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Abstract

We assess the precision of direct vs. indirect methods of estimating regression parameter.
In particular we compare the direct estimator, defined by the regression itself, with composite
estimators, which invoke auxiliary variables, under various modeling assumptions of exclusion
and indepndence. Our general conclusion is that a composite estimator that exploits the
model restrictions has greater asymptotic precision than its direct counterpart.

1 Model 1

Consider the following model:

• y is the outcome of interest

• x is the intermediate cause

• z is the cause of interest

• z affects y only through x

Example 1 y denotes “heart attack”, x denotes “cholesterol”, and z denotes “butter”

Let’s give some more mathematical structure:

y = βx+ u (1)

x = γz + v (2)

and

y = β (γz + v) + u

= βγz + (βv + u)

We will define θ = βγ and ε = βv + u, and write

y = θz + ε (3)

For simplicity, we will assume that (y, x, z)′ have the multivariate normal distribution with zero
mean.
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Two Estimators We consider two estimation methods of θ. The first one estimates it in one
step using (3). The second one estimates (β, γ) using (1) and (2), and then use the relationship
θ = βγ to compute an estimate of θ.

The single step estimator We will call the single step estimator θ̃. Using the well-known
result, we can see that

√
n
(
θ̃ − θ

)
→ N

(
0,

Var (ε)

Var (z)

)
Because Cov (u, v) = 0, we have Var (ε) = β2 Var (v) + Var (u), which implies that we can write

√
n
(
θ̃ − θ

)
→ N

(
0,
β2 Var (v) + Var (u)

Var (z)

)

The two step estimator We will call the single step estimator θ̂. Again using the well-known
result, we can see that

√
n
(
β̂ − β

)
→ N

(
0,

Var (u)

Var (x)

)
Using Var (x) = γ2 Var (z) + Var (v), we obtain

√
n
(
β̂ − β

)
→ N

(
0,

Var (u)

γ2 Var (z) + Var (v)

)
We now claim that

√
n
(
β̂ − β

)
and
√
n (γ̂ − γ) are asymptotically independent. We note that

√
n
(
β̂ − β

)
=

1√
n

∑n
i=1 xiui

Var (x)
+ op (1)

√
n (γ̂ − γ) =

1√
n

∑n
i=1 zivi

Var (z)
+ op (1)

and
E [(xu) (zv)] = E [z (γz + v)uv] = γE

[
z2uv

]
+ E

[
zv2u

]
With normality along with Cov (u, v) = 0, this component is equal to zero. Therefore, β̂ and γ̂
are asymptotically independent.

Now, using the delta method, we have
√
n
(
θ̂ − θ

)
asymptotically normal with asymptotic

variance equal to
γ2 Var (u)

γ2 Var (z) + Var (v)
+
β2 Var (v)

Var (z)

Comparison We see that the single step estimator has the asymptotic variance equal to

β2 Var (v) + Var (u)

Var (z)
(4)
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and the two step estimator has the asymptotic variance equal to

γ2 Var (u)

γ2 Var (z) + Var (v)
+
β2 Var (v)

Var (z)
(5)

Subtracting (5) from (4), we obtain

(4)− (5)

=
β2 Var (v) + Var (u)

Var (z)
−
(

γ2 Var (u)

γ2 Var (z) + Var (v)
+
β2 Var (v)

Var (z)

)
=

Var (u)

Var (z)
− Var (u)

Var (z) + 1
γ2

Var (v)
> 0

In other words, the two-step estimator is more efficient than the one step estimator.

2 Model 2

Consider the following model:

• y is the outcome of interest

• x is the intermediate cause

• z is the cause of interest

• z affects y directly, and indirectly through x

Example 2 y denotes “heart attack”, x denotes “cholesterol”, and z denotes “butter”. We will
assume that the “butter” has both direct and indirect impacts, which is expressed (6) in mathemat-
ical terms.

Let’s give some more mathematical structure:

y = βx+ δz + u (6)

x = γz + v (7)

and

y = β (γz + v) + δz + u

= (βγ + δ) z + (βv + u)

We will define θ = βγ + δ and ε = βv + u, and write

y = θz + ε (8)

For simplicity, we will assume that (y, x, z)′ have the multivariate normal distribution with zero
mean.
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Two Estimators We consider two estimation methods of θ. The first one estimates it in one
step using (8). The second one estimates (β, γ) using (6) and (7), and then use the relationship
θ = βγ + δ to compute an estimate of θ.

The single step estimator We will call the single step estimator θ̃. Using the well-known
result, we can see that

√
n
(
θ̃ − θ

)
→ N

(
0,

Var (ε)

Var (z)

)
= N

(
0,
β2 Var (v) + Var (u)

Var (z)

)
Remark 1 If the OLS on (6) is to be consistent, we should have Cov (u, v) = 0. This means that

Var (ε) = β2 Var (v) + Var (u)

It follows that
Var (ε)

Var (z)
=
β2 Var (v) + Var (u)

Var (z)

The two step estimator We will call the two step estimator θ̂. Again using the well-known
result, we can see that

√
n

([
β̂

δ̂

]
−
[
β
δ

])
→ N

([
0
0

]
,Var (u)

[
Var (x) Cov (x, z)

Cov (x, z) Var (z)

]−1)
and

√
n (γ̂ − γ)→ N

(
0,

Var (v)

Var (z)

)
They are asymptotically independent by the same reasoning as outlined in the previous note.

By the analysis of variance formula in (7), we also have

Var (x) = γ2 Var (z) + Var (v)

Cov (x, z) = γ Var (z)

It follows that the asymptotic variance of
(
β̂, δ̂
)′

is equal to

Var (u)

[
Var (x) Cov (x, z)

Cov (x, z) Var (z)

]−1
= Var (u)

[
γ2 Var (z) + Var (v) γ Var (z)

γ Var (z) Var (z)

]−1
=

Var (u)

Var (v)

[
1 −γ
−γ γ2 + Var(v)

Var(z)

]

To conclude, the asymptotic variance of
(
β̂, δ̂, γ̂

)′
is equal to

Var(u)
Var(v)

−γVar(u)
Var(v)

0

−γVar(u)
Var(v)

γ2 Var(u)
Var(v)

+ Var(u)
Var(z)

0

0 0 Var(v)
Var(z)
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Now, using the delta method, we have
√
n
(
θ̂ − θ

)
asymptotically normal with asymptotic

variance equal to

[
γ 1 β

] 
Var(u)
Var(v)

−γVar(u)
Var(v)

0

−γVar(u)
Var(v)

γ2 Var(u)
Var(v)

+ Var(u)
Var(z)

0

0 0 Var(v)
Var(z)


 γ

1
β


=
β2 Var (v) + Var (u)

Var (z)

Comparison We see that the single step estimator has the asymptotic variance equal to

β2 Var (v) + Var (u)

Var (z)

and the two step estimator has the asymptotic variance equal to

β2 Var (v) + Var (u)

Var (z)

They are identical!

Explanation The single step estimator should be equal to

θ̃ =

∑n
i=1 ziyi∑n
i=1 z

2
i

As for the two step estimator θ̂, we note that

yi = β̂xi + δ̂zi + ûi

with[
β̂

δ̂

]
=

[ ∑n
i=1 x

2
i

∑n
i=1 xizi∑n

i=1 xizi
∑n

i=1 z
2
i

]−1 [ ∑n
i=1 xiyi∑n
i=1 ziyi

]
=

1

(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

[
(
∑n

i=1 z
2
i ) (
∑n

i=1 xiyi)− (
∑n

i=1 xizi) (
∑n

i=1 ziyi)
− (
∑n

i=1 xizi) (
∑n

i=1 xiyi) + (
∑n

i=1 x
2
i ) (
∑n

i=1 ziyi)

]
and

γ̂ =

∑n
i=1 xizi∑n
i=1 z

2
i
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Therefore, we have

θ̂ =β̂γ̂ + δ̂

=
(
∑n

i=1 z
2
i ) (
∑n

i=1 xiyi)− (
∑n

i=1 xizi) (
∑n

i=1 ziyi)

(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

∑n
i=1 xizi∑n
i=1 z

2
i

+
− (
∑n

i=1 xizi) (
∑n

i=1 xiyi) + (
∑n

i=1 x
2
i ) (
∑n

i=1 ziyi)

(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

=
(
∑n

i=1 xiyi) (
∑n

i=1 xizi)− (
∑n

i=1 xizi)
2
(∑n

i=1 ziyi∑n
i=1 z

2
i

)
(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

+
− (
∑n

i=1 xizi) (
∑n

i=1 xiyi) + (
∑n

i=1 x
2
i ) (
∑n

i=1 ziyi)

(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

=
(
∑n

i=1 x
2
i ) (
∑n

i=1 ziyi)− (
∑n

i=1 xizi)
2
(∑n

i=1 ziyi∑n
i=1 z

2
i

)
(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

=
(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )
(∑n

i=1 ziyi∑n
i=1 z

2
i

)
− (
∑n

i=1 xizi)
2
(∑n

i=1 ziyi∑n
i=1 z

2
i

)
(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

=
(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

(
∑n

i=1 x
2
i ) (
∑n

i=1 z
2
i )− (

∑n
i=1 xizi)

2

(∑n
i=1 ziyi∑n
i=1 z

2
i

)
=

∑n
i=1 ziyi∑n
i=1 z

2
i

=θ̃

Given that the two estimators are numerically identical, it should not surprise us that their
asymptotic variances are identical.

3 Model 3

We will assume

y = αx+ βw + ε1

w = γz + ε2

z = δx+ ε3

We assume that all the equations can be estimated by OLS. This implies certain orthogonality.
For simplification of derivation, we will assume that orthogonality is equivalent to independence.
We will also assume that all the variables have zero mean. Under these assumptions, we obtain
the following independences:
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ε3 ⊥⊥ x

ε2 ⊥⊥ z

ε1 ⊥⊥ (x,w)

It is straightforward to show that it also implies that

ε3 ⊥⊥ ε2 (9)

ε1 ⊥⊥ ε2 (10)

Remark 2 It is not clear whether we obtain the implication

ε3 ⊥⊥ ε1 (11)

as well, which would simplify the derivation below. Probably not. In order to make sure that we
do, we will make the assumption that the equation

y = αx+ βw + ε1

means that, if we regress y on (x,w, z), then we get 0 as the coefficient of z. This would ensure
that we also get (11).

Parameter of Interest We are interested in estimation of α. Below are some of the natural
estimators.

1. We regress y on (x, z)

2. We regress y on (x,w)

3. We regress y on (x,w, z)

4. We regress y on x, and subtract it by the product βγδ identified from the three equations

y = αx+ βw + ε1

w = γz + ε2

z = δx+ ε3

We show that the second estimator has the smallest asymptotic variance.

First estimator We note that

y = αx+ βw + ε1

= αx+ β (γz + ε2) + ε1

= αx+ βγz + (βε2 + ε1)
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and regress y on (x, z). The asymptotic variance matrix of the two-dimensional coefficient vector
is given by

Var (βε2 + ε1)

[
σ2
x σxz

σxz σ2
z

]−1
where we adopt the convention of using σ2 to denote a generic variance. We also let σ2

j = Var (εj).
Noting that

σxz = δσ2
x

σ2
z = δ2σ2

x + σ2
3

Var (βε2 + ε1) = β2σ2
2 + σ2

1

we obtain that the asymptotic variance matrix is

(
β2σ2

2 + σ2
1

) [ σ2
x δσ2

x

δσ2
x δ2σ2

x + σ2
3

]−1
and the asymptotic variance of the estimator of α is given by the (1,1)-element of the matrix
above, i.e., (

β2σ2
2 + σ2

1

) 1

σ2
3σ

2
x

(
δ2σ2

x + σ2
3

)
(12)

Second estimator The second estimator simply uses the equation

y = αx+ βw + ε1

and regress y on (x,w). The asymptotic variance matrix of the two-dimensional coefficient vector
is given by

Var (ε1)

[
σ2
x σxw

σxw σ2
w

]−1
Noting that

w = γz + ε2

= γ (δx+ ε3) + ε2

= γδx+ (γε3 + ε2)

with the implication

σxw = γδσ2
x

σ2
w = γ2δ2σ2

x + γ2σ2
3 + σ2

2

we obtain the asymptotic variance matrix

Var (ε1)

[
σ2
x σxw

σxw σ2
w

]−1
= σ2

1

[
σ2
x γδσ2

x

γδσ2
x γ2δ2σ2

x + γ2σ2
3 + σ2

2

]−1
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and the asymptotic variance of the estimator of α is given by the (1,1)-element

σ2
1

γ2σ2
3σ

2
x + σ2

2σ
2
x

(
γ2δ2σ2

x + γ2σ2
3 + σ2

2

)
(13)

Subtracting (13) from (12), we obtain(
β2σ2

2 + σ2
1

) 1

σ2
3σ

2
x

(
δ2σ2

x + σ2
3

)
− σ2

1

γ2σ2
3σ

2
x + σ2

2σ
2
x

(
γ2δ2σ2

x + γ2σ2
3 + σ2

2

)
=

σ2
2

σ2
3σ

2
x (γ2σ2

3 + σ2
2)

(
β2γ2δ2σ2

3σ
2
x + β2γ2σ4

3 + β2δ2σ2
2σ

2
x + β2σ2

2σ
2
3 + δ2σ2

1σ
2
x

)
Every element on the right is positive, so we conclude that the second estimator has the smaller
asymptotic variance than the first.

Third estimator The third estimator uses

y = αx+ βw + 0× z + ε1

and regress y on (x,w, z). The asymptotic variance matrix of the three-dimensional coefficient
vector is given by

Var (ε1)

 σ2
x σxw σxz

σxw σ2
w σwz

σxz σwz σ2
z

−1
We have already established that

σxz = δσ2
x

σ2
z = δ2σ2

x + σ2
3

σxw = γδσ2
x

σ2
w = γ2δ2σ2

x + γ2σ2
3 + σ2

2

Using
w = γz + ε2

we also establish
σwz = γσ2

z = γ
(
δ2σ2

x + σ2
3

)
= γδ2σ2

x + γσ2
3

Therefore, the asymptotic variance matrix is

σ2
1

 σ2
x γδσ2

x δσ2
x

γδσ2
x γ2δ2σ2

x + γ2σ2
3 + σ2

2 γδ2σ2
x + γσ2

3

δσ2
x γδ2σ2

x + γσ2
3 δ2σ2

x + σ2
3

−1
and the asymptotic variance of the estimator of α is given by the (1,1)-element

σ2
1

σ2
3σ

2
x

(
δ2σ2

x + σ2
3

)
(14)

Subtracting (13) from (14), we obtain

σ2
1

σ2
3σ

2
x

(
δ2σ2

x + σ2
3

)
− σ2

1

γ2σ2
3σ

2
x + σ2

2σ
2
x

(
γ2δ2σ2

x + γ2σ2
3 + σ2

2

)
= δ2σ2

1

σ2
2

σ2
3 (γ2σ2

3 + σ2
2)
> 0

so we conclude that the second estimator has the smaller asymptotic variance than the third.
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Fourth estimator The fourth estimator notes that

y = αx+ βw + ε1 = αx+ β (γz + ε2) + ε1

= αx+ βγz + βε2 + ε1 = αx+ βγ (δx+ ε3) + βε2 + ε1

= (α + βγδ)x+ (βγε3 + βε2 + ε1)

Because β is identified from
y = αx+ βw + ε1

and γ and δ are identified from

w = γz + ε2

z = δx+ ε3

we can estimate α by regressing y on x and subtracting it by the product βγδ identified from the
three equations.

In order to make sense of them, we need the asymptotic covariance of every estimator. For
this purpose, we set up the moment equation

E


x (y − ϕx)

x (y − (αx+ βw))
w (y − (αx+ βw))

z (w − γz)
x (z − δx)

 = 0

where we define
ϕ = α + βγδ

This is an exactly identified moment, and the asymptotic variance requires characterization of the
variance matrix of 

x (y − ϕx)
x (y − (αx+ βw))
w (y − (αx+ βw))

z (w − γz)
x (z − δx)

 =


x (βγε3 + βε2 + ε1)

xε1
wε1
zε2
xε3


at the truth. Writing


x (βγε3 + βε2 + ε1)

xε1
wε1
zε2
xε3

 =


x (βγε3 + βε2 + ε1)

xε1
(γδx+ (γε3 + ε2)) ε1

(δx+ ε3) ε2
xε3

 =


xε1 + βxε2 + βγxε3

xε1
ε1ε2 + γε1ε3 + γδxε1

ε2ε3 + δxε2
xε3


we can see that the variance matrix of interest is

Ω ≡


σ2
xσ

2
1 + β2σ2

xσ
2
2 + β2γ2σ2

xσ
2
3 σ2

xσ
2
1 γδσ2

xσ
2
1 βδσ2

xσ
2
2 βγσ2

xσ
2
3

σ2
xσ

2
1 σ2

xσ
2
1 γδσ2

xσ
2
1 0 0

γδσ2
xσ

2
1 γδσ2

xσ
2
1 σ2

1σ
2
2 + γ2σ2

1σ
2
3 + γ2δ2σ2

xσ
2
1 0 0

βδσ2
xσ

2
2 0 0 σ2

2σ
2
3 + δ2σ2

xσ
2
2 0

βγσ2
xσ

2
3 0 0 0 σ2

xσ
2
3
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Remark 3 There is a fair amount of simplification using independence among ε’s.

With

Υ ≡ −E

 ∂

∂θ′

x (y − ϕx)
x (y − (αx+ βw))
w (y − (αx+ βw))

z (w − γz)
x (z − δx)

 = E


x2 0 0 0 0
0 x2 xw 0 0
0 xw w2 0 0
0 0 0 z2 0
0 0 0 0 x2



=


σ2
x 0 0 0 0

0 σ2
x γδσ2

x 0 0
0 γδσ2

x γ2δ2σ2
x + γ2σ2

3 + σ2
2 0 0

0 0 0 δ2σ2
x + σ2

3 0
0 0 0 0 σ2

x


the asymptotic variance of the estimator of θ is given by Υ−1Ω (Υ−1)

′
.

As for the estimator of α, we note that it is based on the equality

α = ϕ− βγδ

and apply the delta method, which delivers

1

σ2
x (γ2σ2

3 + σ2
2) (δ2σ2

x + σ2
3)

(
β2γ2σ2

2σ
4
3 + β2σ4

2σ
2
3 + γ2δ4σ2

1σ
4
x + 2γ2δ2σ2

1σ
2
3σ

2
x + γ2σ2

1σ
4
3 + δ2σ2

1σ
2
2σ

2
x + σ2

1σ
2
2σ

2
3

)
(15)

as the asymptotic variance. Subtracting (13) from (15), we obtain

β2γ2σ2
2σ

4
3 + β2σ4

2σ
2
3 + γ2δ4σ2

1σ
4
x + 2γ2δ2σ2

1σ
2
3σ

2
x + γ2σ2

1σ
4
3 + δ2σ2

1σ
2
2σ

2
x + σ2

1σ
2
2σ

2
3

σ2
x (γ2σ2

3 + σ2
2) (δ2σ2

x + σ2
3)

− σ2
1

γ2σ2
3σ

2
x + σ2

2σ
2
x

(
γ2δ2σ2

x + γ2σ2
3 + σ2

2

)
= β2σ2

2

σ2
3

σ2
x (δ2σ2

x + σ2
3)
> 0

so we conclude that the second estimator has the smaller asymptotic variance than the fourth.

4 Model 4

We will assume the following:

• z, x, y are binary

• z → x→ y

• Our objective of interest is

p = P [y = 1| z = 1]

= P [y = 1|x = 1]P [x = 1| z = 1] + P [y = 1|x = 0]P [x = 0| z = 1]
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• We would like to compare the one shot estimator P̂ [y = 1| z = 1] against the compositional

estimator P̂ [y = 1|x = 1] P̂ [x = 1| z = 1] + P̂ [y = 1|x = 0] P̂ [x = 0| z = 1]

• We show that the asymptotic variance of the one shot estimator is larger than that of the
compositional estimator.

4.1 Technical Derivation

Some symbols

• α = Pr [y = 1|x = 1]

• β = Pr [y = 1|x = 0]

• γ = Pr [x = 1, z = 1]

• δ = Pr [x = 1, z = 0]

• ϕ = Pr [x = 0, z = 1]

• ψ = Pr [x = 0, z = 0]

Remark 4 We obviously have ψ = 1 − γ − δ − ϕ, but it is more convenient to have this for
programming.’

With these symbols, we can say that the target parameter of interest is

θ = Pr [y = 1| z = 1]

= Pr [y = 1|x = 1] Pr [x = 1| z = 1] + Pr [y = 1|x = 0] Pr [x = 0| z = 1]

= α
γ

γ + ϕ
+ β

ϕ

γ + ϕ

= αξ + β (1− ξ)

where we let
ξ =

γ

γ + ϕ
= Pr [x = 1| z = 1]

Structure in the model The structure in the model is such that z affects y only indirectly
through x. In terms of probability, this implies the exclusion restriction of the form

Pr [y|x, z] = Pr [y|x]

We therefore have

• Pr [y = 1|x = 1, z = 1] = Pr [y = 1|x = 1, z = 0] (= Pr [y = 1|x = 1]) = α

• Pr [y = 0|x = 1, z = 1] = Pr [y = 0|x = 1, z = 0] (= Pr [y = 0|x = 1]) = 1− α

• Pr [y = 1|x = 0, z = 1] = Pr [y = 1|x = 0, z = 0] (= Pr [y = 1|x = 0]) = β
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• Pr [y = 0|x = 0, z = 1] = Pr [y = 0|x = 0, z = 0] (= Pr [y = 0|x = 0]) = 1− β

Using the definition of γ, δ, ϕ, ψ, we can write the joint probabilities as

• p (1, 1, 1) ≡ u1 ≡ Pr [y = 1, x = 1, z = 1] = αγ

• p (1, 1, 0) ≡ u2 ≡ Pr [y = 1, x = 1, z = 0] = αδ

• p (0, 1, 1) ≡ u3 ≡ Pr [y = 0, x = 1, z = 1] = (1− α) γ

• p (0, 1, 0) ≡ u4 ≡ Pr [y = 0, x = 1, z = 0] = (1− α) δ

• p (1, 0, 1) ≡ u5 ≡ Pr [y = 1, x = 0, z = 1] = βϕ

• p (1, 0, 0) ≡ u6 ≡ Pr [y = 1, x = 0, z = 0] = βψ

• p (0, 0, 1) ≡ u7 ≡ Pr [y = 0, x = 0, z = 1] = (1− β)ϕ

• p (0, 0, 0) ≡ u8 ≡ Pr [y = 0, x = 0, z = 0] = (1− β)ψ

Remark 5 We do not need to define p and u separately, but it is convenient for accounting/computer
programming purpose.

Remark 6 Below, we will use u and û to denote the vector of u’s and corresponding sample fre-
quencies, i.e., u = (u1, u2, . . . , u8)

′. We will use the fact that the asymptotic variance of
√
n (û− u)

is N (0,Σ), where
Σ = diag (u)− uu′ = [Σ1,Σ2]

where

Σ1 =



−αγ (αγ − 1) −α2γδ αγ2 (α− 1) αγδ (α− 1)
−α2γδ −αδ (αδ − 1) αγδ (α− 1) αδ2 (α− 1)

αγ2 (α− 1) αγδ (α− 1) −γ (α− 1) (αγ − γ + 1) −γδ (α− 1)2

αγδ (α− 1) αδ2 (α− 1) −γδ (α− 1)2 −δ (α− 1) (αδ − δ + 1)
−αβγϕ −αβδϕ βγϕ (α− 1) βδϕ (α− 1)
−αβγψ −αβδψ βγψ (α− 1) βδψ (α− 1)

αγϕ (β − 1) αδϕ (β − 1) −γϕ (α− 1) (β − 1) −δϕ (α− 1) (β − 1)
αγψ (β − 1) αδψ (β − 1) −γψ (α− 1) (β − 1) −δψ (α− 1) (β − 1)


and

Σ1 =



−αβγϕ −αβγψ αγϕ (β − 1) αγψ (β − 1)
−αβδϕ −αβδψ αδϕ (β − 1) αδψ (β − 1)

βγϕ (α− 1) βγψ (α− 1) −γϕ (α− 1) (β − 1) −γψ (α− 1) (β − 1)
βδϕ (α− 1) βδψ (α− 1) −δϕ (α− 1) (β − 1) −δψ (α− 1) (β − 1)
−βϕ (βϕ− 1) −β2ψϕ βϕ2 (β − 1) βψϕ (β − 1)
−β2ψϕ −βψ (βψ − 1) βψϕ (β − 1) βψ2 (β − 1)

βϕ2 (β − 1) βψϕ (β − 1) −ϕ (β − 1) (βϕ− ϕ+ 1) −ψϕ (β − 1)2

βψϕ (β − 1) βψ2 (β − 1) −ψϕ (β − 1)2 −ψ (β − 1) (βψ − ψ + 1)
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Natural estimators of the parameters For asymptotics, we relate the natural estimators to
the sample frequencies, i.e., the u’s.

α̂ = P̂r [y = 1|x = 1] =
P̂r [y = 1, x = 1]

P̂r [x = 1]

=
p̂ (1, 1, 1) + p̂ (1, 1, 0)

p̂ (1, 1, 1) + p̂ (1, 1, 0) + p̂ (0, 1, 1) + p̂ (0, 1, 0)
=

û1 + û2
û1 + û2 + û3 + û4

β̂ = P̂r [y = 1|x = 0] =
P̂r [y = 1, x = 0]

P̂r [x = 0]

=
p̂ (1, 0, 1) + p̂ (1, 0, 0)

p̂ (1, 0, 1) + p̂ (1, 0, 0) + p̂ (0, 0, 1) + p̂ (0, 0, 0)
=

û5 + û6
û5 + û6 + û7 + û8

γ̂ = P̂r [x = 1, z = 1] = p̂ (1, 1, 1) + p̂ (0, 1, 1)

= û1 + û3

δ̂ = P̂r [x = 1, z = 0] = p̂ (1, 1, 0) + p̂ (0, 1, 0)

= û2 + û4

ϕ̂ = P̂r Pr [x = 0, z = 1] = p̂ (1, 0, 1) + p̂ (0, 0, 1)

= û5 + û7

Understanding the two possible estimators The decomposition estimator is

θ̂ = α̂ξ̂ + β̂
(

1− ξ̂
)

=
û1 + û2

û1 + û2 + û3 + û4

û1 + û3
û1 + û3 + û5 + û7

+
û5 + û6

û5 + û6 + û7 + û8

û5 + û7
û1 + û3 + û5 + û7

and the one shot estimator is

θ̃ = P̂r [y = 1| z = 1] =
P̂r [y = 1, z = 1]

P̂r [z = 1]

=
P̂r [y = 1, x = 1, z = 1] + P̂r [y = 1, x = 0, z = 1]

P̂r [z = 1]

=
p̂ (1, 1, 1) + p̂ (1, 0, 1)

p̂ (1, 1, 1) + p̂ (0, 1, 1) + p̂ (1, 0, 1) + p̂ (0, 0, 1)

=
û1 + û5

û1 + û3 + û5 + û7
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Asymptotic distribution of the decomposition estimator We first establish the asymp-

totic distribution of
(
α̂, β̂, ξ̂

)′
by using delta method. We will recall that

α̂ =
û1 + û2

û1 + û2 + û3 + û4

β̂ =
û5 + û6

û5 + û6 + û7 + û8

ξ̂ =
γ̂

γ̂ + ϕ̂
=

û1 + û3
û1 + û3 + û5 + û7

We will basically understand
(
α̂, β̂, ξ̂

)′
as a function of û. Letting

Λ =
∂ (α, β, ξ)

∂u
=



u3+u4
(u1+u2+u3+u4)

2 0 u5+u7
(u1+u3+u5+u7)

2

u3+u4
(u1+u2+u3+u4)

2 0 0

− u1+u2
(u1+u2+u3+u4)

2 0 u5+u7
(u1+u3+u5+u7)

2

− u1+u2
(u1+u2+u3+u4)

2 0 0

0 u7+u8
(u5+u6+u7+u8)

2 − u1+u3
(u1+u3+u5+u7)

2

0 u7+u8
(u5+u6+u7+u8)

2 0

0 − u5+u6
(u5+u6+u7+u8)

2 − u1+u3
(u1+u3+u5+u7)

2

0 − u5+u6
(u5+u6+u7+u8)

2 0


=



−α−1
γ+δ

0 ϕ

(γ+ϕ)2

−α−1
γ+δ

0 0

− α
γ+δ

0 ϕ

(γ+ϕ)2

− α
γ+δ

0 0

0 − β−1
ψ+ϕ

− γ

(γ+ϕ)2

0 − β−1
ψ+ϕ

0

0 − β
ψ+ϕ

− γ

(γ+ϕ)2

0 − β
ψ+ϕ

0


the asymptotic variance matrix is given by

Λ′ΣΛ =

 −α
α−1
γ+δ

0 0

0 β β−1
γ+δ−1 0

0 0 γ ϕ

(γ+ϕ)3


We now use the delta method to

θ̂ = α̂ξ̂ + β̂
(

1− ξ̂
)

understanding θ as a function of
(
α̂, β̂, ξ̂

)′
. Its asymptotic variance is given by

[
ξ 1− ξ α− β

]  −α
α−1
γ+δ

0 0

0 β β−1
γ+δ−1 0

0 0 γ ϕ

(γ+ϕ)3


 ξ

1− ξ
α− β


=
α (1− α) ξ2

γ + δ
+
β (1− β) (1− ξ)2

1− γ − δ
+
γϕ (α− β)2

(γ + ϕ)3

In other words, the asymptotic variance of the compositional estimator is equal to

α (1− α) ξ2

γ + δ
+
β (1− β) (1− ξ)2

1− γ − δ
+
γϕ (α− β)2

(γ + ϕ)3
(16)
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Asymptotic distribution of the one shot estimator We will basically understand

θ̃ =
û1 + û5

û1 + û3 + û5 + û7

as a function of û. Letting

∂

∂u1

(
u1 + u5

u1 + u3 + u5 + u7

)
=

u3 + u7

(u1 + u3 + u5 + u7)
2

∂

∂u2

(
u1 + u5

u1 + u3 + u5 + u7

)
= 0

∂

∂u3

(
u1 + u5

u1 + u3 + u5 + u7

)
= − u1 + u5

(u1 + u3 + u5 + u7)
2

∂

∂u4

(
u1 + u5

u1 + u3 + u5 + u7

)
= 0

∂

∂u5

(
u1 + u5

u1 + u3 + u5 + u7

)
=

u3 + u7

(u1 + u3 + u5 + u7)
2

∂

∂u6

(
u1 + u5

u1 + u3 + u5 + u7

)
= 0

∂

∂u7

(
u1 + u5

u1 + u3 + u5 + u7

)
= − u1 + u5

(u1 + u3 + u5 + u7)
2

∂

∂u8

(
u1 + u5

u1 + u3 + u5 + u7

)
= 0

In order to apply the delta method, we stack these expressions as an eight dimensional column
vector, and evaluate at the true value of the u’s, e.g., u1 = αγϕ. We then obtain a column vector

χ =
∂
(

u1+u5
u1+u3+u5+u7

)
∂u

=



u3+u7
(u1+u3+u5+u7)

2

0
− u1+u5

(u1+u3+u5+u7)
2

0
u3+u7

(u1+u3+u5+u7)
2

0
− u1+u5

(u1+u3+u5+u7)
2

0


=



1
(γ+ϕ)2

(γ + ϕ− αγ − βϕ)

0
− 1

(γ+ϕ)2
(αγ + βϕ)

0
1

(γ+ϕ)2
(γ + ϕ− αγ − βϕ)

0
− 1

(γ+ϕ)2
(αγ + βϕ)

0


Using the delta method, we can conclude that the asymptotic variance of the one shot estimator
is equal to

χ′Σχ =
1

(γ + ϕ)3
(αγ + βϕ) (γ + ϕ− αγ − βϕ)
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In other words, the asymptotic variance of the one shot estimator is equal to

1

(γ + ϕ)3
(αγ + βϕ) (γ + ϕ− αγ − βϕ) (17)

Subtracting (16) from (17), we obtain

(17)− (16 =
ϕ (γ + δ) (1− (γ + δ + ϕ)) β (1− β) + γδ (1− (γ + δ))α (1− α)

(γ + ϕ)2 (1− (γ + δ)) (γ + δ)

=
ϕ (γ + δ)ψβ (1− β) + γδ (ϕ+ ψ)α (1− α)

(γ + ϕ)2 (ϕ+ ψ) (γ + δ)
> 0

In other words, the compositional estimator is more efficient than the one shot estimator.
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