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Dear Editor,
I read with interest the comment by Lindquist and Sobel (L&S, 2011) entitled:
“Graphical models, potential outcomes and causal inference” (NeuroImage,
online 2010) in which they advocate the use of counterfactual language to
explicate causal assumptions, and raise doubts on whether graphical models
are generally useful for estimating causal effects. Their comment creates the
impression, perhaps unintentionally, that counterfactual language is somehow
superior, more rigorous or more principled than the graphical language used
by structural equation modelers (SEM) in fMRI research. The purpose of
this communication is to correct any such impression and to supplement L&S
comment with proven mathematical results regarding the relations between
the two notational systems.

It has been proven (Balke and Pearl, 1994; Galles and Pearl, 1998; Halpern,
1998; Pearl, 2009, Ch.7) that the two notational systems are logically equiv-
alent in the sense that a theorem in one is a theorem in the other, and an
assumption in one has a parallel interpretation in the other. The translation
between the two is given by two simple rules (Pearl, 2009, p. 101) that rewrite
assumptions conveyed in graphical form into symbolic counterfactual nota-
tion. In particular, assumptions A1–A4(b) that L&S present in their paper
are faithfully represented by the causal chain Z → X → Y which L&S aim to
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replace or discredit.
To facilitate readers examination, I copy these assumptions below

Assumption 1: the existence of the potential outcomes x(z) and Y (z, x) for
all z and x,

Assumption 2: Y (0, x) = Y (1, x) for all x, expressing the idea that Z does
not directly cause Y ,

Assumption 3: X = X(Z), Y (z) = Y (z, X(z)), Y = Y (Z, X(Z)),

Assumption 4a: Y (z, x), X(z)⊥⊥Z for all z, x

Assumption 4b: Y (z, x)⊥⊥X|Z for all z, x.

These assumptions can be derived from the counterfactual reading of causal
chain Z → X → Y which simply specifies what factors participate in deter-
mining the value of each variable in the model and whether omitted factors
are dependent of each other. In our example, the graph specifies that:

1. Y is determined by X only,

2. X is determined by Z only, and

3. All functional relationships are further modified by omitted factors (not
shown explicitly in the graph) that are assumed to be mutually indepen-
dent yet arbitrarily distributed.

No additional assumptions beyond these three are needed to derive all the
causal and counterfactual conclusions obtained by L&S, and all subsequent
causal and counterfactual relations estimable from data with the help of as-
sumptions A1–A4(b) (see Pearl, 2010, pp. 126–127 for explicit derivation).

It would be instructive for fMRI researchers to examine the counterfactual
assumptions A1–A4(b) above, compare them to their graphical encoding in
the causal chain Z → X → Y , and assess which notational representation
is more transparent, rigorous, explicit, and conducive to meaningful scientific
discourse.

While if it is true, as noted by L&S, that some SEM researchers have
confused the causal reading of SEM with regressional interpretations of the
parameters (see Pearl, 2009, pp. 135–138 for the history and reason of this
confusion), the fact remains that, in their correct SEM interpretation, DAGs
offer a parsimonious notational system capable of encoding vividly the very
same counterfactual assumptions that L&S consider essential for causal infer-
ence.
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This general translation from DAG’s to counterfactuals gives researchers
the options of either explicating causal assumptions algebraically, in the par-
enthetical notation advocates by L&S, or derive these assumptions from the
DAG when the need arises, or, assuming they wish to stay close to scientific in-
tuition, keep them in graphical language and utilize the inferential machinery
that this language provides. In view of the many results that this machinery
has spawned in the past two decades (Greenland et al., 1999; Pearl, 1995, 2009;
Spirtes et al., 2000, see also Pearl, 2010 for a recent survey), fMRI researchers
should be encouraged to continue using their familiar SEM language and be
assured that the results thus obtained are no less valid than those derived in
the counterfactual language. They are likely in fact to be more valid, consider-
ing the opaque mathematical form of the latter, as exemplified by assumptions
A1–A4(b) above, and the transparency of their graphical counterparts.
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