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Abstract

In choosing covariates for adjustment or inclusion in propensity
score analysis, researchers must weigh the benefit of reducing con-

founding bias carried by those covariates against the risk of amplify-
ing residual bias carried by unmeasured confounders. The latter is

characteristic of covariates that act like instrumental variables (IV);
that is, variables that are more strongly associated with the exposure

than with the outcome (1). In this issue of the journal, Myers et
al. (2) compare the bias amplification of a near-IV confounder with

its bias-reducing potential and suggest that, in practice, the latter
outweighs the former. This commentary sheds broader light on this

comparison by considering the cumulative effects of conditioning on
multiple covariates, and showing that bias amplification may build up
at a faster rate than bias reduction. We further derive a partial or-

der on sets of covariates which reveals preference for conditioning on
outcome-related, rather than exposure-related confounders.

1 THE PHENOMENON OF BIAS AMPLI-

FICATION

This commentary deals with a class of variables that, if conditioned on, tend
to amplify confounding bias in the analysis of causal effects. This class,
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independently discovered by Bhattacharya and Vogt (3) and Wooldridge (4),
includes instrumental variables (IV) and variables that have greater influence
on exposure than on the outcome (1).

I am pleased to see that the phenomenon of bias amplification, which
until recently was practically unknown to researchers in the health sciences,
has received a thorough and comprehensive treatment by Myers et al. (2)
confirming and qualifying several theoretical predictions derived in Pearl (1)
and White and Lu (5).

I am particularly struck by Myers et al.’s description of the “hip fracture”
study of Patrick et al. (6) in which “the strength of the IV-exposure relation
in this example made the IV easy to identify and remove by investigators.”
This awareness that strong predictors of exposure may be a source of trou-
blesome bias is perhaps the most significant impact that the theory of bias
amplification has had thus far because, as Myers et al. point out, it goes
against conventional wisdom. Hirano and Imbens (7), for example, devote
a major effort to choosing the strongest possible predictors for propensity
score inclusion, and Rubin (8) regards the very idea of leaving observed co-
variate unconditioned on as a “non-scientific ad hockery.” (See (9) for an
explanation.)

In this commentary, I supplement the discussion of Myers et al. with a
couple of observations that might shed additional light on their conclusions,
especially as they pertain to the cumulative effect of multiple near-IV con-
founders, and the problem of selecting a reasonable set of covariates from a
massive host of promising candidates.

2 BIAS AMPLIFICATION WITH MULTI-

PLE COVARIATES

Let us examine the simple IV model depicted in Figure 1(a), assuming a
zero-mean, unit-variance standardization. If we retrace the derivation of the
association between X and Y conditional on Z,

E(Y |X = x + 1, Z = z)− E(Y |X = x, Z = z) = γ0 +
α0β0

1− α2

1

(1)

we find that this formula holds not only for a perfect IV but also for a near-IV
as the one depicted in Figure 1(b) (see (1)). Allowing a confounding path
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Figure 1: (a)Linear model with instrumental variable Z and confounder U .
(b) A near-instrumental variable Z that is also a confounder.

to extend from Z to Y , will only change the crude association, which will
increase from γ0 +α0β0 to γ0 +α0β0 +α1β1, to reflect the added confounding
path X ← Z → Y .

Now consider a system of multiple confounders, such as the one depicted
in Figure 2, where each covariate intercepts a distinct confounding path be-
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Figure 2: Illustrating a linear model with multiple covariate (Z1, and Z2)
and an unobserved confounder U .

tween X and Y , and for which the crude bias (without any conditioning)
is

B0 = α0β0 + α1β1 + α2β2 (2)

3



If we condition on Z1, two modifications are required. First, the path con-
taining Z1 will no longer contribute to confounding and, second, whatever
bias is contributed by the remaining paths, namely α0β0 + α2β2, will be am-
plified by a factor (1− α2

1
)−1, reflecting the decreased variance of X due to

fixing Z1. Overall, the bias remaining after conditioning on Z1 will read:

B(Z1) =
α0β0 + α2β2

1− α2

1

(3)

Further conditioning on Z2 will remove the factor α2β2 from the numerator
(deactivating the path X ← Z2 → Y ) and will replace the denominator by
the factor (1−α2

1
−α2

2
) representing the reduced variance of X, due to fixing

both Z1 and Z2. The resulting bias will be:

B(Z1, Z2) =
α0β0

(1− α2

1
− α2

2
)

(4)

We see the general pattern that characterizes sequential conditioning on
sets of covariates, organized as in Figure 2. The bias B(Z) remaining after
conditioning on a set Z = (Z1, Z2, . . . , Zk−1, Zk) is given by the formula:

B(Z) =
B0 − α1β1 − α2β2 − . . .− αkβk

(1− α2

1
− α2

2
− . . .− α2

k
)]

(5)

which reveals two distinct patterns of progression; one representing confound-
ing reduction (shown in the numerator) and one representing IV amplification
(shown in the denominator). The latter increases monotonically while the
former progresses nonmonotonically, since the signs of the added terms may
alternate. Thus, the cumulative effect of sequential conditioning has a built-
in slant towards bias amplification as compared to confounding reduction;
the latter is tempered by sign cancellations, the former is not.

In deriving equation 5, we assumed that no Zk is a collider, that each Zk

has a distinct path characterized by αk and that the Zk’s are not correlated.
In a general graph, where multiple paths may traverse each Zk, B(Z) will
read:

B(Z) =
B−

0
(k)

(1− α′2

1
− α′2

2
− . . .− α′2

k
)

(6)

where B−

0
(k) represents the crude bias B0 modified by conditioning on

(Z1, Z2, . . . , Zk−1, Zk), and α′

k
is the coefficient of Zk in the regression of
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Figure 3: The model used by Myers et al. for studying near-IV’s. The pa-
rameter γ1 contributes to confounding as well as to bias amplification.

X on (Z1, Z2, . . . , Zk−1, Zk). For example, in model 5 of Myers et al. (2)
(shown in Figure 3), the crude bias is

B(0) = α2γ1β1 + α1β1 (7)

while the bias remaining after conditioning on Z reads:

B(Z) =
α1β1(1− γ2

1
)

1− (α2 + γ1α1)2
(8)

The numerator is obtained by setting α2 = 0 in equation 7 and multiplying
the remaining term by (1 − γ2

1
), to account for the effect that conditioning

on Z has on the path X ← U → Y . The denominator invokes the factor
α′ = (α2 + γ1α1) which is the regression coefficient of X on Z.

We see that, in this model, γ1 controls simultaneously the reduction of
confounding bias and the amplification of residual bias, both caused by con-
ditioning on Z. Myers et al. (2) assumed that γ1 controls the former only.

In examining the extent to which these results generalize to non-linear
models, it was shown (1) that, while in linear systems conditioning on an IV
always amplifies confounding bias (if such exists), bias in non-linear systems
may be amplified as well as attenuated. Additionally, an IV may introduce
new bias where none exists. This can be demonstrated if we introduce an
interaction term into the model of Figure 1(a), to read:

Y = γ0X + β0U + δXU + ε.
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With this modification, equation 1 becomes:

E(Y |X = x+1, Z = z)−E(Y |X = x, Z = z) = γ0+
α0(β0 + δ(2x + 1− α1z))

1− α2

1

(9)
while the crude association becomes:

E(Y |X = x + 1)− E(Y |X = x) = γ0 + α0(β0 + δ(2x + 1)). (10)

The resulting z-adjusted bias therefore reads

B(Z = z) =
B0 − α0α1δz

1− α2

1

where B0 is the unadjusted bias.
We see that, if B0 ≥ 0 and α0α1δz > 0, we can get |Bz| < |B0|. This

means that conditioning on Z may reduce confounding bias, even though Z
is a perfect instrument and both Y and X are linear in U . Note that, owed
to the non-linearity of Y (x, u), the conditional bias depends on the value of
Z and, moreover, for Z = 0 we obtain the same bias amplification as in the
linear case (equation 1).

We also see that conditioning on Z can introduce bias where none exists.
But this occurs only for a specific value of X,

x = −(1 + β0/δ)/2,

a condition that yields B0 = 0 and |Bz| > 0.

3 ON THE CHOICE BETWEEN EXPOSURE-

RELATED AND OUTPUT-RELATED CO-

VARIATES

Investigators are often faced with the need to adjust for a large number of
potential confounders, some are strongly related to exposure and some are
more related to the output. Since estimation efficiency usually deteriorates
with the number of covariates involved, the question arises which subset of
potential confounders should one choose to measure and control (see discus-
sions in Day et al. (10), Thomas and Greenland (11), Hill (12), Austin (13),
Pearl (9) White and Lu (5), Patrick et al. (6), and Myers et al. (2)).
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Figure 4: Adjustment for an output-related covariate (T ) is preferred to ad-
justment for treatment-related covariate (Z) or both (Z, T ). The former has
a lower bias-amplification potential than the latter two when U is unobserved.

Figure 4 represents this choice formally, where T represents output-related
covariates, Z represents exposure-related covariates, and U represents un-
measured confounders. We ask which set of variables should be chosen for
adjustment, {Z}, {T} or {Z, T}? Morgan and Winship (14, p. 83) raise the
same question, and they state a preference for {Z, T}.

Intuitively, since Z is “closer” to X, it acts more like an instrument than
T , and one would expect T to yield a lower bias. Indeed, substituting the
proper parameters for αk and βk in equation 5 confirms this preference; the
biases obtained for Z and T are:

B(Z) =
β0α0

(1− α2

Z
)

(11)

and

B(T ) =
β0α0

(1− α2

Z
γ2)

(12)

with clear advantage to T over Z.
As to the set {Z, T}, from equation 6 and the fact that the coefficient of

T in the regression of X on Z and T vanishes, we conclude that conditioning
on {Z, T} would have the same bias as conditioning on Z alone. This can
also be seen from the theory of collapsibility and confounding-equivalence
(15) since X⊥⊥{Z, T}|Z.

Equations 5 and 6 induce a total order on covariate sets which, in theory,
can be used to determine (in linear systems) which among several candidate
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sets of covariates will result, upon adjustment, in the lowest bias. These
equations are not estimable of course from the data because, first, the resid-
ual bias α0β0 is not estimable and, second, the graph structure is generally
unknown. However, given a theoretically plausible graph structure, a partial
order can be derived which is independent on the numerical values of the
parameters. The idea is to compare sets that are known to give rise to the
same numerator and for which one denominator is guaranteed to be greater
than the other for all values of αk’s. We have seen such a preference derived
in equations 11 and 12, yet a more general condition for preferring set T over
Z can be established by this logic, leading to the following rule:

A set T is preferred to Z if

(i) T blocks all paths between Y and Z that do not traverse
X, and

(ii) T does not block all paths between Z and X.

These two conditions are clearly satisfied in Figure 4. Complementing
this partial order, Pearl and Paz (15) established a necessary and sufficient
condition for two sets to be equally meritorious for bias reduction.

Thus far, our discussion was focused on adjustment and its effect on sys-
tematic bias, yet the harmful effects of overadjustment on precision is not
less important and has been recognized by epidemiologists for at least three
decades (10–11). Remarkably, the ordering dictated by precision consider-
ations coincides almost exactly with that dictated by consideration of bias
amplification. Based on a result by Hahn (16), and assuming no unmeasured
confounders, White and Lu (5) derived a partial order on covariates in terms
of the asymptotic variance of the effect estimand. This ordering prefers co-
variates that do not constrain X – the more independent variation there is
in the exposure, the more efficient the resulting estimator. The intuition is
clear, the more latitude we allow X to swing away from its baseline value, the
less samples are needed to reveal the effect of that swing. Referring to Figure
4 with α0 = 0 (no measured confounders) White and Lu (5) show that the
asymptotic variance of the estimators of γ0 obtained by conditioning on T
alone is lower than that obtained by conditioning on both T and Z, and the
latter is lower than that obtained by conditioning on Z alone. This further
reinforces the idea that conditioning on factors affecting X (or their proxies)
is to be avoided if possible.
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4 CONCLUSIONS AND RELATED OBSER-

VATIONS

The study of Myers et al. confirms the general conclusions of Bhattacharya
and Vogt (3), Wooldridge (4), Pearl (1) and White in Lu (5) that (i) strong
predictors of exposure should be excluded from the analysis, (ii) factors af-
fecting outcome (or their proxies) are safer and more effective bias reducers
than those affecting exposure and (iii) consideration of covariate selection
should be grounded in structural assumptions; they cannot be left at the
mercy of conventional wisdom, however entrenched.

Myers et al. ’s conclusions that, under conditions prevailing in practice,
the bias-reducing potential of a near-IV outweighs its bias-amplification po-
tential should be re-evaluated in light of the way that bias accumulates in
sequential conditioning over large sets of potential confounders. The fact
that bias amplification increases monotonically while confounding reduction
progresses nonmonotonically, moderated by cancellation of positive and neg-
ative confounding paths, may result in a more pronounced effect of bias
amplification than the one revealed by studying a single covariate.

The partial preference order established in Section 4 on subsets of can-
didate covariates, though requiring basic knowledge of the graph structure,
should not be easily dismissed. The basic scientific knowledge required for
this determination is often far more accessible than the knowledge needed
for substantiating assumptions such as “strong ignorability,” which underly
much of the propensity-score practice.

I would like to end this commentary with a related observation that may
inspire additional investigations into the use of instrumental variables. In
view of the amplification effect of IV’s on confounding bias, one may surmise
that a similar effect can be expected vis-à-vis selection bias, namely, bias
caused by preferential selection of samples into the study dataset as in case-
control studies. This however is not the case. Conditioning on Z has no effect
whatsoever on selection-induced bias unless selection is determined by causes
of X (1). Moreover, Bareinboim and Pearl (17) have shown that the use of
an IV can, under certain weak conditions, eliminate selection bias altogether.
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