
Foreword

Targeted Learning, by Mark J. van der Laan and Sherri Rose, fills a much
needed gap in statistical and causal inference. It protects us from wasting
computational, analytical, and data resources on irrelevant aspects of a prob-
lem and teaches us how to focus on what is relevant – answering questions
that researchers truly care about.

The idea of targeted learning has its roots in the early days of econometrics, when Ja-
cob Marschak (1953) made an insightful observation regarding policy questions and
structural equation modeling (SEM). While most of his colleagues on the Cowles
Commission were busy estimating each and every parameter in their economic mod-
els, some using maximum likelihood and some least squares regression, Marschak
noted that the answers to many policy questions did not require such detailed knowl-
edge – a combination of parameters is all that is necessary and, moreover, it is of-
ten possible to identify the desired combination without identifying the individual
components. Heckman (2000) called this observation “Marschak’s Maxim” and has
stressed its importance in the current debate between experimentalists and struc-
tural economists (Heckman 2010). Today we know that Marschak’s Maxim goes
even further – the desired quantity can often be identified without ever specifying
the functional or distributional forms of these economic models.

Until quite recently, however, Marschak’s idea has not attracted the attention
it deserves. For statisticians, the very idea of defining a target quantity not as a
property of a statistical model but by a policy question must have sounded mighty
peculiar, if not heretical. Recall that policy questions, and in fact most questions
of interest to empirical researchers, invoke causal vocabulary laden with notions
such as “what if,” “effect of,” “why did,” “control,” “explain,” “intervention,” “con-
founding,” and more. This vocabulary was purged from the grammar of statistics by
Karl Pearson (1911), an act of painful consequences that has prevented most data-
driven researchers from specifying mathematically the quantities they truly wish to
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be targeted. Understandably, seeing no point in estimating quantities they could not
define, statisticians showed no interest in Marschak’s Maxim.

Later on, in the period 1970–1980, when Donald Rubin (1974) popularized and
expanded the potential-outcome notation of Neyman (1923) and others and causal
vocabulary ascended to a semilegitimate status in statistics, Marschak’s Maxim met
with yet another, no less formidable, hurdle. Rubin’s potential-outcome vocabulary,
while powerful and flexible for capturing most policy questions of interest, turned
out to be rather inept for capturing substantive knowledge of the kind carried by
structural equation models. Yet this knowledge is absolutely necessary for turning
targeted questions into estimable quantities. The opaque language of “ignorabil-
ity,” “treatment assignment,” and “missing data” that has ruled (and still rules) the
potential-outcome paradigm is not flexible enough to specify transparently even the
most elementary models (say, a three-variable Markov chain) that experimenters
wish to hypothesize. Naturally, this language could not offer Marschak’s Maxim
a fertile ground to develop because the target questions, though well formulated
mathematically, could not be related to ordinary understanding of data-generating
processes.

Econometricians, for their part, had their own reasons for keeping Marschak’s
Maxim at bay. Deeply entrenched in the quicksands of parametric thinking, econo-
metricians found it extremely difficult to elevate targeted quantities such as policy
effects, traditionally written as sums of products of coefficients, to a standalone sta-
tus, totally independent of their component parts. It is only through nonparametric
analysis, where targeted quantities are defined procedurally by transformational op-
erations on a model (as in P(y | do(x)); Pearl 2009), and parameters literally disap-
pear from existence, that Marschak’s Maxim of focusing on the whole without its
parts has achieved its full realization.

The departure from parametric thinking was particularly hard for researchers
who did not deploy diagrams in their toolkit. Today, as shown in Chap. 2 of this
book, students of graphical models can glance at a structural equation model and
determine within seconds whether a given causal effect is identified while paying
no attention to the individual parameters that make up that effect. Likewise, these
students can write down an answer to a policy question (if identified) directly in
terms of probability distributions, without ever mentioning the model parameters.
Jacob Marschak, whom I had the great fortune of befriending a few years before his
death (1977), would have welcomed this capability with open arms and his usual
youthful enthusiasm, for it embodies the ultimate culmination of his maxim in al-
gorithmic clarity.

Unfortunately, many economists and SEM researchers today are still not versed
in graphical tools, and, consequently, even authors who purport to be doing non-
parametric analysis (e.g., Heckman 2010) are unable to fully exploit the potentials
of Marschak’s Maxim. Lacking the benefits of graphical models, nonparametric re-
searchers have difficulties locating instrumental variables in a system of equations,
recognizing the testable implications of such systems, deciding if two such systems
are equivalent, if two counterfactuals are independent given another, whether a set
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of measurements will reduce bias, and, most importantly, reading the causal and
counterfactual information that such systems convey (Pearl 2009, pp. 374–380).

Targeted learning aims to fill this gap. It is presented in this book as a nat-
ural extension to the theory of structural causal models (SCMs) that I intro-
duced in Pearl (1995) and then in Chaps. 3 and 7 of my book Causality (Pearl
2009). It is a simple and friendly theory, truly nonparametric, yet it subsumes
and unifies the potential outcome framework, graphical models, and structural
equation modeling in one mathematical object. The match is perfect.

I will end this foreword with a description of a brief encounter I recently had
with another area in dire need of targeted learning. I am referring to the analysis
of mediation, also known as “effect decomposition” or “direct and indirect effects”
(Robins and Greenland 1992; Pearl 2001).

The decomposition of effects into their direct and indirect components is of both
theoretical and practical importance, the former because it tells us “how nature
works” and the latter because it enables us to predict behavior under a rich vari-
ety of conditions and interventions. For example, an investigator may be interested
in assessing the extent to which an effect of a given exposure can be reduced by
weakening one specific intermediate process between exposure and outcome. The
portion of the effect mediated by that specific process should then become the target
question for mediation analysis.

Despite its ubiquity, the analysis of mediation has long been a thorny issue in
the social and behavioral sciences (Baron and Kenny 1986; MacKinnon 2008) pri-
marily because the distinction between causal parameters and their regressional sur-
rogates have too often been conflated. The difficulties were amplified in nonlinear
models, where interactions between pathways further obscure their distinction. As
demands grew to tackle problems involving categorical variables and nonlinear in-
teractions, researchers could no longer define direct and indirect effects in terms
of sums or products of structural coefficients, and all attempts to extend the linear
paradigms of effect decomposition to nonlinear systems, using logistic and probit
regression, produced distorted results (MacKinnon et al. 2007). The problem was
not one of estimating the large number of parameters involved but that of combin-
ing them correctly to capture what investigators mean by direct or indirect effect
(forthcoming, Pearl 2011).

Fortunately, nonparametric analysis permits us to define the target quantity in
a way that reflects its actual usage in decision-making applications. For example,
if our interest lies in the fraction of cases for which mediation was sufficient for
the response, we can pose that very fraction as our target question, whereas if our
interest lies in the fraction of responses for which mediation was necessary, we
would pose this fraction as our target question. In both cases we can dispose of
parametric analysis altogether and ask under what conditions the target question
can be identified/estimated from observational or experimental data.
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Taking seriously this philosophy of “define first, identify second, estimate last”
one can derive graphical conditions under which direct and indirect effects can
be identified (Pearl 2001), and these conditions yield (in the case of no unmea-
sured confounders) simple probability estimands, called mediation formulas (Pearl
2010a), that capture the effects of interest. The mediation formulas are applicable to
both continuous and categorical variables, linear as well as nonlinear interactions,
and, moreover, they can consistently be estimated from the data.

The derivation of the mediation formulas teaches us two lessons in targeted learn-
ing. First, when questions are posed directly in terms of the actual causal relations
of interest, simple probability estimands can be derived while skipping the painful
exercise of estimating dozens of nonlinear parameters and then worrying about how
to combine them to answer the original question.

Second, and this is where targeted learning comes back to parametric analysis,
the expressions provided by the mediation formulas may demand a new param-
eterization, unrelated to the causal process underlying the mediation problem. It
is this new set of parameters, then, that need to be optimized over while posing
the estimation accuracy of the mediation formula itself as the objective function
in the maximum likelihood optimization. Indeed, in many cases the structure and
dimensionality of the mediation formula would dictate the proper shaping of this
reparametrization, regardless of how intricate the multivariate nonlinear process is
that actually generates the data.

I am very pleased to see the SCM serving as a language to demonstrate the work-
ings of targeted learning, and I am hopeful that readers will appreciate both the
transparency of the model and the power of the approach.

Los Angeles, January 2011 Judea Pearl




