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Abstract

Selection bias, caused by preferential exclu-
sion of samples from the data, is a major
obstacle to valid causal and statistical infer-
ences; it cannot be removed by randomized
experiments and can hardly be detected in
either experimental or observational studies.
This paper highlights several graphical and
algebraic methods capable of mitigating and
sometimes eliminating this bias. These non-
parametric methods generalize previously re-
ported results, and identify the type of knowl-
edge that is needed for reasoning in the pres-
ence of selection bias. Specifically, we derive a
general condition together with a procedure
for deciding recoverability of the odds ratio
(OR) from s-biased data. We show that re-
coverability is feasible if and only if our condi-
tion holds. We further offer a new method of
controlling selection bias using instrumental
variables that permits the recovery of other
effect measures besides OR.

1 Introduction

Selection bias is induced by preferential selection of
units for data analysis, usually governed by unknown
factors including treatment, outcome and their con-
sequences. Case-control studies in Epidemiology are
particularly susceptible to such bias, e.g., cases may be
reported only when the outcome (disease or complica-
tion) is unusual, while non-cases remain unreported
(see (Glymour and Greenland, 2008; Robins et al.,
2000; Robins, 2001; Hernán et al., 2004)).
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To illuminate the nature of this bias, consider the
model of Fig. 1 (a) in which S is a variable affected
by both X (treatment) and Y (outcome), indicating
entry into the data pool. Such preferential selection to
the pool amounts to conditioning on S, which creates
spurious association between X and Y through two
mechanisms. First conditioning on S induces spurious
association between its parents, X and Y . Second, S is
also a descendant of a “virtual collider” Y , whose par-
ents are X and the error term UY (also called “omitted
factors” or “hidden variable”) which is always present,
though often not shown in the diagram.1

A medical example of selection bias was reported in
(Horwitz and Feinstein, 1978), and subsequently stud-
ied in (Hernán et al., 2004; Geneletti et al., 2009), in
which it was noticed that the effect of Oestrogen (X)
on Endometrial Cancer (Y ) was overestimated in the
data studied. One of the symptoms of the use of Oe-
strogen is vaginal bleeding (W ) (Fig. 1(c)), and the
hypothesis was that women noticing bleeding are more
likely to visit their doctors, causing women using Oe-
strogen to be overrepresented in the study.

In causal inference studies, the two most common
sources of bias are confounding (Fig. 1(b)) and selec-
tion (Fig. 1(a)). The former is a result of treatment X
and outcome Y being affected by a common omitted
variables U, while the latter is due to treatment or out-
come (or its descendants) affecting the inclusion of the
subject in the sample (indexed by S). In both cases, we
have unblocked extraneous “flow” of influence between
treatment and outcome, which appear under the rubric
of “spurious correlation.” It is called spurious because
it is not part of what we seek to estimate – the causal
effect of X on Y in the target population. In the case of
confounding, bias occurs because we cannot condition
on the unmeasured confounders, while in selection, the
distribution is always conditioned on S.

1See (Pearl, 2009, pp. 339-341) for further explanation
of this bias mechanism.
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Formally, the distinction between these biases can be
articulated thus: confounding bias is any X − Y as-
sociation that is attributable to selective choice of
treatment, while selection bias is any association at-
tributable to selective inclusion in the data pool. Op-
erationally, confounding bias can be eliminated by ran-
domization – selection bias cannot. Given this distinc-
tion, the two biases deserve different qualitative treat-
ment and entail different properties, which we explore
in this paper. Remarkably, there are special cases in
which selection bias can be detected even from obser-
vations, as in the form of a non-chordal undirected
component (Zhang, 2008).

As an interesting corollary of this distinction, it was
shown (Pearl, 2010) that confounding bias, if such ex-
ists, can be amplified by conditioning on an instrumen-
tal variable Z (Fig. 1(d)). Selection bias, on the other
hand, remains invariant under such conditioning.

We will use instrumental variables for the removal of
selection bias in the presence of confounding bias, as
shown in the scenario of Fig. 1(f). Whereas instru-
mental variables cannot ensure nonparametric identi-
fication of average causal effects, they can help provide
reasonable bounds on those effects as well as point es-
timates in some special cases (Balke and Pearl, 1997).
Since the bounding analysis assumed no selection bias,
the question arises whether similar bounds can be de-
rived in the presence of selection bias. We will show
that selection bias can be removed entirely through
the use of instrumental variables, therefore, the bounds
on the causal effect will be narrowed to those obtained
under the selection-free assumption.

This result is relevant in many areas because selection
bias is pervasive in almost all empirical studies, in-
cluding Machine Learning, Statistics, Social Sciences,
Economics, Bioinformatics, Biostatistics, Epidemiol-
ogy, Medicine, etc. For instance, one version of selec-
tion bias was studied in Economics, and led to the
celebrated method developed by (Heckman, 1970). It
removes the bias through a two-step process which as-
sumes linearity, normality and, a probabilistic model
of the selection mechanism.

Machine learning tasks suffer from a similar prob-
lem when training samples are selected preferentially,
depending on feature-class combinations that differ
from those encountered in the target environment
(Zadrozny, 2004; Smith and Elkan, 2007; Storkey,
2009; Hein, 2009).

In Epidemiology, the prevailing approach is due to
James Robins (Robins et al., 2000; Hernán et al.,
2004), which assumes knowledge of the probability of
selection given treatment. In some special cases, this
probability can be estimated from data, requiring a
record, for each treatment given, whether a follow up
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Figure 1: Different scenarios considered in this paper.
(a,b) Simplest examples of selection and confounding
bias, respectively. (c) Typical study with intermediary
variable W between X and selection. (d) Instrumen-
tal variable with selection bias. (e) Selection combined
with confounding. (f) Instrumental variable with con-
founding and selection bias simultaneously present.

outcome (Y ) is reported or not. We do not rely on such
knowledge in this paper but assume, instead, that no
data of treatment or outcome is available unless a case
is reported (via S).

Contributions

Our contributions are as follows. In Section 2, we give
a complete graphical condition under which the popu-
lation odds ratio (OR) and a covariate-specific causal
odds ratio can be recovered from selection-biased data
(Theorem 1). We then devise an effective procedure for
testing this condition (Theorem 2, 3). These results,
although motivated by causal considerations, are ap-
plicable to classification tasks as well, since the process
of eliminating selection bias is separated from that of
controlling for confounding bias.

In Section 3, we present universal curves that show the
behavior of OR as the distribution P (y | x) changes,
and how the risk ratio (RR) and risk difference (RD)
are related to OR. We further show that if one is inter-
ested in recovering RR and RD under selection bias,
knowledge of P (X) is sufficient for recovery.

In Section 4, we advance for other measures of effects
besides odds ratio, and show that even when confound-
ing and selection biases are simultaneously present
(Fig. 1(e)), the latter can be entirely removed with
the help of instrumental variables (Theorem 4). This
result is surprising for two reasons: first, we generally
do not expect selection bias to be removable; second,
bias removal in the presence of confounding is gener-
ally expected to be a more challenging task. We finally
show how this result is applicable to scenarios where
other structural assumptions hold, for instance, when
an instrument is not available but a certain back-door
admissible set can be identified (Corollary 4).
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2 Selection bias in a chain structure
and its graphical generalizations

The chain structure of Figure 2(a) is the sim-
plest structure exhibiting selection bias. The intuition
gained from analyzing this example will serve as a basis
for subsequently treating more complicated structures.

Consider a study of the effect of a training program
(X) on earnings after 5 years of completion (Y ), and
assume that there is no confounding between treat-
ment and outcome. Assume that subjects achieving
higher income tend to report their status more fre-
quently than those with lower income. The qualitative
causal assumptions are depicted in Fig. 2(a). Given
that all available data is obtained under selection bias,
is the unbiased odds ratio recoverable?

To address this problem, we explicitly add a variable S
to represent the selection mechanism, and assume that
S = 1 represents presence in the sample, and zero oth-
erwise. We will refer to samples selected by such mech-
anism as “s-biased”. A similar representation was used
in (Cooper, 1995; Lauritzen and Richardson, 2008;
Geneletti et al., 2009; Didelez et al., 2010). In the
chain structure of Fig. 2(a), X is d-separated from
S by Y , which implies the conditional independence
(X ⊥⊥ S | Y ), and encodes the assumption that entry
to the data pool is determined by the outcome Y only,
not byX. We define next some key concepts used along
the paper and state some results that will support our
analysis.

Definition 1 (Odds ratio). Consider two variables
X and Y and a set Z, the conditional odds ratio
OR(Y,X | Z = z) is given by the ratio:

(
Pr(y |

z, x′)/Pr(y′ | z, x′)
)
/
(
Pr(y | z, x)/Pr(y′ | z, x)

)
.

OR(Y,X | Z) measures the strength of association be-
tween X and Y conditioned on Z and it is symmetric,
i.e., OR(Y,X | Z) = OR(X,Y | Z).

Definition 2 (G-Recoverability). Given a graph G,
OR(X,Y | Z) is said to be G-recoverable from s-
biased data if the assumptions embedded in G renders
it expressible in terms of the observable distribution
P (Vxy | S = 1) where Vxy = V \ {S}. Formally, for
every two probability distributions P1(.) and P2(.) com-
patible with G, P1(vxy =| S = 1) = P2(vxy | S = 1)
implies OR1(X,Y | Z) = OR2(X,Y | Z).

Definition 3 (Collapsibility). Consider two variables
X and Y and disjoint sets Z and W. We say that
the odds ratio OR(X,Y | Z,W) is collapsible over
W if OR(X,Y | Z = z,W = w) = OR(X,Y |
Z = z,W = w′) = OR(X,Y | Z = z), for all w 6= w′.

Definition 3 and the following Lemma are stated in
(Didelez et al., 2010) and are based on long tradition
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Figure 2: (a) Chain graph where X represents treat-
ment, Y is the outcome, and S an indicator variable
for the selection mechanism. (b) Scenario where there
exists a blocking set from {X,Y } to S yet the OR is
not G-recoverable. (c) Example where the c-specific
OR is G-recoverable.

in Epidemiology starting with (Cornfield, 1951) and
followed by (Whittemore, 1978; Geng, 1992).2

Lemma 1. For any two sets, Z and W, the condi-
tional odds ratio OR(Y,X | Z,W) is collapsible over
W (that is, OR(Y,X | Z,W) = OR(Y,X | Z)), if
either (X ⊥⊥W | {Y,Z}) or (Y ⊥⊥W | {X,Z}).

The following Corollary provides a graphical test for
G-recoverability (Def. 2) based on Lemma 1:

Corollary 1. Given a graph G in which node S rep-
resents selection, the OR(X,Y | Z) is G-recoverable
from s-biased data if Z is such that (X ⊥⊥ S | {Y,Z})G
or (Y ⊥⊥ S | {X,Z})G.

There is an important subtlety here. One might sur-
mise that selection bias of OR(X,Y ) can be removed
if the condition of Corollary 1 holds, i.e., there exists
a separating set Z such that (X ⊥⊥ S | {Y,Z})G or
(Y ⊥⊥ S | {X,Z})G, but this is not the case. Consider
Fig. 2(b) where the set Z d-separates {X,Y } from
S and therefore permits us to remove S by writing
OR(X,Y | Z, S = 1) as OR(X,Y | Z), yet the uncon-
ditional OR is not G-recoverable because we cannot
re-apply the condition of Corollary 1 to eliminate Z
from OR(X,Y | Z). Moreover, the resulting quantity,
OR(X,Y | Z), though estimable for every level Z = z,
does not represent a meaningful relation for decision
making or interpretation, because it does not stand
for a causal effect in a stable subset of individuals (see
discussion about the causal OR at the end of this sec-
tion). Since Z is X-dependent in G, the class of units
for which Z = z under do(X = 1) is not the same as
the class of units for which Z = z under do(X = 0).
The conditional odds ratio OR(X,Y | Z) would be
meaningful only if Z is restricted to pre-treatment co-
variates, which are X-invariant, hence stable.

2Cornfield’s result and some of its graphical ramifica-
tions were brought to our attention by Sander Greenland.
See also (Greenland and Pearl, 2011).
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We next introduce a criterion, followed by a proce-
dure to decide whether it is legitimate to replace Z
with a set C of pre-treatment covariates, for which
OR(Y,X | C) is a meaningful c-specific causal ef-
fect. Typical examples of c-specific effects would be
C = {age, sex} or, when average behavior is desired,
C = {}.
Definition 4 (OR-admissibility). A set Z =
{Z1, ..., Zn} is OR-admissible relative to an ordered
triplet (X,Y,C) whenever an ordering (Z1, ..., Zn)
exists such that for each Zk, either (X ⊥⊥ Zk |
C, Y, Z1, ..., Zk−1) or (Y ⊥⊥ Zk | C, X, Z1, ..., Zk−1).

Corollary 2 (Didelez et al. (2010)). OR-admissibility
of Z implies OR(Y,X | C,Z) = OR(Y,X | C).

This Corollary follows by successive application of
Lemma 1 to the elements Z1, ..., Zn of Z.

Theorem 1 (OR G-recoverability). Let graph G con-
tain the arrow X → Y and a set C of measured
X-independent covariates. The c-specific odds ratio
OR(Y,X | C) is G-recoverable from s-biased data if
and only if there exists an additional set Z of mea-
sured variables such that the following conditions hold
in G:

1. (X ⊥⊥ S | {Y,Z,C})G or (Y ⊥⊥ S | {X,Z,C})G.

2. Z is OR-admissible relative to (X,Y,C).

Moreover, OR(Y,X | C) = OR(Y,X | C,Z, S = 1). 3

Proof. See the supplementary material.

Note that unlike the control of confounding, which re-
quires averaging over the adjusted covariates, a single
instantiation of the variables in Z is all that is needed
for removing selection bias.

Let us consider the causal story of section 1 concern-
ing the effect of Oestrogen (X) on Endometrial Cancer
(Y ) as depicted in in Fig. 1(c). This problem is solv-
able by setting Z = {W} and applying Theorem 1 – we
can readily verify that Z is OR-admissible relative to
(X,Y, {}) (i.e., (W ⊥⊥ Y | X)), and (X ⊥⊥ S | {Y,W})
holds. Thus, we can write OR(Y,X) = OR(Y,X |
W ) = OR(X,Y | W ) = OR(X,Y | W,S = 1), which
shows a mapping from the target (unbiased) quantity
(without any S) to the s-biased data (conditioned on
S = 1, which was measured). (In the sequel we will

3This Theorem builds on and extends the results in
(Didelez et al., 2010) which are summarized by Definition
4 and Corollary 2. First, it supplements the sufficient con-
dition with its necessary counterpart. This is made possi-
ble by defining G-recoverability in terms of identifiability
(Def. 2). Second, Theorem 1 explicitly avoid meaningless
ORs (i.e., OR(X,Y | Z), where Z is X-dependent). Finally,
the proof of the sufficiency part prepares the ground for a
procedure for finding an admissible sequence if such exists,
to be shown next.
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Figure 3: Scenario where OR is G-recoverable and Z =
{W1,W2,W4} (a), and it is not G-recoverable in (b).

drop G finding no need to distinguish conditional in-
dependencies from d-separation statements.) 4

Theorem 1 defines the boundary that distinguishes the
class of graphs that permit G-recoverability of OR
from those that do not. To show the power of The-
orem 1, let us consider the more intricate scenario of
Fig. 3(a), in which Z = {W1,W2,W4} satisfies the
conditions of Theorem 1. This can be seen through
the following sequence of reductions verified by the
graph: (X ⊥⊥ S | {Y,W1,W2,W4}) → (Y ⊥⊥ W2 |
{X,W1,W4}) → (X ⊥⊥ W1 | {Y,W4}) → (Y ⊥⊥ W4 |
X). The final result is

OR(Y,X) = OR(Y,X |W1,W2,W4, S = 1)

where the term on the left is our target quantity
and the one on the right is estimable from the s-
biased data. Fig. 3(b) shows an example where OR
is not G-recoverable, because we must start with Z =
{W1,W2,W3,W4} or Z = {W1,W3,W4} to separate
S from X or Y , respectively – these two sets are not
OR-admissible since each set contains the variable W3

which cannot be separated from X or Y by any set.

Theorem 1 relies on OR-admissibility, for which Defi-
nition 4 gives a declarative, non-procedural criterion.
Taken literally, it requires that we first find a proper
Z and then, out of the n! orderings of the elements
in Z, find one that will satisfy the d-separation tests
specified in Definition 4. We will now supplement The-
orem 1 with a simple graphical condition, followed by
an effective procedure for finding such a sequence if
one exists.

Theorem 2. Let graph G contain the arrow X →
Y , a necessary condition for G to permit the G-
recoverability of OR(Y,X | C) for a given set C of
pre-treatment covariates is that S and every ancestor
Ai of S that is also a descendant of X have a separat-

4Furthermore, the graph symmetric to Fig. 1(c) where
the positions of X and Y are interchanged yields the same
result. Similarly, another common variant of Fig. 1(c), with
the edge X → W reversed, is solvable as well.
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ing set Ti that either d-separates Ai from X given Y ,
or d-separates Ai from Y given X. 5

Proof. See the supplementary material.

Theorem 3. Let G be a DAG containing the arrow
X → Y and two sets of variables, measured V and
unmeasured U. A necessary and sufficient condition
for G to permit the G-recoverability of OR(Y,X | C)
for a given set C of pre-treatment variables is when the
sink-procedure below terminates. Moreover, OR(Y,X |
C) = OR(Y,X | C,Z,T, S = 1), where Z =

(
An(S) \

An(Y )
)
∩V and T is given by the sink-procedure.

Procedure (Sink reduction)

1. Set T = {}, and consider Z as previously defined.
Remove V \ An(Y ∪ S) from G, and name the
new graph G∗. Consider an ordering compatible
with G∗ such that Zi < Zj whenever Zi is non-
descendant of Zj .

2. Test if sink Zi of G∗ satisfies the following con-
dition: (Zi ⊥⊥ X | C, T, Y, Z1, ..., Zi − 1) or (Zi ⊥
⊥ Y | C, T,X,Z1, ..., Zi − 1). If so, go to step 4.
Otherwise, continue.

3. Test if there exists a minimal set Ti of non-
descendants of X that, if added to T would render
step 2 successful, if none exists, exit with failure.5

Else, add Ti to T and continue with step 4.

4. Remove Zi from G∗ and Z, and repeat step 2
recursively until Z is empty. If so, go to step 5.

5. Test if (T ⊥⊥ Y | C, X), if so, the sequence
(Z1, Z2, ...Zm) with T constitutes a witness for
the OR-admissibility of Z relative to (X,Y,C),
for a set C of X-independent variables. Other-
wise, exit with failure.

Proof. See the supplementary material.

The algorithm exploits the graph structure to con-
struct a mapping from the observed s-biased data and
the desired target OR. Since the OR is symmetric,
it is not necessary to separate S from X and Y si-
multaneously, but only from one of them (given the
other.) For simplicity, denote the expression “X given
Y or Y given X” by the symbol Φxy. A separating set

5A polynomial time algorithm for finding a minimal sep-
arating set in DAGs is given in (Tian et al., 1998). The re-
stricted minimal separation version of that algorithm finds
a minimal separator in a DAG with latent variables (equiv-
alently, semi-Markovian models). A fast test for the non-
separability of X and Ai is the existence of an inducing
path between the two variables (Verma and Pearl, 1990).
For example, the path X → W4 → W3 in Fig. 3(b).

from S to Φxy is first sought in step 2, starting with
all observable ancestors of S that are non-ancestors
of Y . If the test succeeds and this set is a separator,
the algorithm iterates trying to separate Φxy from the
deepest node in the remaining set. In case of failure,
the algorithm attempts (step 3) to achieve separability
using pre-treatment covariates Ti. In case no separa-
bility can be found using these added covariates, the
algorithm fails. Otherwise, at the end, the algorithm
further requires that all Ti added along these itera-
tions be separable from Y (step 5).

To illustrate, running the procedure on the graph of
Fig. 3(b) with C = {}, the graph remaining after the
removal of S has two sink nodes, W2 and W3. Remov-
ing W2 leaves two other sinks, W3, and W1. Removing
W1 leaves W3 as the only remaining sink node which
fails the test of Step 3. Since no non-descendant of X
exists that yields separability, we must exit with fail-
ure. On the other hand, if we are able to measure U ,
the hidden variable responsible for the double arrow
arc between W3 and W4, we would add this node to
T, W3 will pass the test, followed by W4, and we will
end up with U as the only non-descendant of X re-
maining in T. In step 5 we remove U from T, yielding
OR(X,Y ) = OR(X,Y |W, U, S = 1).

Thus far, we assumed that the treatment X is uncon-
founded, therefore the OR is identical to the causal

OR defined as COR(X,Y ) = P (y|do(x))P (y′|do(x′))
P (y|do(x′))P (y′|do(x)) . In

the presence of confounding, it is not enough to recover
OR in s-biased data, we need to go further and assure
that the recovered OR(X,Y | C) is such that C satis-
fies the back-door criterion (2nd rule of do-calculus,
observing and intervening are equivalent), in which
case OR(X,Y | C) will represent the c-specific causal
OR. For example, in Fig. 2(c) the COR(X,Y | C) will
be G-recoverable because once we condition on C all
conditional independencies will be identical to those of
Fig. 1(c), and P (Y | do(X),C) = P (Y | X,C).

Note, however that although we can recover the c-
specific causal OR, we cannot recover the population
COR(X,Y ). For such measure to be recoverable we
need to add assumptions which will make it possible
to infer averageable measures of causal effects such as
RD and RR, to be handle next.

3 OR and other measures of causal
effects

Consider again the chain structure in Fig. 2(a) and de-
fine the causal effect as COR(X,Y ). The fact that X
and Y are not confounded permits us to estimate the
causal effect COR(X,Y ) by the odd ratio OR(X,Y )
which, by the results in the previous section, will re-
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Figure 4: (a) Constant odds ratio curves for c = {1.00, 1.01, 1.50, 2.00, 5.00, 10.00} and their inverses; Superim-
posed constant odds ratio with constant risk ratio curves (b) and constant risk difference curves (c).

main invariant to conditioning on S = 1. However,
if we define the causal effect as ACE = Pr(y |
do(x))− Pr(y | do(x′)) (also known as the causal risk
difference), a bias will be introduced upon condition-
ing.

The invariance of OR can be represented in the fol-
lowing intuitive and pictorial way. We characterize the
conditional distribution P (Y | X) by two independent
parameters p = P (y | x) and q = P (y | x′), which
define a point (p, q) in the unit square. The condition
OR(X,Y ) = c describes a curve in the (p, q)−plane.
For c = 1, the curve is the unit slope line. For c > 1,
this curve separate points with OR(.) > c from those
with OR(.) < c in the region below the unit slope line
(symmetrically for the inverses (c < 1) in the region
above q = p). See Fig. 4.

Now, by conditioning on S = 1, we obtain a new
conditional probability, also characterized by two in-
dependent parameters ps = P (y | x, S = 1), qs =
P (y | x′, S = 1). The fact that OR(Y,X | S = 1) =
OR(Y,X) means that conditioning on S = 1 must
shift the initial (p, q) point along a constant OR curve,
not anywhere else. We show these universal curves of
constant OR for c = {1.00, 1.01, 1.50, 2.00, 5.00, 10.00}
and their respective inverses in Fig. 4(a). Fig. 4(b)
shows curves for constant risk ratio (RR: p

q = c),
which are variable slope lines going through the ori-
gin, and bounded by the slope 1

c . Similarly, Fig. 4(c)
shows curves for constant risk difference.

We see that even though RR does not remain constant
(upon conditioning), the constancy of OR constrains
the behavior of the RR. This follows by noting (af-
ter some algebra) that RR = c + (1 − c)p, i.e., RR
has intercept c and slope 1− c. For instance, if OR is
constant and c = 1, we have unit slope line for OR,

but RR does not move and is equal to one. For con-
stant OR and 1

2 < c < 1, the slope is positive but less
than 1

2 , and the intercept is greater than c = 1
2 , which

implies that RR lies inside the interval [c, 1]. Similar
bounds can be obtained for other values of c.

Recovering RR and RD under selection bias

In this section we show that, in some situations, point
estimates of RR and RD can be recoverable from
s-biased data in studies where the prior probability
P (X) is available. 6 In other words, we refer back to
the chain structure of Fig. 2(a) and ask whether P (Y |
X) can be recovered from P (X) and P (X,Y | S = 1).

The solution can be obtained algebraically, noting that
Y d-separates X from S, which permits us to write:

P (X | Y )=
P (Y | X)P (X)(

P (Y | X)P (X)+P (Y | ¬X)P (¬X)

)

P (X | ¬Y )=
P (¬Y | X)P (X)(

P (¬Y | X)P (X)+P (¬Y | ¬X)P (¬X)

)

This can be turn into a two linear equations with two
unknowns, {P (Y | X), P (Y | ¬X)}, which gives:

P (Y | X) = −
P (X | Y )

(
P (X | Y )− P (X)

)

(
P (X | Y )− P (X | ¬Y )

)
P (X)

6Potentially, we are under a RCT setup or have an alter-
native way to access it through external studies as census’
data.
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P (Y | ¬X) =

P (¬X | Y )

(
P (X | ¬Y )− P (X)

)

(
P (X | ¬Y )− P (X | Y )

)
P (¬X)

,

(1)

where P (X | Y ) = P (X | Y, S = 1),∀X,Y .7

This simple result exemplifies a general theme of cor-
recting for selection bias (section 4); the bias induced
by preferential selection can be removed if we have
enough unconfounded variables that constraint the
distribution of the remaining variables in a specific
way.

Note that this case is different than as previously dis-
cussed in which we were just interested in the OR.
Next we extend this result for more elaborated scenar-
ios.

4 Randomization with
non-compliance under selection bias

Let us consider the more general problem depicted in
Fig. 5(a) in which confounding and selection biases
are simultaneously present, and there are instrumental
variables available.

Our goal is to infer the most accurate bounds for the
causal effect of X on Y , knowing that there is no
unbiased estimate for this quantity even when selec-
tion bias is not present. This scenario is usually pre-
sented under the rubric of “randomization with non-
compliance”, and it is pervasive in the Economics liter-
ature, we defer to (Pearl, 2009, Ch. 8) for a more com-
prehensive discussion of the relevance of this setup, we
focus here on the technical aspects of the problem.

Generally, the bounding analysis assumes no selection
bias, and the natural question that arises is whether
selection bias can be treated and under which condi-
tions bounds free from selection can be recovered.

We show next that this problem can be solved assum-
ing the existence of two instrumental variables Z1 and
Z2. 8 Noteworthy, the set of assumptions used in our
analysis are commonplace in daily Econometrics prac-
tice, and its convoluted appearance is diluted when one
observes them more vividly through the causal graph
depicted in Fig. 5(a). In a nutshell, they are the same

7In Epidemiology, there are many “longitudinal data
settings” where selection bias is sequential, in which it can
be possible easier to estimate the probability of selection
instead of P (X) – this observation was brought to our at-
tention by Onyebuchi A. Arah.

8Call Z = Z1 ∪ Z2, or consider one IV with the same
number of levels. Let us name both cases by instrumental
variable set.
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Figure 5: Different scenarios in which Theorem 4 can
be applied. (a) Typical study with randomization and
non-compliance (IV as incentive-mechanism) where se-
lection and confounding are both present. (b) Selection
bias in the back-door case. (c) More complex study
with an intermediary variable W between treatment
and selection. In this case, Y directly cause W and
there is a common cause between them (extension of
Fig. 1(c), see corollary 5.)

assumptions of randomization with non-compliance
together with selection bias (such that treatment and
outcome affect entry in the data pool).

Theorem 4. The joint distribution of P (X,Y,Z) is
recoverable from s-biased data whenever the following
conditions hold: (i) the S node is affected by the set
Z only through {X,Y }; (ii) the set Z is d-connected
to {X,Y } (and combinations); (iii) the dimensionality
of Z matches the dimensionality of {X,Y }; (iv) the
marginal probability of Z is known. In other words,
the distribution P (X,Y,Z) is recoverable from s-biased
data whenever (S ⊥⊥ Z | X,Y ), (Z ⊥⊥/ {X,Y }), (Z
⊥⊥/ X | Y ),(Z ⊥⊥/ Y | X), the dimensionality of Z and
X ∪Y matches, and the marginal distribution of P (Z)
is given.

Proof. See the supplementary material.

Corollary 3. The bounds for P (y | do(x)) in the
scenario of randomization with non-compliance (Fig.
5(a)) are recoverable from s-biased data whenever the
conditions of the Theorem 4 hold.

Proof. It follows directly from Theorem 4 together
with the bounds in (Balke and Pearl, 1997).

Corollary 4. The causal effect P (y | do(x)) in the
back-door scenario (Fig. 5(b)) is recoverable from s-
biased data whenever the conditions of the Theorem 4
hold.

Proof. It follows directly from Theorem 4.

Corollary 5. The causal effect of Oestrogen (X) on
Endometrial Cancer (Y ) as studied in (Horwitz and
Feinstein, 1978; Hernán et al., 2004) (Fig. 5(c)) is
recoverable from s-biased data whenever there is an IV
set Z pointing to X, and the conditions of the Theorem
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4 hold. Moreover, the same holds without relying on
Z whenever the following conditions hold: (i) X has
the same dimensionality of {W,Y }; (ii) the marginal
distribution of P (X) is available.

Proof. See the supplementary material.

Some observations on the method

Methods that handle selection bias under different
causal assumptions try to model the distribution of S,
which is unobservable and usually hard to estimate; we
take a different approach and avoid doing this explicit
manipulation of the selection mechanism by exploiting
the topology of the causal graph and the underlying
data-generating process. We are not aware of other ap-
proaches trying to do so.

The main idea is to exploit the conditional indepen-
dence of the IV set Z and the selection mechanism S
given the distribution of the treatment and outcome
– interestingly, the latter is what we seek to estimate.
The method hinges on two properties about the in-
duced system, that it is linearizable and full rank –
both facts were not obvious nor expected a priori.

It is worth to make some additional remarks that
follow the proof of Theorem 4. First note that the
proposed method relies on a sample size approach-
ing infinity, which is difficult to obtain in practice. As
a possible improvement, the problem could be cast
as an optimization problem. The formulation goes
as follows. We associate error terms εz1z2,xy to each
γz1z2,xy term, and proceed the analysis minimizing
the (square) mean error subject to constraints. The
constraints emerge naturally from the induced system
of equations together with the additional constraints
of positivity and integrality. Our original goal was to
show feasibility of removing selection bias (identifiabil-
ity) but not the estimation per se, still, this should be
an interesting exercise to pursue. Further investigation
is needed to check the applicability of this suggestion.

We envision our method being used as a first step
in a pre-processing stage, before the application of
any bounding (Balke and Pearl, 1997) or estimation
procedure. The method returns the same values of
P (X,Y,Z) whenever the collected data is not under
selection bias, which means that its usage will not hurt
and should be considered as a “good practice.”

Finally, it is also important to mention that there are
scenarios not solvable by our method or in which our
assumptions are not applicable. For instance, we show
in Fig. 6 one of this kind, in which selection and con-
founding biases are entangled in such way that it does
not seem possible to detach one from another. We con-
jecture that this case is not solvable in general without
further assumptions. Notice that even if we remove the
edge U → X, the example is still hard to resolve.

! "

#

$ %

Figure 6: Scenario in which selection and confounding
biases are present, entangled, and thus not recoverable.

5 Conclusion

We showed that qualitative knowledge of the selection
mechanism and the use of instrumental variables can
eliminate selection bias in many realistic problems. In
particular, the paper provides a general graphical con-
dition together with an algorithm that operates on a
general DAG, with measured and unmeasured nodes,
and decides whether and how a given c-specific odds
ratio can be recovered from selection-biased data char-
acterized by a selection node S. We further showed by
algebraic methods that selection bias can be removed
with the help of instrumental variables under a mild
set of conditions.

This paper complements recent work on transporta-
bility (Pearl and Bareinboim, 2011) which deals with
transferring causal information from one environment
to another, in which only passive observations can be
collected. The solution to the transportability problem
assumes that disparities between the two environments
are represented graphically in the form of unobserved
factors capable of causing such disparities. The prob-
lem of selection bias also seeks extrapolation between
two environments; from one in which samples are se-
lected preferentially, to one in which no preferential
sampling takes place. Both problems represent envi-
ronmental differences in the form of auxiliary (selec-
tion) variables, the influence of which we seek to elim-
inate. However the semantics of those variables is dif-
ferent. In selection bias the auxiliary s-variables repre-
sent disparities in the data-gathering process, whereas
in transportability problem they represent disparities
in the structure of the data-generation process itself.
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