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1 Introduction

A deeply entrenched axiom in the theory of learning states that the more one learns the
easier it is to learn. In other words, the more proficient one becomes in performing familiar
tasks, the easier it is to learn new tasks. This phenomenon, long recognized by psychologists
and educators, has also been demonstrated in machine learning, especially in self-taught
classification tasks, where unlabeled samples are used during training (Thrun, 1996; Ando
and Zhang, 2005; Caruana, 1997). It has been shown, for example, that the performance
of an image classifier can be improved by initially giving it unlimited access to unlabeled,
randomly chosen images downloaded from the Internet (Raina et al., 2007). Evidently, at
this initial stage of the process the classifier learns generic relationships, applicable to all
visual patterns and, subsequently, when the classifier is trained with limited samples from a
specific target domain (say, to distinguish elephants from rhinos), the classifier makes use
of its previously learned knowledge to perform the target task more efficiently.

But what precisely is learned in that initial phase of the task, and why is it helpful in
performing the final phase? What improvement, if any, can we expect from the first phase,
and what needs to be assumed before we can quantify the improvement?

This paper aims to capture these and related questions using extremely simple, yet
quantifiable models that may serve as building blocks for understanding the more complex
phenomenon of transfer learning as it occurs in practice.

Whereas the justifications usually given to transfer learning are tailored to specific
classification algorithms,1 this paper aims to gain an understanding of this phenomenon

1See Daumé, III and Marcu, 2006; Blitzer et al., 2006; Ben-David et al., 2007; Daumé, III, 2007; Jiang
and Zhai, 2007a; Satpal and Sarawagi, 2007; Jiang and Zhai, 2007b; Blitzer et al., 2008; Japkowicz and
Stephen, 2002; Shimodaira, 2000; Heckman, 1979; Zadrozny, 2004; Zhu, 2005; Chapelle et al., 2006; Baxter,
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from a general framework, starting from traditional estimation theory. In that way, the
findings of the analysis will also be applicable to a broader class of tasks that could benefit
from data sharing. These include, for example, Meta Analysis and ordinary statistical
estimation.

In meta analysis, one attempts to combine results from many experimental and
observational studies, usually conducted under different conditions and on diverse
populations, so as to construct an aggregate measure of effect size that is “better,” in some
sense, than any one study in isolation. However, meta-analytical techniques treat each of
the combined studies as a “black box” sensory device that provides noisy measurements of
some unknown quantity; rarely do they explicate or utilize commonalities and differences
among the combined studies to ensure that generalizations to the target population
reflect the common and suppress the dissimilar. (See Rosenthal, 1995; Raudenbush and
Bryk, 1985, for exceptions using moderator variables). The examples analyzed in this
paper promise to enrich meta analysis with principled ways of handling differences and
commonalities among pooled datasets.

But the issue of decomposition impacts many other areas of statistical estimation,
especially those concerned with multi-component systems or those subject to time-varying
changes. Such systems. invariably require local estimations of their components through
studies that involve different sample sizes, taken under different conditions. Whenever we
collect data from diverse environments we are presented with an opportunity of benefiting
from their commonalities because, almost by definition, the common components of these
environments receive more samples than any of their disparate parts and this increased
sample size, if properly utilized, can lead to an improved overall performance. But what
constitute a “shared” component and how “relevant” is that component to the overall task
are questions that require formal definitions and careful mathematical analysis. The simple
examples treated in the following sections should shed light on these general issues.

In Section 2 we address questions that emanates from attempts to formally define the
notion of “commonalities” and “relevance.” In Section 3 we map these questions onto the
problem of improving precision in regression analysis and demonstrate the benefit of both
decomposition and data sharing using a two-phase process previously analyzed by Cox
(1960). In Section 4, we quantify these benefits of in saturated models, where decomposition
in itself offers no benefit, yet decomposition combined with data sharing does. Finally, in
Section 5, we speculate on the generality of these results and their applicability in transfer
leaning, meta analysis and other data-sharing estimation tasks.

2 The Benefit of Transfer Learning

We have two populations, Π and Π∗, governed by two probability functions, P and P ∗.
Assume that we have taken data from both, and we wish to estimate some probabilistic
relation R on Π∗. We ask whether there is an advantage to mixing the two datasets, as
opposed to taking samples from P ∗ alone?2

1997; Ben-David and Schuller, 2003.
2This question is related to the problem of observational transportability (Pearl and Bareinboim, 2011)

with the difference that we now pose no restriction on the variables that can be measured in Π∗. In
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Intuitively data fusion can be justified when the two populations share some features
in common, and when the shared features are significant in determining R. Assume that
the target relation R can be decomposed into a set S of subrelations, which fall into two
categories:

SA - subrelations on which P and P ∗ agree, and

SD - subrelations on which P and P ∗ disagree.

If we have 100 samples from each distribution, we can estimate SA using all 200 samples,
and SD using the 100 samples of P ∗. The net result being that some portions of R receive
extra samples, which render them more accurate, and that should make the estimate of R
less susceptible to sampling bias.

In this paper we explore the generality of this intuition, and formalize it in several
models.

Example 1. Let R = P ∗(x|y) and let P (x) be in the agreement set, SA. We have:

R = P ∗(x|y) = P ∗(y|x)P (x)/P ∗(y) (1)

which permits us to use the more accurately estimated P (x) rather than rely solely on the
noisy estimate of P ∗(x|y).

This simple example raises a fundamental question: Is it alway beneficial to decompose
a relation into components, estimate each component individually, some with improved
precision, then recombine the results?

A competing intuition might claim that the exercise of decomposing, estimating, and
combining introduces new sources of noise, compared to, say, estimating the relation in one
shot.

A related question arises from the fact that decompositions are not unique. Eq. 1, for
example can also be written as:

R = P ∗(x|y) = P ∗(y|x)P (x)/
∑

x′

P ∗(y|x′)P (x′)) (2)

which calls for estimating P ∗(y|x) and P ∗(y|x′) for all x′ at the target population, then
average the estimates to get P ∗(y) in the denominator.

We ask whether it is always the case that estimating R∗ through the r.h.s. of (1) or (2)
will result in improved precision, compared to estimating P ∗(x|y) in one shot. Moreover,
would the refinement offered by the denominator of (2) improve precision over the estimator
defined in (1)?

That over-refinement may be risky can be seen in the following example.

Pearl and Bareinboim (2011), we needed to take data from Π because the cost of measuring V ∗ in Π∗ was
prohibitive. Now we assume that measurement cost is zero, and we ask: is there still an advantage to
borrowing information from P , as opposed to taking samples from P ∗ alone?
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Example 2. Let R = P ∗(x|y) and let P and P ∗ be defined on three variables, X, Y and Z,
such that P ∗(z) 6= P (z), and3

P ∗(x, y, z) =
P ∗(z)

P (z)
P (x, y, z) = P ∗(z)P (x, y|z) (3)

Writing:

P ∗(x, y) =
∑

z

P ∗(z)P ∗(x|z)P ∗(y|x, z)

=
∑

z

P ∗(z)P (x|z)P (y|x, z) (4)

we have:

P ∗(x|y) =

∑
z P ∗(z)P (x|z)P (y|x, z)∑

z,x′ P ∗(z)P (x′|z)P (y|x′, z)
(5)

The question is: would we do better letting only P ∗(z) be estimated in Π∗ as compared
to estimating R = P ∗(x|y) directly in Π∗, borrowing no information from Π?

This is not a trivial question. Assume Z is a multidimensional vector, while X and Y
are binary. The estimation of every term involving Z would be subject to a large sampling
error, while skipping Z altogether amounts to estimating a simple conditional probability
table between two binary variables. On the other hand, what if we have only 10 samples in
Π∗ and 10,000 in Π, it would seem reasonable to use Eq. (4) above and mix samples from
both populations.

The question boils down to whether the difference between P ∗(x|y) and P (x|y) is
significant and whether a noisy correction of the source of this difference, P ∗(z), can reduce
that difference.

To obtain a theoretical handle on this problem we take an extreme case and imagine
that Π offers us infinite samples. We now ask: should we estimate R from scratch (i.e., in
Π∗) or use some knowledge from Π? If the latter, is it clear what part should be borrowed
from Π? We further assume that differences between Π and Π∗ are encoded in the form
of a selection diagram G (Pearl and Bareinboim, 2011) with the help of which we ask the
following questions:

1. Given a selection diagram G, is it the case that no matter how we decompose R we
always gain by borrowing sub-relations from Π?

2. If so, how do we find out a decomposition that permits us to benefit from Π.

3. If not, which decompositions gain by borrowing and which do not. Moreover, which
relations have a beneficial decomposition and which do not.

4. Given that borrowing is beneficial, can we quantify the improvement?

3The problem may emerge in classification tasks, where x is the class label, y is a set of sensory inputs,
and Z a set of features whose distribution P (z) varies from environment to environment.
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3 The Transfer Benefit Ratio (TBR)

A way of quantifying the benefit of estimator decomposition was outlined by Cox (1960).
In experiments involving a two-stage process, Cox has shown that the estimated regression
coefficient between treatment and response has a reduced variance if computed as a
product of two estimates, one for each stage of the process. He characterized the role of
the intermediate variable as that of reducing “the effect of random variation entering the
system after the treatments have exerted their effect.”

Below we summarize Cox analysis of two-stage estimation and adapt it to the problem
of information transfer across populations.

a b
X Z Y

ε
1

ε
2

Figure 1: A two-stage process with intermediate variable Z.

Consider the linear model depicted in Fig. 1, representing the following structural
equations:

z = ax + ε1, y = bz + ε2 with cov(x, ε1) = cov(x, ε2) = cov(ε1, ε2) = 0 (6)

Our target of analysis is the regression coefficient of Y on X, i.e., the coefficient of x in the
equation

y = τx + ε3 with cor(x, ε3) = 0 (7)

Clearly, τ = ab = cov(XY )/var(X), and can be estimated by OLS, using

τ̂ =

∑n
i=1

xiyi∑n
i=1

x2

i

.

Let â, b̂, be respectively the OLS estimators of a, b. Cox showed that the asymptotic
variance of τ̂ is greater than that of the product âb̂, or

var(τ̂)/var(âb̂) ≥ 1.

with equality holding only in pathological cases of perfect determinism. Specifically, he
computed the n-sample variances to be:

var(τ̂) = [var(ε2) + b2var(ε1)]/nvar(X) (8)

var(b̂) = var(ε2)/n[a2var(X) + var(ε1)] (9)

var(â) = var(ε1)/nvar(X) (10)

var(âb̂) = a2var(b̂) + b2var(â)

=
a2var(X)(var(ε2) + b2var(ε1)) + b2var2(ε1)

nvar(X)[a2var(X) + var(ε2)]
(11)
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Thus,

var(τ̂)

var(âb̂)
=

a2var(X) + var(ε1)

a2var(X) + var(ε1)b2var(ε1)/[var(ε2) + b2var(ε1]

=
a2var(X) + var(ε1)

a2var(X) + var(ε1)F
(12)

which is greater than 1 because F = b2var(ε1)/[var(ε2 + b2var(ε1)] ≥ 1.
The relation to transfer learning surfaces when a and b are estimated from two diverse

populations. Let us assume that a is the same in the two populations, and is estimated by
â using N1 samples, pooled from both. b is presumed to be different, and is estimated by b̂
using N2 samples form Π∗ alone. We need to compare the efficiency of estimating τ using
the product (âb̂), to that of estimating τ directly, using N2 samples from Π∗. The ratio
of the asymptotic variances of these two estimators will measure the merit of transferring
knowledge from one population to another, and will be called here the Transfer Benefit
Ratio (TBR).

Keeping track of the number of samples entering each estimator, we have

var(τ̂ ; N2) = var(ε2) + b2var(ε2)/N2var(X) (13)

var(b̂; N2) = var(ε2)/N2[a
2var(X) + var(ε1)] (14)

var(â; N1) = var(ε1)/N1var(X) (15)

var(âb̂; N1, N2) = a2var(b̂) + b2var(â)

=
N1a

2var(X)var(ε2) + b2var(ε1)[a
2N2var(x) + N2var2(ε1)

N1N2var(X)[a2var(X) + var(ε2)]
(16)

Taking the ratio, we have

TBR =
var(τ̂ ; N2)

var(âb̂; N1, N2)
(17)

=
N1[a

2var(X) + var(ε1)][var(ε2 + b2var(ε1)]

a2var(X)[N1var(ε2) + N2b2var(ε1)] + N2b2var(ε1)
(18)

=
a2var(X) + var(ε1)

a2var(X)F1 + var(ε1)F2

(19)

Where

F1 =
var(ε2) + b2var(ε1)N2/N1

var(ε2) + b2var(ε1)
(20)

and

F2 = N2b
2var(ε1)/N1[var(ε2) + b2var(ε1] (21)

Since both F1 and F2 are smaller than 1 for N2 < N1, we conclude that the TBR is
greater than one for N2 < N1, which means that it is beneficial to decompose the estimation
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task into two stages and use a higher number of samples, N1, to estimate the shared
component: cov(X, Z).

Expression (18) can be simplified using correlation coefficients, and gives:

TBR =
1 − ρ2

bρ
2

a

ρ2
a(1 − ρ2

b) + ρ2

b(1 − ρ2
a)N1/N2

(22)

where ρ2

a and ρ2

b are the squared correlation coefficients

ρ2

a =
cov2(XZ)

var(X)var(Z)
ρ2

b =
cov2(Y Z)

var(Y )var(Z)
(23)

For N2 = N1 we obtain Cox’s ratio (18) which quantifies the benefit of decomposition
alone, without transfer. The ratio greatly exceeds one when both ρ2

a and ρ2

b are small, and
approaches one when either or both of ρ2

a and ρ2

b are near one. This means that the benefit
of decomposition is substantial if and only if both processes are noisy, whereas if either one
of them comes close to being deterministic, decomposition has no benefit.

This is reasonable; there is no benefit to decomposition unless Z brings new information
which is not already in X or Y .

For N2 < N1, however, the TBR ratio represents the benefit of both decomposition and
transfer. For the ratio to greatly exceed one we now need that both ρ2

a and ρ2

b be small.
However, the TBR becomes unity (useless transfer) only when ρa is unity; ρb = 1 does
not render it useless. It means that transfer is useless only when the process in agreement
(X → Z) is deterministic. Having disagreement on a deterministic mechanism does not
make the transfer useless, as long as the process in agreement is corrupted by noise and can
benefit from the extra samples from Π.

Indeed, taking the extreme case of deterministic Z → Y process (ρb = 1), there is a
definite advantage to borrowing N1 samples from the source population to estimate a and
multiply it by b, rather than estimating c directly with the N2 samples available at the
target population. Two such samples can determine b precisely, and can hardly aid in the
estimation of a.

It is interesting to examine the limit of this ratio as N1/N2 increases indefinitely,
representing a mixture of two environments, one highly familiar (large N1) and one highly
novel (low N2). The limit of (22) reads:

TBR =
N2/N1→0

1 − ρ2

bρ
2

a

ρ2
a(1 − ρ2

b)
,

and reveals that the Transfer Benefit Ratio will be most significant when the populations
share noisy components (e.g., low correlation between X and Z) and differ in noiseless
components (high correlation between Y and Z.) Under such conditions, accurate
assessment of the target quantity c is highly vulnerable to inaccuracies in estimating the
relation between X and Z, and it is here that the many samples taken from Π can be most
beneficial.

These behaviors are illustrated in Fig. 2(abcd) for different values of N2/N1.
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Figure 2: Illustrating the behavior of the Transfer Benefit Ratio (Eq. (22)) for different values
of N2/N1 with X and Y axes representing ρa and ρb respectively. (a) N2/N1 = 1 (no transfer)
TBR represents the benefit of decomposition alone. (c) N2/N1 = 0.5 represents data sharing
between two equi-sampled studies. (d) N2/N1 = 0.1 showing a more pronounced benefit
near the ρb = 1 region, where the Z → Y process becomes noiseless. (f) the limit case when
N2/N1 → 0, sharing marked benefit throughout the ρb = 1 and ρa = 0 regions, and no
benefit near the ρb = 0, ρa = 1 corner.

4 Extension to Saturated Models

In Section 3, the benefit of transfer learning was demonstrated using an “over-identified”
model (Fig. 1) which embodied the conditional independence X⊥⊥Y |Z, and for which the
product estimator âb̂ was consistent. The question we explore in this section is whether
benefit can be demonstrated in “saturated” models as well (also called “just identified”),
such as the one depicted in Fig. 3.
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ε1

ε2
a b

X Y

Z

c

ε

Figure 3: Saturated model in which Y depends on both X and Z.

This model represents the following regression equations

Y = bz + cx + ε1

Z = ax + ε2

and the target quantity is again the total regression coefficient τ in the equation

y = τx + ε with cov(x, ε) = 0.

which is given by τ = cov(X, Y )/var(X) = c + ab.
Again, τ can be estimated in two ways:

1. A one-shot way: compute the OLS regression of Y on X, call this estimator τ̂ .

2. A two-shot way: compute the sum: θ̂ = ĉ+ âb̂ where â, b̂ and ĉ are the OLS estimators
of a, b, c respectively.

We now ask whether the variance of the composite estimator θ̂ will be smaller than the
one-shot estimator τ̂ , as we have seen in the over-identified model of Fig. 1. We further ask
whether data sharing would be beneficial in case a is the same in both population while b
and c are different.

Using an analysis similar to that of Section 3, one can show that the answer to the first
question is negative, while that of the second question is positive. In other words, we lose
the intrinsic advantage of decomposition, but we can still draw advantage from data sharing
if a is the same in the two populations. Formally, while the efficiency of the composite
estimator θ̂ = âb̂ + ĉ is identical to that of the one-shot estimator τ̂ ,4 the variance of the
former can be reduced if a is estimated using a larger sample than would be available to the
one-shot estimator. In particular, assuming that â is estimated using N1 samples and b̂, ĉ
and τ̂ using N2 samples, the asymptotic variances of θ̂ and τ̂ , can be obtained by the delta
method, and read:

var(ĉ + âb̂) = var(ε2)/N2var(X) + b2var(ε1)/N1var(X) (24)

var(τ̂) = b2var(ε1) + var(ε2)]/N2var(X) (25)

4The equality τ̂ = âb̂ + ĉ is a mathematical identity, which holds for all sample sizes, not merely for
asymptotic variance. I am indebted to Prof. Jinyong Hahn for demonstrating this fact. (See Hahn and
Pearl, 2011.)
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Consequently, the Transfer Benefit Ratio is given by

TBR = var(τ̂)/var(ĉ + âb̂)

= [1 − (1 − N2/N1)b
2var(ε1)/(b

2var(ε1) + var(ε2)]
−1 (26)

We see that for a single population and N1 = N2 decomposition in itself carries no benefit,
(TBR = 1); the one-shot estimator is as good as the two-shot estimator. This stands in
contrast to the over-identified model of Fig. 1, for which the TBR was greater than unity
(Eq. (22)) except in pathological cases. Moreover, the loss of benefit is not due to the
disappearance of over-identification conditions from the model, but due to the composite
estimator’s failure to detect and utilize such conditions when they are valid. This can be
seen from the fact that Eq. (26) (as well as the equality τ̂ = ĉ + âb̂) remains unaltered even
when c = 0. In other words, It is not the actual value of c that counts but the structure of
the estimator we postulate. If we are ignorant of the fact that c = 0 in the actual model and
go through the trouble of estimating τ by the sum ĉ + âb̂, instead of âb̂, the variance will be
greater than what we would have gotten had we detected the model structure correctly and
used the estimator τ̂ = âb̂ to reflect our knowledge.

For N2/N1 < 1 however, the picture changes dramatically; Eq. (26) demonstrates a
definite benefit to composite estimation (TBR > 1) which increases with var(ε2). The
intuition is similar to that given in Section 3. When the Z → Y process was almost
deterministic. we obtained TBR > 1 (even when Cox ratio was one). Here too, if the Y
equation is deterministic, we can estimate it precisely with just a few samples (N2) from
P ∗ and use additional (N1 −N2) samples for estimating the noisy X → Z process which is
common to both populations. The one-shot estimator will suffer from this noise if allowed
only N2 sample from P ∗.

5 Discussion and applications

In this section we summarize the preceding observations and speculate on their implications
in several areas of statistical estimation.

5.1 The benefit of decomposition

We note that the explanation given by Cox (1960) for the improved precision of the
composite estimator âb̂ (Fig. 1) is not complete. The role of the intermediate variable in
this model is not to reduce “the effect of random variation entering the system” but to
enable us to exploit the conditional independence Y ⊥⊥X|Z that constrains the data. This
can be seen by examining the composite estimator ĉ + âb̂ of the saturated model of Fig. 3,
in which the intermediate variable also reduces random variation entering the system and,
yet, it does not result in improved precision over the single-shot estimator. The two are in
fact identical (see footnote 4) even when c = 0 in the data-generating model.

Hahn and Pearl (2011) show that the superiority of composite estimators persists in
non-parametric models, for example, taking X, Y, and Z to be binary variables in the model
of Fig. 1. The superiority disappears however in the binary version of Fig. 3, which is
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saturated. It is tempting therefore to generalize and conjecture that composite estimators
will be found superior whenever they exploit structural information that is glossed over by
their non-composite counterparts.

5.2 Application to machine learning

The model described in Fig. 3 can serve as a skeleton for analyzing transfer learning in
classification tasks such as those described in the introduction section. Assume that X1 and
X2 are two sets of features and Y is a class label. Consider the following 3-phase learning
task:

1. An unsupervised “incubation” phase, where the classifier is given N1 unlabeled samples
from P (x1, x2).

2. A supervised training phase, where N2 labeled samples are drawn from P (y|x1, x2),
and

3. An execution phase, where the classifier is presented with instances of X1 and is asked
to classify Y accordingly.

In this task, the results of Section 3 are directly applicable, and Eq. 26 provides us, in
the case of linear models, an explanation and a quantification of the benefit expected from
the incubation phase. To make these results applicable to practical learning tasks, further
generalizations are required from linear to multi-variate semi-parametric models, as well as
a translation from variances to probabilities of misclassification.

The setup outlined above is not standard in machine learning, where it is usually
assumed that all features are presented to the classifier at the execution phase. However, if
we regard X2 to be low-level sensory inputs and X1 to be high-level abstract features (i.e.,
stochastic functions of X2), it is not unreasonable to expect that, at the execution phase,
the classifier will use only the features in X1 for its decision function, while delegating the
P (x1|x2) computation to auxiliary, special purpose machinery. In such settings, having an
accurate estimate of the relation P (x2|x1) serves to construct a more informed decision
function d: X1 → Y .

5.3 Applications to surrogate-endpoint analysis

In the health sciences, a problem area where transfer learning is both critical and implicit
is the analysis of surrogate endpoint. At its core, the problem concerns a randomized
trial where one seeks “endpoint surrogate,” namely, a variable Z that would allow good
predictability of an outcome Y for both treatment (X = 1) and control (X = 0). In the
words of Ellenberg and Hamilton (1989) “investigators use surrogate endpoints when the
endpoint of interest (e.g., life expectancy or survival) is too difficult and/or expensive to
measure routinely and when they can define some other, more readily measurable, endpoint
(a biological marker), which is sufficiently well correlated with the first to justify its use as
a substitute.”
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Putting aside debates on whether good prediction, void of causal mediation is sufficient
for the task (see Prentice, 1989; Joffe and Green, 2009; Pearl and Bareinboim, 2011; Pearl,
2011), the problem fits well into the model of Figs. 1 and 3. The task involves three phases:

1. A small number (N2) of samples are drawn gfrom P (y, z|x) (with X randomized) to
determine if Z promises to be a good predictor of Y .

2. A larger number (N1) of samples are drawn from P (z|x) to determine if X has a
sufficiently strong influence on Z.

3. Given the two tests above and their associated estimates, P (z|x) and P (y, z|x), an
estimate is then sought of P (y|x) which gives the causal effect of X on Y , since X is
randomized throughout.

In view of the relative sizes of the two samples involved, it is clear that a composite
estimate of P (y|x) would be superior to the one-shot estimator which can be obtained from
the N2 samples of phase-1. The analysis of Section 4 also teaches us that this superiority
increases when the output process is less noisy than the X → Z process. This unfortunately
is not the case in most practical applications.

5.4 Towards a compositional meta-analysis

Consider the diagrams depicted in Fig. 4, each representing a study conducted on a
different population and under a different set of conditions.5 Solid circles represent variables
that were measured in the respective study and hollow circles variables that remained
unmeasured. An arrow �→ represents an external influence affecting a mechanism by which
the study population is assumed to differ from the target population Π∗, shown in Fig.
4(a). For example, Fig. 1(c) represents an observational study on population Πc in which
variables X, Z and Y were measured, W was not measured and the prior probability Pc(Z)
differs from that of the target population P ∗(Z). Diagrams (b)–(f) represent observational
studies while (g)–(j) stand for experimental studies with X randomized (hence the missing
arrows into X).

Despite differences in populations, measurements and conditions, each of the studies
may provide information that bears on the target relation R(Π∗) which, in this example,
we take to be the causal effect of X on Y , P ∗(y|do(x)) or; given the structure of Fig. 4(a),

R(Π∗) = P ∗(y|do(x)) =
∑

z

P ∗(y|x, z)P ∗(z).

While R(Π∗) can be estimated directly from some of the studies, (e.g., (g)) and indirectly
from others (e.g., (b) and (d)), it cannot be estimated from those studies in which the
population differs substantially from Π∗, (e.g., (c), (e), (f)). The estimates of R provided by
the former studies may differ from each other due to sampling variations and measurement
errors, and can be aggregated in the standard tradition of meta analysis. The latter studies,
however, should not be averaged with the former, since they do not provide unbiased

5These diagrams were defined in Pearl and Bareinboim (2011), where they are called selection diagrams.
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Figure 4: Diagrams representing 8 studies ((b)–(i)) conducted under different conditions on
different populations, aiming to estimate the causal effect of X on Y in the target population,
shown in 4(a).

estimates of R. They are not totally useless, though, for they can provide information that
renders the former estimates more accurate. For example, although we cannot identify R
from study 4(c), since Pc(z) differs from P ∗(z), we can nevertheless use the estimates of
Pc(x|z), Pc(y|z, x) that 4(c) provides to improve the accuracy of P ∗(x|z) and P ∗(y|z, x)6

which may be needed for estimating R by indirect methods. For example, P ∗(y|z, x) is
needed in study 4(b) if we use the estimator R =

∑
z P ∗(y|x, z)P ∗(z), while P ∗(x|z) is

needed if we use the inverse probability estimator R =
∑

z P ∗(x, y, z)/P ∗(x|z).
Similarly, consider the randomized studies depicted in 4(h) and 4(i). None is sufficient

for identifying R in isolation, yet taken together, they permit us to borrow Pi(w|do(x))

6The absence of boxed arrows into X and Y in Fig. 4(c) implies the equalities

Pc(x|z) = P ∗(x|z) and Pc(y|z, x) = P ∗(y|z, x).
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from 4(i) and Ph(y|w, do(x)) from 4(h) and synthesize a bias-free estimator:

R =
∑

w

P ∗(y|w, do(x))P ∗(w|do(x))

=
∑

w

Ph(y|w, do(x)Pi(w|do(x))

The challenge of synthetic meta analysis is to take a collection of studies, annotated
with their respective selection diagrams (as in Fig. 4), and construct an estimator of a
specified relation R(Π∗) that makes maximum use of the samples available, by exploiting
the commonalities among the populations studied and the target population Π∗. As the
relation R(Π∗) changes, the synthesis strategy will change as well.

I speculate that data-pooling strategies based on the principles outlined in this paper
will one day replace the blind methods currently used in meta analysis.
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