As was mentioned in Section 2, as soon as one associates a diagram to a research context,
issues arise of possible unforeseen associations among variables that may threaten identifi-
cation and complicate estimation. In our example, mutual associations may naturally be
suspected among Language Skills (W1), Socio-Economic Background (W2) and Intelligence
(W3), with no clear origin or explanation. Such associations are depicted by the dashed arcs
in Fig. 3(b), and the question arises: Do these present a problem to identification?21 Such
questions can be readily answered by assumption set A, using AG-1 to AG-4, though it is a
bit hard to imagine how they can be handled by assumption set B.

Guided by AG, note that arguments similar to those used in deciding the identification
of NDE in Figure 3a (see Section 3.2, Illustration of AG subsection, above) can still secure
identification for Figure 3(b), albeit through different adjustments. Specifically,

(i) {W2,W1} satisfies AG-2 by virtue of blocking all backdoor paths going from M to
Y , M ← W1 → Y , M ← W1 ↔ W3 → Y , M ← W2 ↔ W1 ← W3 → Y , and
M ← W2 ← W3 → Y .

(ii) {W2,W1} blocks all backdoor paths from T to M (explicitly: T ← W2 → M,T ←
W2 ↔ W1 →M,T ← W3 ↔ W1 →M , etc.)

(iii) {W2,W3,W1} blocks all backdoor paths from {T,M} to Y (explicitly: T ← W3 →
Y, T ← W2 ↔ W3 → Y, T ← W3 ↔ W1 → Y, T ← W2 ↔ W2 ↔ W3 → Y, . . . )

We are thus led to the conclusion that the added associations between W1,W2 and W3 do
not interfere with the identification of NDE.

We are also led to appreciate the guidance provided by graphical procedures, without
which decisions concerning identification could easily become unmanageable. Fortunately,
these procedures are easily mechanizable by present day software since they are driven en-
tirely by the graph structure. Once a researcher hypothesizes the model structure, a simple
algorithm can go through the graphical tests above and, if identifiability is established, de-
liver the proper mediation formula, or estimate it from the data.

The next section will discuss examples where the restrictiveness of assumption set B may
hinder identification, and where a careful examination of the AG criteria would be needed
to produce unbiased estimates of NDE.

21This question was asked by one of the reviewers of this paper. I assume it is a question faced by many
researchers.
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4.4 Comparing identification power

In comparing the identification power of assumptions A versus B, we note that A draws its
increased power from two sources:

(a) Divide and conquer – Covariates may be found capable of deconfounding the mediator
and outcome processes separately but not simultaneously

(b) Identification by mediating instruments – Intermediate covariates may be measured,
enabling one to identify causal effects through multi-step procedures, not through a
one-step adjustment, as required by B.

(a) Divide and conquer

To highlight the extra power of assumptions A, we examine the six models in Fig. 5. The

(d)
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(c)

T Y
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Figure 5: Showing six confounded models for comparing assumption sets A and B. The for-
mer is satisfied in all cases except (d); the latter is satisfied in (a) and (e) only. Explanations
are given in Table 2. M = Mediator; T = Treatment; W = Covariates; Y = Outcome.



INTERPRETATION AND IDENTIFICATION OF CAUSAL MEDIATION 24

results of this examination are detailed in Table 2, and can be summarized as follows:

(i) mediator process (ii) output process
Figure # T →M {T,M} → Y

(a) W2 or {W2,W3} W3 or {W2,W3}
(b) W2 only W3 or {W2,W3}
(c) W2 or {W2,W3} W3 only
(d) {W2,W3} not deconfoundable
(e) W2 or {W2,W3} W3 or {W2,W3}
(f) not deconfoundable if we choose W = W3 W3 or {W2,W3}

deconfoundable by W2 if we choose W = W1

Table 2: Listing the sets of covariates needed for deconfounding each of the two relationships
of interest: (i) T → M and (ii) {T,M} → Y . Assumption set B is satisfied in cases (a)
and (e) only, where the set {W2,W3} deconfounds both relationships. Assumption set A is
satisfied in all cases, except for (d).

Both A and B deem the NDE identifiable in models (a) and (e) and non-identifiable in
(d). However, assumption set A correctly identifies NDE in models (b), (c) and (f), while
B mistakes it to be non-identifiable in these models.

The reasoning behind these determinations can best be followed in Fig. 5(b), which clearly
demonstrates how the divide and conquer flexibility translates into increased identification
power. Here, there are no backdoor paths from M to Y , so AG-2 is satisfied by the null set
W = {∅}. Still, to deconfound the T → M relationship, AG-3 requires an adjustment for
W2. Likewise, to deconfound the {T,M} → Y relationship AG-4 requires an adjustment for
W3. If we make the two adjustments separately, both relationships can be deconfounded and,
by Corollary 3, NDE reduces to the estimand of Eq. (15). However, if we were to adjust
for W2 and W3 simultaneously, as required by assumption set B, the T → M relationship
would become confounded along the path22 T ←◦→ W3 ↔ W2 ←◦→ M . In other words,
the full set of AG (or BG) cannot be satisfied by the same set of W elements. As a result,
assumption set B would deem the NDE to be unidentifiable; there is no covariates set that
simultaneously satisfies BG-1 and BG-2.

We note that treatment assignment in this model is not random under any one of the
two needed adjustments; T remains confounded (or nonignorable) either with M or with
Y . It is for this reason that the term deconfounded is less ambiguous than random or as if
randomized.

Fig. 5(f) further illustrates why assumptions A-3 and A-4 insist on identifying w-specific
effects and, consequently, the extra precautions that this requirement imposes on choosing
W , even in cases where NDE is identified. If W = W1 is chosen to deconfound the M → Y
relationship, then NDE can be properly estimated (using W2 to deconfound T → M and
W3 to deconfound {T,M} → Y ). However, if W3 is chosen to deconfound the M → Y

22This follows from the fact that both W3 and W2 are colliders (i.e., receiving two incoming arrows) along
the path; each permits the flow of information when it is conditioned on, and stops the flow when not
conditioned on (see Appendix A).
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relationship, the T → M relationship is no longer deconfoundable, i.e., no set of measured
variables is available to block all the confounding paths from T to M . The conclusion is
two fold. First, any software which tells us if NDE is identifiable may need to search the
space of candidate sets W before a determination can be made; an independent control for
confounding in each of the three relationships, M → Y, T →M, and T → Y , is not sufficient
for identifying natural effects. Second, if we venture to skip over this search and estimate
the NDE by adjusting for all measured variables, the result is likely to become biased; Fig.
5(b), (c), and (f) exemplify this danger.

(b) Identification by mediating instruments

Figure 6 displays another model for which assumption set A permits the identification of
the natural direct effect, while B does not. NDE achieves its identifiability through aux-
iliary mediating variables (Z) but not through adjustment for pre-treatment covariates, as
demanded by B.

In this model, the null set W = {∅} satisfies conditions B-1 but not condition B-2;
there is no set of covariates that would enable us to deconfound the treatment-mediator
relationship. Referring to our encouragement-design example, such a model acknowledges
the existence of unmeasured factors that affect both student choice to enroll in the program
(T = 1) and student ability to devote time for homework (M = 1). The intermediate
variable, Z, that stands between T and M may represent, for example, students’ perception
of the importance of homework to their progress, which can be monitored by auxiliary means
(e.g., a questionnaire) at some intermediate stage of the study. It can be shown that the
availability of such intermediate measurements can make up for the unobservability of all
factors that confound T and M (Morgan and Winship, 2007, Ch. 3; Pearl, 2000a, Ch. 3).

Indeed, condition A-3 requires only that we identify the effect of T on M by some means,
not necessarily by rendering T random or unconfounded (or ignorable). The presence of
the observed variable Z permits us to identify this causal effect using an estimator called
front-door (Pearl, 1995; Pearl, 2009b, pp. 81–85). The resultant NDE estimand will be:

T Y

Z

M

Figure 6: Measuring Z permits the identification of the effect of T on M through the front-
door procedure, Eq. (20). Z satisfies the front-door condition since it intercepts all paths
from T to M , and receives no other arrow except for T → Z. M = Mediator; T = Treatment;
Y = Outcome; Z = Covariate.

NDE =
∑
m

[E(Y | T = 1,M = m)− E(Y | T = 0,M = m)]P (M = m | do(T = 0)) (19)
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where P (M = m | do(T = 0)) is given by:∑
z

P (Z = z | T = 0)
∑
t′=0,1

P (M = m | Z = z, T = t′)P (T = t′). (20)

Numerical examples for the computation of (20) are given in Pearl (2009b, pp. 83–84) and
Morgan and Winship (2007). Application of the front-door estimator to problems in eco-
nomics and social science are described in Chalak and White (2011) and in Knight and
Winship (2013). The asymptotic efficiency of the front-door estimator (20) is analyzed in
(Ramsahai, 2012).

T Y

M

W

Z

Figure 7: The natural direct effect is identified by adjusting for W and by using Z as auxiliary
variable to identify P (y | do(t,m), w) as required by A-4. M = Mediator; T = Treatment;
W = Covariate; Y = Outcome; Z = Covariate.

Figure 7 demonstrates the use of a mediating instrument, Z, situated on the causal
pathway between T and Y . In this model, conditioning on W deconfounds both the M →
Y and T → M relationships but confounds the T → Y relationship (see Appendix A).
Fortunately, the ability to observe Z renders the W -specific joint effect of {T,M} on Y
identifiable (using the front-door estimand) and permits us to satisfy A-4. This example
demonstrates the importance of requiring A-4 as a separate assumption and not insisting that
it be satisfied by the same covariates W that satisfy A2; had Z not been observed, conditions
A-1 to A-3 would have been satisfied, but not A-4, rendering NDE non-identifiable.

T Y

Z

M

Figure 8: The natural direct effect is not identifiable even though all causal effects are
identifiable. Assumption A-2 requires unconfoundedness of M → Y in every stratum of the
(unobserved) confounder W , which is a stronger requirement than effect identification. M
= Mediator; T = Treatment; Y = Outcome; Z = Covariate.

Figure 8 tempts us to apply the front-door estimator to the M → Y relationship, which
is confounded by unobserved common causes of M and Y (represented by the dashed arc).
Unfortunately, although the causal effect of {T,M} on Y , as well as the controlled direct
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effect CDE(m) are both identifiable (through the front-door estimator), condition A-2 can-
not be satisfied; no covariate can be measured that deconfounds the M → Y relationship.
The front-door estimator provides a consistent estimate of the population causal effect,
P (Y = y|do(M = m)), while unconfoundedness, as defined in section 3.1, requires indepen-
dence of UM and UY , which measurement of Z cannot induce.

Figure 9 demonstrates the use of a covariate situated along the path from M to Y . In
this model, the mediator → outcome relationship is unconfounded (since X is a collider),
so, we are at liberty to choose W = {∅} to satisfy condition A-2. The treatment→ outcome
relationship is confounded, and requires an adjustment for X. The {T,M} → Y relationship,
however, cannot be deconfounded by any covariate; conditioning on X would confound the
M → Y relationship, while not conditioning on X would leave the T → Y relationship
confounded along the path T ← X ← L1 → Y (in violation of condition A-4). Here, the
presence of Z comes to our help, for it permits us to estimate P (y|do(t,m), x) using the
front-door estimator, as in Eqs. (19)–(20), thus rendering NDE identifiable.

YT

L
2

L
1

M

Z

X

Figure 9: The confounding created by adjusting for X can be removed using measurement
of Z, to identify the effect of (T,M) on Y . L = Latent Variables; M = Mediator; T =
Treatment; X = Covariate; Y = Outcome; Z = Covariate.

5 Coping with Treatment-dependent Confounders

Figure 8 is the first example we encountered in which the natural direct effect is non-
identifiable while the controlled direct effect is identifiable. Another such example is shown

T Y

W

M

Figure 10: The natural direct effect is not identifiable because Condition A-1 cannot be
satisfied – W is a descendant of T . M = Mediator; T = Treatment; W = Covariate; Y =
Outcome.
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in Fig. 10 (see Appendix B). Here, W can serve to deconfound both the M → Y and the
T → M relationships, but alas, W is a descendant of T , so it violates condition A-1 and
renders NDE non-identifiable. The controlled direct effect, on the other hand, is easily
identifiable using the truncated product formula (see Appendix C). Figure 10 unveils a gen-
eral pattern that prevents identification of natural effects in any nonparametric model (Avin
et al., 2005; Robins, 2003): Whenever a variable exists, be it measured or unmeasured, that
is a descendant of T and an ancestor of both M and Y (W in our examples), NDE is not
identifiable.

This restriction however does not apply to linear structural models, where parameter
identification is all that is needed for the identification of all effects, even when a confounder
W of M → Y is affected by the treatment. The reason is that, with the values of all param-
eters given, the model equations becomes completely specified, from which we can derive all
counterfactuals, including those invoked in the definition of natural effect (Eqs. 9–10). The
same applies to other parametric structural models, such as linear models with interaction
terms. This increased identification power comes, of course, at the cost of increasing the
danger of misspecification, because our commitment to a specific functional form may be
incorrect.

To illustrate, consider the parametric version of Fig. 10:23

y = β1m+ β2t+ β3tm+ β4w + ut (21)

m = γ1t+ γ2w + um (22)

w = αt+ uy (23)

with β3tm representing an interaction term. The basic definition of the natural effects (Eqs.
(9)–(10)) gives (for the transition from T = 0 to T = 1, treating M as the mediator):

NDE(M) = β2 + αβ4 (24)

NIE(M) = β1(γ1 + αγ2) (25)

TE = β2 + (γ1 + αγ2)(β3 + β1) + αβ4 (26)

TE −NDE(M) = (β1 + β3)(γ1 + αγ2) (27)

We see that, due to treatment-mediator interaction, β3tm, the portion of the effect for
which mediation is necessary (TE−NDE) can differ significantly from the portion for which
mediation is sufficient (NIE) (Pearl, 2012a). The fact that W is affected by the treatment
does not hinder the identification of these effects (as long as the structural parameters are
identifiable), though the choice of terms for each of those effects is not trivial, and needs
to be guided carefully by the formal, counterfactual definitions of NDE and NIE (Pearl,
2012b). Even in the simple model of Eqs. (21–23), with β3 the only interaction term, it is not
at all obvious that β3 should affect the necessary and sufficient components of mediation in

23Such models have been analyzed extensively in the literature, some using a purely statistical approach
(Jo, 2008; Kraemer et al., 2008; MacKinnon, 2008; Preacher et al., 2007) and some applying the Mediation
Formula of Eqs. (16) and (17) (Coffman and Zhong, 2012; Imai et al., 2010b; Muthén, 2011; Pearl, 2010a,
2012a; Valeri and VanderWeele, 2013; VanderWeele and Vansteelandt, 2009). However, the problem of
dealing with two interacting mediators (e.g., M and W in Fig. 10) has not received much attention.
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the manner shown in Eqs. (24–27). The task much more intricate in the presence of multiple
interacting mediators, each acting both as a mediator and a moderator.

For nonparametric models, Avin et al. (2005) derived a necessary and sufficient condition
for identifying (natural) path-specific effects in any graph structure with no unmeasured
confounders. For example, suppressing the T → W or T → M processes in Fig. 10 would
lead to identifiable effects, while suppressing the W → Y or M → Y processes will not.
Shpitser (2013) generalizes this result and gives a complete algorithm for path specific effects
with multiple treatments, multiple outcomes, and hidden variables.

Figure 10 can in fact be regarded as having two interacting mediators, M and W , and the
results of Avin et al. (2005) highlight a fundamental difference between the two. Whereas
effects mediated throughW are identifiable, those mediated throughM are not. For example,
the natural direct and indirect effects viewing W as the mediator can be obtained directly
from Eqs. (16) and (17), exchanging m with w, since the relationships T → W and (TW )→
Y are unconfounded. This gives

NDE(W ) =
∑
w

[E(Y | T = 1,W = w)− E(Y | T = 0,W = w)]P (W = w | T = 0)

NIE(W ) =
∑
w

E(Y | T = 0,W = w)[P (W = w | T = 1)− P (W = w | T = 0)]

in which M is not invoked, since it is regarded as part of the direct effect from T and Y .24

For comparison, the parametric version of Fig. (10) given in Eqs. (21)–(23) yields the
following effects when W is considered the mediator:

NDE(W ) = β2 + γ1β1 (28)

NIE(W ) = α(β4 + γ2β1) (29)

TE = β2 + (γ1 + αγ2)(β3 + β1) + αβ4 (30)

TE −NDE(W ) = α(γ2β3 + β4 + γ2β1 + γ1β3) (31)

Comparing Eqs. (28)–(31) to Eqs. (24)–(27) allows an investigator to assess the relative
contribution of each mediator, W and M , to the overall effect of T on Y .

Figure 11 depicts the parameterized model of Eqs. (21)–(23) and compares the subgraphs
carrying the effects (NIE) mediated by M and W respectively.

6 Conclusions

We presented a concise, general, and interpretable set of conditions for identifying natural
effects, and demonstrated by examples how they can be tested in a given model and how
they lead to improved identification power. In particular, the new conditions open the door
for identification methods which go beyond standard adjustment for covariates and leverage
auxiliary variables and multi-step procedures that operate in the presence of confounded
treatment and mediator relationships.

24Remarkably, if W were merely correlated with M , rather than causally affecting it, the effect mediated
by either M or W would not be identified, since no measured covariate can satisfy assumption A-1 and A-2.
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Figure 11: A parameterized version of Fig. 10, in which the heavy arrows represent (a) Paths
carrying the natural indirect effect (NIE) when M is considered as the mediator. (b) Same
with W considered as the mediator. M = Mediator; T = Treatment; W = Covariate; Y =
Outcome; α, β, γ = Structural Coefficients.

Applying these conditions to linear models with interaction terms, we showed how path-
specific effects can be estimated in models with multiple pathways and interacting mediators.

An important feature of the conditions formulated in this paper is their mechanizability.
Simple graphical algorithms exist (and are cited in the bibliography) which examine the
structure of the model, test whether the identification conditions are satisfied in the model
and, depending on how they are satisfied, produce an unbiased estimate of the desired
mediated effect. This feature relieves researchers from the task of interpreting and judging
the validity of each identifying assumption in isolation; it is the plausibility of the postulated
model structure (i.e., the diagram) that one needs to judge and defend. The structure itself
dictates both the choices by which the identification conditions can be satisfied, and the
estimation procedures appropriate for each choice.

Naturally, to apply these identification procedures to real-life data, one needs to be cer-
tain of the causal scenario behind the data and that the scientific context of that scenario
is faithfully depicted in the diagram. The question arises whether it is realistic to assume
that investigators would possess such certainties in real-life applications. Here we should re-
call that anchoring one’s analysis in specific causal scenarios does not imply a commitment
to the validity of those scenarios. It implies willingness to explore their ramifications, to
evoke critiques of one’s assumptions, and to understand which variants of each scenario are
critical for identification and for choosing the correct estimator. The alternative, of course,
is to sweep these uncertainties under the rug of no unmeasured confounders or sequential
ignorability. This paper replaces such sweeping assumptions with specific scientific contexts
(encoded graphically) which investigators can scrutinize for plausibility, submit to statisti-
cal tests,25and appeal to mechanical procedures for identification analysis. This departure
from ignorability-based approaches to mediation should provide researchers with a deeper
understanding of the nature of mediation and the tools available for its analysis.

25The testable implications of causal diagrams are discussed in Appendix A (see Bollen and Pearl, 2013;
Pearl, 2009b, pp. 140–144.
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Appendix A

Covariate Selection: d-separation and the backdoor criterion

Consider an observational study where we wish to find the effect of treatment (T ) on outcome
(Y ), and assume that the factors deemed relevant to the problem are structured as in Figure
12; some are affecting the outcome, some are affecting the treatment, and some are affecting

Z1

Z3

Z2

Y

T

W

W

W

1

2

3

Figure 12: Graphical model illustrating the backdoor criterion. Error terms are not shown
explicitly. T = Treatment; W = Covariates; Y = Outcome; Z = Covariates.

both treatment and response. Some of these factors may be unmeasurable, such as genetic
trait or lifestyle, while others are measurable, such as gender, age, and salary level. Our
problem is to select a subset of these factors for measurement and adjustment so that if we
compare treated vs. untreated subjects having the same values of the selected factors, we
get the correct treatment effect in that subpopulation of subjects. Such a set of factors is
called a sufficient set, admissible set, or a set appropriate for adjustment” (see Greenland
et al. 1999; Pearl 2000b, 2009a). In this article, I call such a set a deconfounder of the
T → Y relationship.

I now describe a criterion named backdoor (Pearl, 1993), which provides a graphical
method of selecting such a set of factors for adjustment. It is based on the simple idea
that, when we adjust for a set S of covariates, we should block, or disable all spurious paths
from T to Y and leave intact all causal paths between the two. To operationalize this idea,
we need the notion of d-separation (the ‘d’ stands for directional) which provides a formal
characterization of what it means to block a path and will also allow us to detect all the
testable implications that a given model entails.

Definition 1 (d-separation)
A set S of nodes is said to block a path p if either (1) p contains at least one arrow-emitting
node that is in S, or (2) p contains at least one collision node that is outside S and has no
descendant in S. If S blocks all paths from set T to set Y , it is said to d-separate T and Y,
and then, variables T and Y are independent given S, written T⊥⊥Y |S.26

26In other words, the conditional independence T⊥⊥Y |S can be shown to hold in every distribution that
the model can generate, regardless of the functional form of the equations in the model, and regardless of
the distribution of the omitted factors (Pearl and Verma, 1991). See Hayduk et al. (2003); Mulaik (2009);
Elwert (2013), and Pearl (2009b, p. 335) for gentle introductions to d-separation.
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The intuition behind d-separation can best be recognized if we regard paths in the graph as
conveyers of probabilistic information, with nodes acting as information switches. In causal
chains i → m → j and causal forks i ← m → j, the two extreme variables are marginally
dependent but become independent of each other (i.e., blocked) once we condition on (i.e.,
know the value of) the middle variable. Figuratively, conditioning on m appears to block the
flow of information along the path, since learning about i has no effect on the probability of
j, given m. Inverted forks i → m ← j, representing two causes having a common effect,
act the opposite way; if the two extreme variables are (marginally) independent, they will
become dependent (i.e., connected through unblocked path) once we condition on the middle
variable (i.e., the common effect) or any of its descendants. This special handling of collision
nodes (or colliders), reflects a general phenomenon known as Berkson’s paradox (Berkson,
1946), whereby observations on a common consequence of two independent causes render
those causes dependent. For example, the outcomes of two independent coins are rendered
dependent by the testimony that at least one of them is a tail.

To illustrate, the path Z1 → W1 → T in Fig. 12 is blocked by S = W1 and the path
Z1 → Z3 → T is blocked by S = Z3, since each of these nodes emits an arrow along its
corresponding path. Moreover, all other paths from Z1 to T (e.g., Z1 → Z3 → Y ← W3 ← T )
are blocked by S = {∅}, since Y is a collider. Consequently, the set S = {W1, Z3} d-separates
Z1 from T , and we can conclude that the conditional independence Z1⊥⊥T |{W1, Z3} will
be satisfied in any probability function that this model can generate, regardless of how we
parametrize the arrows.

Similarly, the path Z1 → Z3 ← Z2 is blocked by the null set {∅}, but it is not blocked
by S = {Y } since Y is a descendant of the collision node Z3. Consequently, the marginal
independence Z1⊥⊥Z2 will hold in the distribution, but Z1⊥⊥Z2|Y will most likely not hold.

Each conditional independence implied by a d-separation condition in the diagram offers
a statistical test that can be performed on the data to confirm or refute the validity of the
model. These tests can easily be enumerated by attending to each missing edge in the graph
and selecting a set of variables that d-separate the pair of variables corresponding to that
missing edge.

For example, in Fig. 12, three of the missing edges are Z1 − Z2, Z1 − Y , and Z2 − T
with separating sets {∅}, {T, Z2, Z3} and {Z1, Z3} respectively. Accordingly, the testable im-
plications of M include Z1⊥⊥Z2, Z1⊥⊥Y |{T, Z2, Z3}, and Z2⊥⊥T |{Z1, Z3}. In linear systems,
these conditional independence constraints translate into zero partial correlations, or zero
coefficients in the corresponding regression equations. For example, the three implications
above translate into the following constraints: rZ1Z2 = 0, rY Z1·TZ2Z3 = 0, and rZ2T ·Z1Z3 = 0.

Such tests are easily conducted by routine regression techniques, and they provide valuable
diagnostic information for model modification, in case any of them fails (see Pearl, 2009b,
pp. 143–45). Software routines for automatic detection of all such tests, as well as other
implications of graphical models, are reported in Kyono (2010).

Armed with the tool of d-separation or path blocking, we are ready to tackle the issue of
identification using the backdoor criterion. This criterion provides a graphical method of se-
lecting admissible sets of factors, and demonstrates that causal quantities such as P (y|do(t))
can often be identified with no knowledge of the functional form of the equations or the
distributions of the latent variables in M .
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Definition 2 (admissible sets—the backdoor criterion) A set S is admissible (or sufficient)
for estimating the causal effect of T on Y if two conditions hold:

1. No element of S is a descendant of T .

2. The elements of S block all backdoor paths from T to Y—namely, all paths that end
with an arrow pointing to T .

Based on this criterion we see, for example that, in Fig. 12, the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3} (among others) are each sufficient for adjustment, because each
blocks all backdoor paths between T and Y . The set {Z3}, however, is not sufficient for
adjustment because it does not block the path T ← W1 ← Z1 → Z3 ← Z2 → W2 → Y .

The intuition behind the backdoor criterion is as follows. The backdoor paths in the di-
agram carry spurious associations from T to Y , while the paths directed along the arrows
from T to Y carry causative associations. Blocking the former paths (by conditioning on S)
ensures that the measured association between T and Y is purely causal, namely, it correctly
represents the target quantity: the causal effect of T on Y . The reason for excluding descen-
dants of T (e.g., W3 or any of its descendants) are discussed in Appendix C while conditions
for relaxing this restriction are given in (Pearl, 2009b, p. 338; Shpitser et al., 2010).

The implication of finding a sufficient set, S, is that stratifying on S is guaranteed to
remove all confounding bias relative to the causal effect of T on Y . In other words, it
renders the causal effect of T on Y identifiable, via

P (Y = y|do(T = t))

=
∑
s

P (Y = y|T = t, S = s)P (S = s) (32)

Since all factors on the right-hand side of the equation are estimable (e.g., by regression) from
pre-interventional data, the causal effect can likewise be estimated from such data without
bias. Moreover, the counterfactual implication of S can be written as T⊥⊥Yt|S, also known
as conditional ignobility’ (Rosenbaum and Rubin, 1983).

The backdoor criterion allows us to write Eq. (32) by inspection, after selecting a sufficient
set, S, from the diagram. The selection criterion can be applied systematically to diagrams
of any size and shape, thus freeing analysts from judging whether “T is conditionally ignor-
able given S,” a formidable mental task required in the potential-response framework. The
criterion also enables the analyst to search for an optimal set of covariates—namely, a set,
S, that minimizes measurement cost or sampling variability (Tian et al., 1998).

Appendix B

Formal derivation of conditions for NDE identification (after Pearl
(2001))

B.0 Notation

We will retain the notation used in the rest of the paper and let T be the control variable
(whose effect we seek to assess), and Y be the response variable. We will let M stand for
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the set of all intermediate variables between T and Y which, in the simplest case considered,
would be a single variable M as in Fig. 4.

We will use the counterfactual notation Yt(u) to denote the value that Y would attain in
unit (or situation) U = u under the control regime do(T = t). See Eq. (4) and Pearl (2000a,
Ch. 7) for formal semantics of these counterfactual expressions. Many concepts associated
with direct and indirect effect require comparison to a reference value of T , that is, a value
relative to which we measure changes. We will designate this reference value by t∗.

B.1 Natural Direct Effects: Formulation

Definition 3 (Unit-level natural direct effect; qualitative)
An event T = t is said to have a natural direct effect on variable Y in situation U = u if the
following inequality holds

Yt∗(u) 6= Yt,Mt∗ (u)(u) (33)

In words, the value of Y under T = t∗ differs from its value under T = t even when we keep
M at the same value (Mt∗(u)) that M attains under T = t∗.

We can easily extend this definition from events to variables by defining T as having a
natural direct effect on Y (in model M and situation U = u) if there exist two values, t∗ and
t, that satisfy (33). Note that this definition does not require that we specify a value m for
M ; that value is determined naturally by the model, once we specify t, t∗, and u.

If one is interested in the magnitude of the natural direct effect, one can take the difference

Yt,Mt∗ (u)(u)− Yt∗(u) (34)

and designate it by the symbol NDE(t, t∗;Y, u) (acronym for Natural Direct Effect). If we
are further interested in assessing the average of this difference in a population of units, we
have:

Definition 4 (Average natural direct effect)
The average natural direct effect of event T = t on a response variable Y , denoted NDE(t, t∗;Y ),
is defined as

NDE(t, t∗;Y ) = E(Yt,Mt∗ )− E(Yt∗) (35)

B.2 Natural Direct Effects: Identification

As noted in (Robins and Greenland, 1992), we cannot generally evaluate the average natural
direct effect from empirical data. Formally, this means that Eq. (35) is not reducible to
expressions of the form

P (Yt = y) or P (Yt,m = y);

the former governs the causal effect of T on Y (obtained by randomizing T ) and the latter
governs the causal effect of T and M on Y (obtained by randomizing both T and M).

We now present conditions under which such reduction is nevertheless feasible.
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Theorem 2 (Experimental identification)
If there exists a set W of covariates, nondescendants of T or M , such that

Yt,m⊥⊥Mt∗ | W for all m (36)

(read: Yt,m is conditionally independent of Mt∗, given W ), then the average natural direct
effect is experimentally identifiable, and it is given by

NDE(t, t∗;Y ) =
∑
w,m

[E(Yt,m | w)− E(Yt∗m | w)]

P (Mt∗ = m | w)P (w). (37)

Proof
The first term in (35) can be written

E(Yt,Mt∗ = y)
=

∑
w

∑
mE(Yt,m = y | Mt∗ = m,W = w)

P (Mt∗ = m | W = w]P (W = w).
(38)

Using (36), we obtain:

E(Yt,Mt∗ = y)
=

∑
w

∑
mE(Yt,m = y | W = w)

P (Mt∗ = m | W = w)P (W = w).
(39)

Each factor in (39) is identifiable; E(Yt,m = y | W = w), by randomizing T and M for each
value of W , and P (Mt∗ = m | W = w) by randomizing T for each value of W . This proves
the assertion in the theorem. Substituting (39) into (35) and using the law of composition
E(Yt∗) = E(Yt∗Mt∗ ) (Pearl 2000, p. 229) gives (37), and completes the proof of Theorem 2.
�

The conditional independence relation in Eq. (36) can easily be verified from the causal
graph associated with the model. Using a graphical interpretation of counterfactuals (Pearl,
2000, p. 214-5), this relation reads:

(Y⊥⊥M | W )GTM
(40)

In words, W d-separates Y from M in the graph formed by deleting all (solid) arrows ema-
nating from T and M .

Figure 13(a) illustrates a typical graph associated with estimating the direct effect of T
on Y . The identifying subgraph is shown in Fig. 13(b), and illustrates how W separates Y
from M . The separation condition in (40) is somewhat stronger than (36), since the former
implies the latter for every pair of values, t and t∗, of T (see (Pearl 2000, p. 214)).

The identification of the natural direct effect from nonexperimental data requires stronger
conditions. From Eq. (37) we see that it is sufficient to identify the conditional probabilities
of two counterfactuals: P (Yt,m = y | W = w) and P (Mt∗ = m | W = w), where W is
any set of covariates that satisfies Eq. (36) (or (40)). This yields the following criterion for
identification:
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Figure 13: (a) A causal model with latent variables (Us) where the natural direct effect
can be identified in experimental studies. (b) The subgraph GT,M illustrating the criterion
of experimental identifiability (Eq. 40): W d-separates Y from M . M = Mediator; T =
Treatment; W = Covariate; Y = Outcome; U = Omitted Factors.

Theorem 3 (Nonexperimental identification)
The average natural direct effect NDE(t, t∗;Y ) is identifiable in nonexperimental studies if
there exists a set W of covariates, nondescendants of T or M , such that for all values m
and w we have:

(i) Ytm⊥⊥Mt∗ | W

(ii) P (Yt,m = y | W = w) and P (Yt∗m = y | W = w) are identifiable

(iii) P (Mt∗ = m | W = w) is identifiable

Moreover, if conditions (i)-(iii) are satisfied, the natural direct effect is given by (37), in
which all counterfactual expressions are replaced by their probabilistic estimands.

In particular, for confounding-free models we obtain the mediation formulas of Eqs. (16)–
(17).

Appendix C

Why treatment-dependent covariates cannot be used to deconfound
the mediator-outcome process

Assumption sets A and B both insist that no member of W be affected by the treatment, which
is a requirement distinct to the identification of natural effects. For example, to identify the
controlled direct effect CDE(m) in Fig. 10, we can condition on W = w, and, using the
truncated product formula (Pearl, 2000a, p. 72), we can write

CDE(m) = E[Y | do(T = 1,M = m)]− E[Y | do(T = 0,M = m)]

=
∑
w

E[Y | T = 1,M = m,W = w]P (T = 1,W = w)

− E[Y | T = 0,M = m,W = w]P (T = 0,W = w).
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The reason such conditioning does not work for the natural direct effect is that the latter
is not defined in terms of a population experiment (i.e., control M to level M = m and
change T from T = 0 to T = 1) but in terms of a hypothetical manipulation at the unit level,
namely, for each individual u, freeze M at whatever level it attained for that individual, then
change T from T = 0 to T = 1 and observe the change in Y ).

Appendix A shows that in order to convert this unit-based operation to a population-based
operation (expressible as a do(t) expression) we must first find a W that deconfounds M
from Y (with T fixed) and, then, conditioned on that same W , identify the counterfactual
expression

P (Mt = m | W = w).

When W is affected by the treatment, this expression is not identifiable even when T is
randomized. To see that, we recall that Mt stand for all factors affecting M when T is held
fixed. These factors are none other but the omitted factors (or disturbance terms) that affect
M , namely, U

M
in Fig. 1. When we condition on W , those factors become correlated with

T which renders T confounded with M .
This can also be seen from the graph, using virtual colliders. The expression P (Mt =

m |W = w) stands for the causal effect of T on M within a stratum w of W . It is identifiable
using the backdoor criterion, which demands that W not be affected by T because, as soon as
W is a descendant of any intermediate variable from T to M (including M itself) a virtual
collider is formed, and a new backdoor path is opened by conditioning on W (Pearl, 2009b,
p. 339).

Another way of seeing this is to resort to do-calculus. If W is not affected by the treatment,
we have Wt = W , and we can write

P (Mt = m | W = w) = P (Mt = m | Wt = w) =
P (Mt = m,Wt = w)

P (Wt = w)

=
P (M = m,W = w | do(T = t))

P (W = w | do(T = t))

= P (M = m | do(T = t),W = w)

The last expression stands for the causal effect of T on M given that W = w is the
post-treatment value of W . It is identifiable by the do-calculus, whenever the model permits
such identification (Shpitser and Pearl, 2008).

It is worth mentioning at this point that treatment-dependent confounders hinder only
nonparametric identification of natural effects as defined in Eq. (35). The difficulty disap-
pears when we have a parametric representations (as in Eqs. (21)–(23)) or when we compro-
mise on the requirement of freezing M completely at the value it attained prior to the change
in treatment. For example, if in Fig. 10 we merely disable the process T → M and allow
M to respond to W as we change T from T = 0 to T = 1, the resulting direct effect will be
identified. These types of direct and indirect effects, which I would like to call seminatural
effects,27 are defined as (using parenthetical notation):

SNDE = E[Y (T = 1),M(T = 0,W (T = 1)),W (T = 1)]− E[Y (T = 0)]

SNIE = E[Y (T = 0),M(T = 1,W (T = 0)),W (T = 0))− E[Y (T = 0)].

27Huber (2012) called it partial indirect effect.
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Using the derivation leading to Eq. (37) one can show that these semi-natural effects are
identifiable by:

SNDE =
∑
mw

E(Y | T = 1,M = m,W = w)P (M = m | T = 0,W = w)P (W = w | T = 1)

− E(Y | T = 0)

SNIE =
∑
mw

E(Y | T = 0,M = m,W = w)P (M = m | T = 1,W = w)P (W = w | T = 0)

− E(Y | T = 0).

Accordingly, the parametric model of Eqs. (21)–(23) would yield the following semi-
natural effects:

SNDE = β2 + α(β4 + γ2β1),

SNIE = γ1β1

TE = β2 + (γ1 + αγ2)(β3 + β1) + αβ4,

TE − SNDE = γ1(β1 + β3) + β3αγ2.

Figure 14 depicts the path that supports the SNDE and SNIE compared with those
supporting the NDE and NIE in Eqs. (24)–(27). We see that the criterion of Avin et al.
(2005) is satisfied in the latter, but not the former.
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Figure 14: Subgraphs supporting the semi-natural direct and indirect effect (SNDE in (a),
SNIE in (b)) and those supporting the natural direct and indirect effects (NDE in (c) and
NIE in (d)). M = Mediator; T = Treatment; W = Covariate; Y = Outcome; α, β, γ =
Structural Coefficients.
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