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Abstract

We provide a formal definition of the notion of “transportability,” or “external validity,” as a license

to transfer causal information from experimental studies to a different population in which only

observational studies can be conducted. We introduce a formal representation called “selection

diagrams” for expressing differences and commonalities between populations of interest and, using

this representation, we derive procedures for deciding whether causal effects in the target population

can be inferred from experimental findings in a different population. When the answer is affirmative,

the procedures identify the set of experimental and observational studies that need be conducted to

license the transport. We further discuss how transportability analysis can guide the transfer of

knowledge in non-experimental learning to minimize re-measurement cost and improve prediction

power.
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1. Introduction: Threats vs. Assumptions

Science is about generalization; conclusions that are obtained in a laboratory setting are

transported and applied elsewhere, in an environment that differs in many aspects from that

of the laboratory.

If the target environment is arbitrary, or drastically different from the study environ-

ment nothing can be learned from the latter. However, the fact that most experiments are

conducted with the intention of applying the results elsewhere means that we usually deem

the target environment sufficiently similar to the study environment to justify sufficiently

similar to the study environment to justify the transport of experimental results or their

ramifications.

Remarkably, the conditions that permit such transport have not received systematic

formal treatment. The standard literature on this topic, falling under rubrics such as “quasi-

experiments,” “meta-analysis,” and “external validity,” consists primarily of “threats,”

namely, verbal narratives of what can go wrong when we try to transport results from one

study to another (e.g., [Shadish et al., 2002, chapter 3; Manski, 2007]). In contrast, we seek

to establish “licensing assumptions,” namely, formal conditions under which the transport

of results across diverse environments is licensed from first principles.

Transportability analysis requires a formal language within which the notion of “envi-

ronment” or “population” is given precise characterization, and differences among popu-

lations can be encoded and analyzed. The advent of causal diagrams [Pearl, 1995, 2009;

Spirtes et al., 2000] provides such a language and renders the formalization of transporta-

bility possible. Using this language, this paper offers a precise definition for the notion

of transportability and establishes formal conditions that, if held true, would permit us to

transport results across studies, domains, environments, or populations.
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Figure 1: Causal diagrams depicting Examples 1–3. In (a) Z represents “age.” In (b) Z

represents “linguistic skills” while age (hollow circle) is unmeasured. In (c) Z represents a

biological marker situated between the treatment (X) and a disease (Y ).

2. Motivating Examples

To motivate our discussion and to demonstrate some of the subtle questions that trans-

portability entails, we will consider three simple examples, graphically depicted in Fig. 1.

The examples invoke the familiar domain of clinical trials, yet the issues raised pertain to

any learning environment that can be characterized by the structure of the data-generating

model. For example, a robot trained by a simulator should be able to transport causal

knowledge acquired in training to challenges of a new environment, in which experiments

are costly or infeasible.

Example 1 We conduct a randomized trial in Los Angeles (LA) and estimate the causal

effect of treatment X on outcome Y for every age group Z = z as depicted in Fig. 1(a).

We now wish to generalize the results to the population of New York City (NYC), but we

find that the distribution P (x, y, z) in LA is different from the one in NYC (call the latter

P ∗(x, y, z)). In particular, the average age in NYC is significantly higher than that in LA.

How are we to estimate the causal effect of X on Y in NYC, denoted P ∗(y|do(x)).1

If we can assume that age-specific effects P (y|do(x), Z = z) are invariant across cities ,

the overall causal effect in NYC should be

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z) (1)

This transport formula combines experimental results obtained in LA, P (y|do(x), z),

with observational aspects of NYC population, P ∗(z), to obtain an experimental claim

P ∗(y|do(x)) about NYC.

Our first task in this paper will be to explicate the assumptions that renders this extrapo-

lation valid. We ask, for example, what must we assume about other confounding variables

beside age, both latent and observed, for Eq. (1) to be valid, or, would the same transport

formula hold if Z was not age, but some proxy for age, say, language proficiency. More

intricate yet, what if Z stood for an X-dependent variable, say hyper-tension level, that

stands between X and Y ? Let us examine the proxy issue first.

Example 2 Let the variable Z in Example 1 stand for subjects language skills, which

correlates with age (not measured) (see Fig. 1(b)). Given the observed disparity P (z) 6=

P ∗(z), how are we to estimate the causal effect P ∗(y|do(x)) in NYC from the z-specific

causal effect P (y|do(x), z) estimated in LA?

1The do(x) notation [Pearl, 1995, 2009] interprets P (y|do(x)) as the probability of outcomes Y = y in

a randomized experiment where the treatment variables X take on values X = x. P (y|do(x), z) is logically

equivalent to P (Yx = y|Zx = z) in counterfactual notation. Likewise, the diagrams used in this paper should

be interpreted as parsimonious encoding of functional relations [Pearl, 2009, p. 101], where every bi-directed

arc X L9999K Y stands for a set of latent variables affecting X and Y .
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If the two cities enjoy identical age distributions and NYC residents acquire linguistic skills

at a younger age, then, since Z has no effect whatsoever on X and Y , the inequality P (z) 6=

P ∗(z) can be ignored and, intuitively, the proper transport formula should be

P ∗(y|do(x)) = P (y|do(x)) (2)

If, on the other hand, the conditional probabilities P (z|age) and P ∗(z|age) are the same

in both cities, and the inequality P (z) 6= P ∗(z) reflects genuine age differences, Eq. (2) is

no longer valid, since the age difference may be a critical factor in determining how people

react to X . We see, therefore, that the transport formula depends on the causal context in

which distributional differences are embedded.

This example also demonstrates why the invariance of Z-specific causal effects should

not be taken for granted. While justified in Example 1, with Z = age, it fails in Example 2,

in which Z was equated with “language skills.” Indeed, using Fig. 1(b) for guidance, the

Z-specific effect of X on Y in NYC is given by:

P ∗(y|do(x), z) =
∑

age

P (y|do(x), age)P ∗(age|z) (3)

Thus, if the two populations differ in the relation between age and skill, i.e.,P (age|z) 6=
P ∗(age|z) the skill-specific causal effect would differ as well.

Example 3 Examine the case where Z is a X-dependent variable, say a disease bio-

marker as shown in Fig. 1(c). Assume further that the disparity P (z) 6= P ∗(z) is dis-

covered in each level of X and that, again, both the average and the z-specific causal

effect P (y|do(x), z) are estimated in the LA experiment, for all levels of X and Z. Can we,

based on information given, estimate the average (or z-specific) causal effect in NYC?

Here, Eq. (1) is wrong for two reasons. First, as in the case of age-proxy, it matters

whether the disparity in P (z) represents differences in susceptibility to X or differences in

propensity to receiving X . In the latter case, Eq. (2) would be valid, while in the former,

more information is needed. Second, the overall causal effect is no longer a simple average

of the z-specific causal effects but is given by

P ∗(y|do(x)) =
∑

z

P ∗(y|do(x), z)P ∗(z|do(x)) (4)

which reduces to (1) only in the special case where Z is unaffected by X , as is the case in

Fig. 1(a). We shall see (Theorem 3 below) that the correct transport formula is

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)P ∗(z|x) (5)

which calls for weighting the z-specific effects by P ∗(z|x), to be estimated in the target

environment.

3. Formalizing Transportability

3.1 Selection Diagrams and Selection Variables

The examples above demonstrate that transportability is a causal, not statistical notion,

requiring knowledge of the mechanisms, or processes, through which differences come

about. To witness, every probability distribution P (x, y, z) that is compatible with the
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Figure 2: Selection diagrams depicting Examples 1–3. In (a) the two populations differ in

age distributions. In (b) the populations differs in how Z depends on age (an unmeasured

variable, represented by the hollow circle) and the age distributions are the same. In (c) the

populations differ in how Z depends on X .

process of Fig. 1(b) is also compatible with that of Fig. 1(a) and, yet, the two processes

dictate different transport formulas. Thus, to represent formally the differences between

domains we must resort to a representation in which the causal mechanisms are explicitly

encoded and in which domain differences are represented as local modifications of those

mechanisms.

To this end, we will use causal diagrams augmented with a set, S, of “selection vari-

ables,” where each member of S corresponds to a mechanism by which the two domains

differ, and switching between the two domains will be represented by conditioning on dif-

ferent values of these S variables.

Formally, if P (v|do(x)) stands for the distribution of a set V of variables in the exper-

imental study (with X randomized) then we designate by P ∗(v|do(x)) the distribution of

V if we were to conduct the study on population Π∗ instead of Π. We now attribute the

difference between the two to the action of a set S of selection variables, and write2

P ∗(v|do(x)) = P (v|do(x), s∗).

Of equal importance is the absence of an S variable pointing to Y in Fig. 2(a), which

encodes the assumption that age-specific effects are invariant across the two populations.

The variables in S represent exogenous conditions that determine the values of the

variables to which they point.3

For example, the age disparity P (z) 6= P ∗(z) discussed in Example 1 will be rep-

resented by the inequality P (z) 6= P (z|s) where S stands for all factors responsible for

drawing subjects at age Z = z to NYC rather than LA.

This graphical representation, which we will call “selection diagrams” can also repre-

sent structural differences between the two domains. For example, if the causal diagram of

the study population contains an arrow between X and Y , and the one for the target popu-

lation contains no such arrow, the selection diagram will be X → Y ← S where the role

of variable S is to disable the arrow X → Y when S = s∗ (i.e., P (y|x, s∗) = P (y|x′, s∗)
for all x′) and reinstate it when S = s.4 Our analysis will apply therefore to all factors

by which domains may differ or that may “threaten” the transport of conclusions between

domains, studies, populations, locations or environments.

2Alternatively, one can represent the two populations’ distributions by P (v|do(x), s), and P (v|do(x), s∗),

respectively. The results, however, will be the same, since only the location of S enters the analysis.
3Elsewhere, we analyze S variables representing selection of units into the study pool

[Bareinboim and Pearl, 2011]; there, the arrows will be pointing towards S.
4Pearl [1995; 2009, p. 71] and [Dawid, 2002], for example, use conditioning on auxiliary variables to

switch between experimental and observational studies. [Dawid, 2002] further uses such variables to represent

changes in parameters of probability distributions.
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For clarity, we will represent the S variables by squares, as in Fig. 2, which uses se-

lection diagrams to encode the three examples discussed above. In particular, Fig. 2(a) and

2(b) represent, respectively, two different mechanisms responsible for the observed dispar-

ity P (z) 6= P ∗(z). The first (Fig. 2(a)) dictates transport formula (1) while the second (Fig.

2(b)) calls for direct, unadjusted transport (2).

In the extreme case, we could add selection nodes to all variables, which means that we

have no reason to believe that the two domains share any mechanism in common, and this,

of course would inhibit any exchange of conclusions between the two. Conversely, absence

of a selection node pointing to a variable, say Z, represents an assumption of invariance:

the local mechanism that assigns values to Z is the same in both domains.

3.2 Transportability: Definitions and Examples

Using selection diagrams as the basic representational language, and harnessing the con-

cepts of intervention, do-calculus5 and identifiability [Pearl, 2009, p. 77] we give the notion

of transportability a formal definition.

Definition 1 (Transportability)

Given two domains, denoted Π and Π∗, characterized by probability distributions P and

P ∗, and causal diagrams G and G∗, respectively, a causal relation R is said to be trans-

portable from Π to Π∗ if R(Π) is estimable from the set I of interventions on Π, and R(Π∗)
is identified from P, P ∗, I, G, and G∗.

Definition 1 provides a declarative characterization of transportability which, in theory, re-

quires one to demonstrate the non-existence of two competing models, agreeing on

{P, P ∗, I, G, G∗}, and disagreeing on R(Π∗). Such demonstrations are extremely cum-

bersome for reasonably sized models, and we seek therefore procedural criteria which,

given the pair (G, G∗) will decide the transportability of any given relation directly from

the structures of G and G∗. Such criteria will be developed in the sequel by breaking down a

complex relation R into more elementary relations whose transportability can immediately

be recognized. We will formalize the structure of this procedure in Theorem 1, followed

by Definitions 2 and 3 below, which will identify two special cases where transportability

is immediately recognizable.

Theorem 1 Let D be the selection diagram characterizing Π and Π∗, and S a set of se-

lection variables in D. The relation R = P (y|do(x), z) is transportable from Π to Π∗ if

and only if the expression P (y|do(x), z, s) is reducible, using the rules of do-calculus, to

an expression in which S appears only as a conditioning variable in do-free terms.

Proof:

(if part): Every relation satisfying the condition of Theorem 1 can be written as an

algebraic combination of two kinds of terms, those that involve S and those that do not.

The formers can be written as P ∗ terms and are estimable, therefore, from observations on

Π∗, as required by Definition 1. All other terms, especially those involving do-operators,

do not contain S; they are experimentally identifiable therefore in Π.

(only if part): If R is transportable, its transport formula T must satisfy the condition of

Theorem 1, and that means that R = T is a valid equality in do-calculus. Moreover, since

do-calculus is complete, [Shpitser and Pearl, 2006] every valid equality can be obtained by

a finite application of the three rules of the calculus. This proves the Theorem. 2

5The three rules of do-calculus are defined in Appendix 1 and illustrated in graphical details in [Pearl, 2009,

p. 87].
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Definition 2 (Direct Transportability)

A causal relation R is said to be directly transportable from Π to Π∗, if R(Π∗) = R(Π).

The equality R(Π∗) = R(Π) means that R retains its validity without adjustment, as in Eq.

(2). A graphical test for direct transportability of P (y|do(x)) follows immediately from

do-calculus and reads: (S ⊥⊥ Y |X)G
X

; i.e., X blocks all paths from S to Y once we

remove all arrows pointing to X . Indeed, such condition would allow us to eliminate s

from the do-expression, and write:

R(Π∗) = P (y|do(x), s) = P (y|do(x)) = R(Π)

Example 4 Figure 4(a) represents a simple example of direct transportability. Indeed,

since S merely changes the mechanism by which the value X = x is selected (sometimes

called “treatment assignment mechanism”), it does not change any causal effect of X
[Pearl, 2009, pp. 72–73].

Definition 3 (Trivial Transportability)

A causal relation R is said to be trivially transportable from Π to Π∗, if R(Π∗) is identifiable

from (G∗, P ∗).

This criterion amounts to ordinary (nonparametric) identifiability of causal relations using

graphs [Pearl, 2009, p. 77]. It permits us to estimate R(Π∗) directly from passive observa-

tions on Π∗, un-aided by causal information from Π.

Example 5 Let R be the causal effect P (y|do(x)) and let the selection diagram be X →

Y ← S, then R is trivially transportable, since R(Π∗) = P ∗(y|x).

Example 6 Let R be the causal effect P (y|do(x)) and let the selection diagram of Π and

Π∗ be X → Y ← S, with X and Y confounded as in Fig. 4(b), then R is not trans-

portable, because P ∗(y|do(x)) = P (y|do(x), s) cannot be decomposed into s-free or do-

free expressions using do-calculus. This is the smallest graph for which the causal effect is

non-transportable.

4. Transportability of Causal Effects: A Graphical Criterion

We now state and prove two theorems that permit us to decide algorithmically, given a

selection diagram, whether a relation is transportable between two domains, and what the

transport formula should be.

Theorem 2 Let D be the selection diagram characterizing Π and Π∗, and S the set of

selection variables in D. The z-specific causal effect P (y|do(x), z) is transportable from

Π to Π∗ if Z d-separates Y from S in the X-manipulated version of D, that is, Z satisfies

(Y ⊥⊥ S|Z)D
X

.

Proof:

P ∗(y|do(x), z) = P (y|do(x), z, s)

From Rule-1 of do-calculus [Pearl, 2009, p. 85] we have: P (y|do(x), z, s) = P (y|do(x), z)
whenever Z satisfies (Y ⊥⊥ S|Z) in DX . This proves Theorem 2. 2

Definition 4 (S-admissibility)

A set T of variables satisfying (Y ⊥⊥ S|T ) in DX will be called S-admissible.
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Figure 3: Selection diagrams illustratingS-admissibility. (a) has no S-admissible set while

in (b), W is S-admissible.
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Figure 4: Selection diagrams illustrating transportability. The causal effect P (y|do(x)) is

(trivially) transportable in (c) but not in (b) and (f). It is transportable in (a), (d), and (e)

(see Corollary 2 and Example 9).

Corollary 1 The average causal effect P (y|do(x)) is transportable from Π to Π∗ if there

exists a set Z of observed pre-treatment covariates that is S-admissible. Moreover, the

transport formula is given by the weighting of Eq. (1).

Proof:

P ∗(y|do(x)) = P (y|do(x), s)

=
∑

z

P (y|do(x), z, s)P (z|do(x), s)

=
∑

z

P (y|do(x), z)P (z|s)

(using S-admissibility and

(Rule-3 of do-calculus)

=
∑

z

P (y|do(x), z)P ∗(z) (6)

2

Example 7 The causal effect is transportable in Fig. 2(a), since Z is S-admissible, and

directly transportable in Fig. 2(b) and 4(a), where the empty set is S-admissible. It is

also transportable in Fig. 3(b), where W is S-admissible, but not in Fig. 3(a) where no

S-admissible set exists.

Contrasting the diagrams in Figs. 2(a) and 3(a), we witness again the crucial role

of causal knowledge in facilitating transportability. These two diagrams are statistically

indistinguishable, yet the former is transportable, while the latter is not.
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Figure 5: Selection diagram in which the causal effect is shown to be transportable in two

iterations of Theorem 3.

Corollary 2 Any S variable that is pointing directly into X as in Fig. 4(a), or that is d-

connected to Y only through X can be ignored.

Proof: This follows from the fact that the empty set is S-admissible relative to any such S

variable. Conceptually, the corollary reflects the understanding that differences in propen-

sity to receive treatment do not hinder the transportability of treatment effects; the random-

ization used in the experimental study washes away such differences. 2

We now generalize Theorem 2 to cases involving X-dependent Z variables, as in Fig.

2(c).

Theorem 3 The causal effect P (y|do(x)) is transportable from Π to Π∗ if any one of the

following conditions holds

1. P (y|do(x)) is trivially transportable

2. There exists a set of covariates, Z (possibly affected by X) such that Z is S-admissible and

for which P (z|do(x)) is transportable

3. There exists a set of covariates, W that satisfy (X ⊥⊥ Y |W, S)D and for which P (w|do(x))

is transportable.

Proof:

1. Condition (1) entails transportability.

2. If condition (2) holds, it implies

P ∗(y|do(x)) = P (y|do(x), s) (7)

=
∑

z

P (y|do(x), z, s)P (z|do(x), s) (8)

=
∑

z

P (y|do(x), z)P ∗(z|do(x)) (9)

We now note that the transportability of P (z|do(x)) should reduce P ∗(z|do(x)) to a com-

bination of do-free and star-free expressions, thus rendering P (y|do(x)) transportable.

3. If condition (3) holds, it implies

P ∗(y|do(x)) =P (y|do(x), s) (10)

=
∑

w

P (y|do(x), w, s)P (w|do(x), s) (11)

=
∑

w

P (y|w, s)P ∗(w|do(x)) (12)

(by Rule-3 of do-calculus)

=
∑

w

P ∗(y|w)P ∗(w|do(x)) (13)
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Again, the transportability of P (w|do(x)) should reduce P ∗(w|do(x)) to a combination

of do-free and star-free expressions, thus rendering P (y|do(x)) transportable. This proves

Theorem 3. 2

Example 8 Applying Theorem 3 to Fig. 2(c), we conclude that R = P (y|do(x)) is trivially

transportable, for it is identifiable in Π∗ through the front-door criterion [Pearl, 2009].

R is likewise (trivially) transportable in Fig. 4(c) (by the back-door criterion). R is not

transportable however in Fig. 3(a), where no S-admissible set exists.

Example 9 Fig. 4(d) requires that we invoke both conditions of Theorem 3, iteratively, and

yields transport formula (derived in Appendix 2):

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P (w|do(x))P ∗(z|w) (14)

The first two factors on the right are estimable in the experimental domain, and the third

in the observational domain. Surprisingly, the joint effect P (y, w, z|do(x)) need not be

estimated in the experiment; a decomposition that results in improved estimation power.

A similar analysis applies to Fig. 4(e). The model of Fig. 4(f) however does not allow

for the transportability of P (y|do(x)) because there is no S-admissible set in the diagram

and condition 3 of Theorem 3 cannot be invoked.

Example 10 Fig. 5 represents a more challenging selection diagram, which requires sev-

eral iterations to discern transportability [Pearl and Bareinboim, 2011b], and yields:

P ∗(y|do(x)) =
∑

z

P (y|do(x), z)
∑

w

P ∗(z|w)
∑

t

P (w|do(x), t)P ∗(t) (15)

The main power of this formula is to guide the learning agent in deciding what mea-

surements need be taken in each domain. It asserts, for example, that variables U and V
need not be measured, that the W -specific causal effects need not be learned in the ex-

periment and only the conditional probabilities P ∗(z|w) and P ∗(t) need be learned in the

target domain.

5. Transportability Across Observational Domains

Our analysis thus far assumed that transport is needed from experimental learning because

R, the relation of interest, is causal and cannot be identified solely from passive observa-

tions in the target domain. In this section we demonstrate that transporting purely observa-

tional findings can be beneficial as well, albeit for different reasons.

Assume we conduct an elaborate observational study in LA, involving dozens of vari-

ables and thousands of samples, aiming to learn some statistical relation, R(P ) (say a

conditional distribution for prediction or classification). We now wish to estimate the same

relation R(P ∗) in NYC. The question arises whether it is necessary to repeat the study from

scratch or, in case the disparity between the two domains is localized, if we can leverage

what we learned in LA, supplement it with a less elaborate study in NYC and combine the

results to yield an informed estimate of R(P ∗).

In complex models, the savings gained by focusing on only a small subset of variables

in P ∗ can be enormous, because any reduction in the number of measured variables trans-

lates into substantial reduction in the number of samples needed to achieve a given level

of prediction accuracy. This is especially true in non-parametric models, where estimation

efficiency deteriorates significantly with the number of variables involved.
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Figure 6: (a) Selection diagram in which relasuring X or Y , or, alternatively, by measuring

only X and Z2. (b) The diagram resulting from marginalizing over Z1.

An examination of the transport formulas derived in this paper (e.g., Eqs. (14) or (15))

reveals that the methods developed for transporting causal relations are applicable to statis-

tical relations as well, albeit with some modification. Consider Eq. (14) and its associated

diagram in Fig. 4(d). If the target relation R = P ∗(y|do(x)) was expressed, not in terms of

the do(x) operator, but as a conditional probability R(P ∗) =
∑

c P ∗(y|x, c)P ∗(c) where

C is a sufficient set of covariates, the right hand side of (14) reveals that P ∗(z|w) is the

only relation that need to be re-estimated at the target domain; all the other terms in that

expression are estimable at the source environment, using C, X , Z, W and Y .

These considerations motivate a slightly different definition of transportability, tailored

to non-experimental learning, which emphasizes narrowing the scope of observations rather

than identification per se.

Definition 5 (Observational Transportability)

Given two domains, Π and Π∗, characterized by probability distributions P and P ∗, and

causal diagrams G and G∗, respectively, a statistical relation R(P ) is said to be observa-

tionally transportable from Π to Π∗ over V ∗ if R(P ∗) is identified from P , P ∗(V ∗), G, and

G∗. where P ∗(V ∗) is the marginal distribution of P ∗ over a subset of variables V ∗.

This definition requires that the relation transferred be reconstructed from data obtained

in the old learning domain, plus observations conducted on a subset V ∗ of variables in the

new domain. In the example above, R(P ) was shown to be observationally transportable

over V ∗ = {Z, W}, while in the example of Fig. 5, we have V ∗ = {Z, W, T} (from Eq.

(15)).

Note that, despite the purely statistical nature of the task, a causal selection diagram is

still needed to identify the mechanisms by which the two domains differ. The probabilities

P and P ∗, being descriptive, cannot convey information about the locality of the mecha-

nism that accounts for their differences. In Fig. 5, for example, changes in S ′ will propagate

to the entire probability P (t, u, x, w, y) and could not be distinguished from changes in an

S-node that points, say, at W or at Y . Moreover P and P ∗ can be deceptively identical, and

hide profound differences in mechanisms. A typical example is the structural differences

between two statistically-indistinguishable models.

While selection diagrams are still an essential tool for formulating differences among

domains, the mechanics of solving observational transportability problems is somewhat

different. Since the transported relations are not cast in do-expressions, the do-calculus is

no longer helpful, and we must rely mainly on the conditional independencies encoded in

the selection diagram.

An example of this mechanics will be illustrated through the selection diagram of Fig.

6. Assume that, after learning P (x, y, z1, z2) in the source environment, one is interested

in classifying X from observations on Y in the target environment. If hand labeling data in

the new domain is a costly enterprise, we may ask whether we can learn the desired classi-

fier P ∗(x|y) without taking any measurement of X or Y in the new domain. Formally, this
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amounts to asking whether P (x|y) is transportable over V ∗ = {Z1, Z2}. The answer is

of course positive, since, given the selection diagram of Fig. 6, the conditional probability

P (z1|z2) is the only factor that changes in the Markovian factorization of P . Therefore,

we can simply re-learn P ∗(z1|z2) and compute our target relation P ∗(x|y) from the factor-

ization P ∗(x, y, z1, z2) = P (y|z2, x)P (x|z1)P (z2)P
∗(z1|z2), with all but the last factor

transportable from the source environment.

We see that the conditional independencies embedded in the diagram have the capacity

to narrow the scope V ∗ of variables that need be measured, so as to minimize measurement

cost and sample variability. For example, if Z1 is multi-dimensional or more costly to

measure than X , R = P (x|y) can be transported over V ∗ = {Z2, X}. This can be seen by

ignoring (or marginalizing over) Z1, which yields the diagram of Fig. 6(b).

Remarkably, the transport of certain relations across disparate domains can sometimes

be accomplished with no re-measurements whatsoever, thus exhibiting “direct transporta-

bility” (Definition 2). The selection diagram of Fig. 6(a), for example, permits the transport

of the relation

R′ =
∑

z1

P (y|x, z1)P (z1) (16)

over the null set V ∗ = {}. This becomes evident from the fact that Z2 can replace Z1 in

R′ [Pearl and Paz, 2010] and, using the independencies (S ⊥⊥ Y |X, Z2) and (S ⊥⊥ Z2)
shown in the diagram, the transported relation becomes s-free:

R′(P ∗) =
∑

z2

P (y|x, z2)P (z2) (17)

While a systematic analysis of observational transportability is beyond the scope of this

paper, Definition 5 offers a formal characterization of this ubiquitous class of information

transfer problems, and identifies the basic elements needed for their solution.

Conclusions

Given judgmental assessments of how target populations may differ from those under study,

the paper offers a formal representational language for making these assessments precise

and for deciding whether causal relations in the target population can be inferred from

experiments conducted elsewhere. When such inference is possible, the criteria provided

by Theorems 1-3 yield transport formulae, namely, principled ways of recalibrating the

learned relations so as to account for differences in the populations. These formulae enable

the learner to select the essential measurements in both the experimental and observational

studies, and thus minimize measurement costs and sample variability.

Extending these results to observational studies, we showed that there is also benefit in

transporting statistical findings from one population to another in that it enables learners

to avoid repeated measurements that are not absolutely necessary for reconstructing the

relation transferred. Procedures for deciding whether such reconstruction is feasible when

certain re-measurements are forbidden or too costly were shown capable of substantial

savings in sample size or increase in estimation power.

A second extension of transportability analysis led to a causally principled defini-

tion of “surrogate endpoint,” namely, a variable Z such that knowing the effect of treat-

ment on Z allows predictions of the effect of X on the more clinically relevant outcome

Y [Joffe and Green, 2009]. [Pearl and Bareinboim, 2011a] have argued that a surrogate

should serve not merely as a good predictor of outcomes, but also as a robust predictor

of effects in the face of changing external conditions. Therefore, any formal definition of
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surrogacy must make change in conditions an integral part of the definition.6 Accordingly,

Z is defined as a surrogate of Y if observation of Z in Π∗ enables the effect of X on Y to be

transported from Π to Π∗ without re-measurement of Y and regardless of the mechanism

responsible for variations in Z. The procedure developed from this transportability-based

definition allows for the identification of valid surrogates in a complex set of causal rela-

tions.

Finally, a natural extension of these results provide a principled model-based method

of conducting meta-analysis Here, the target of analysis is not to minimize the scope V* at

the target population but, rather, to share samples from diverse studies so as to minimize

sampling variation [Pearl, 2011b].

Consider the selection diagrams depicted in Fig. 7, each representing a study conducted

X YW

(d)

Z

X YW

Z

S

(c)

X YW

Z

(b)(a)

X YW

Z

X YW

S

Z

(e)

S

(f)

X YW

Z Z

X W

(g)

Y

S

Z

(h)

X YW

S

Z

(i)

X YW

Figure 7: Diagrams representing 8 studies ((b)–(i)) conducted under different conditions

on different populations, aiming to estimate the causal effect of X on Y in the target pop-

ulation, shown in 7(a).

on a different population and under a different set of conditions. Here, solid circles repre-

sent variables that were measured in the respective study and hollow circles variables that

remained unmeasured. An arrow �→ represents an external influence affecting a mech-

anism by which the study population is assumed to differ from the target population Π∗,

shown in Fig. 7(a). For example, Fig. 1(c) represents an observational study on popula-

tion Πc in which variables X, Z and Y were measured, W was not measured and the prior

probability Pc(Z) differs from that of the target population P ∗(Z). Diagrams (b)–(f) repre-

sent observational studies while (g)–(j) stand for experimental studies with X randomized

(hence the missing arrows into X).

Despite differences in populations, measurements and conditions, each of the studies

may provide information that bears on the target relation R(Π∗) which, in this example, we

take to be the causal effect of X on Y , P ∗(y|do(x)) or; given the structure of Fig. 7(a),

R(Π∗) = P ∗(y|do(x)) =
∑

z

P ∗(y|x, z)P ∗(z).

While R(Π∗) can be estimated directly from some of the studies (e.g., (g)) and indirectly

from others (e.g., (b) and (d)), it cannot be estimated separately from any study for which

the population differs substantially from Π∗ (e.g., (c), (e), (f)). The estimates of R provided

6Traditional definitions of surrogacy [Prentice, 1989] as well as those based on “principal strata”

[Frangakis and Rubin, 2002] lack this feature and are, therefore, problematic [Pearl, 2011a].
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by the former studies may differ from each other due to sampling variations and measure-

ment errors, and can be aggregated in the standard tradition of meta-analysis. The latter

studies, however, should not be averaged with the former, since they do not provide unbi-

ased estimates of R. They are not totally useless, though, for they can provide information

that renders the former estimates more precise. For example, although we cannot identify

R from study 7(c), since Pc(z) differs from P ∗(z), we can nevertheless use the estimates of

Pc(x|z), Pc(y|z, x) that 7(c) provides to improve the accuracy of P ∗(x|z) and P ∗(y|z, x)7

which may be needed for estimating R by indirect methods. For example, P ∗(y|z, x) is

needed in study 7(b) if we use the estimator R =
∑

z P ∗(y|x, z)P ∗(z), while P ∗(x|z) is

needed if we use the inverse probability estimator R =
∑

z P ∗(x, y, z)/P ∗(x|z).

Similarly, consider the randomized studies depicted in 7(h) and 7(i). None is sufficient

for identifying R in isolation, yet taken together, they permit us to borrow Pi(w|do(x))
from 7(i) and Ph(y|w, do(x)) from 7(h) (likewise, from 7(d)) and synthesize a bias-free

estimator:

R =
∑

w

P ∗(y|w, do(x))P ∗(w|do(x))

=
∑

w

Ph(y|w, do(x)Pi(w|do(x))

The challenge of synthetic meta-analysis is to take a collection of studies, annotated

with their respective selection diagrams (as in Fig. 7), and construct an estimator of a spec-

ified relation R(Π∗) that makes maximum use of the samples available, by exploiting the

commonalities among the populations studied and the target population Π∗.

Our analysis is based on the assumption that the investigator is in possession of suffi-

cient knowledge to determine, at least qualitatively, where two populations may differ. In

practice, such knowledge may only be partially available and, as is the case in every mathe-

matical exercise, the benefit of the analysis lies primarily in understanding what knowledge

is needed for the task to succeed and how sensitive conclusions are to knowledge that we

do not possess.
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Appendix 1

The do-calculus [Pearl, 1995] consists of three rules that permit us to transform expressions

involving do-operators into other expressions of this type, whenever certain conditions hold

in the causal diagram G. (See footnote 1 for semantics.)

We consider a DAG G in which each child-parent family represents a deterministic

function xi = fi(pai, εi), i = 1, . . . , n, where pai are the parents of variables Xi in G; and

εi, i = 1, . . . , n are arbitrarily distributed random disturbances, representing background

factors that the investigator chooses not to include in the analysis.
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Let X , Y , and Z be arbitrary disjoint sets of nodes in a causal DAG G. An expression

of the type E = P (y|do(x), z) is said to be compatible with G if the interventional distri-

bution described by E can be generated by parameterizing the graph with a set of functions

fi and a set of distributions of εi, i = 1, . . . , n

We denote by GX the graph obtained by deleting from G all arrows pointing to nodes in

X . Likewise, we denote by GX the graph obtained by deleting from G all arrows emerging

from nodes in X . To represent the deletion of both incoming and outgoing arrows, we use

the notation GXZ .

The following three rules are valid for every interventional distribution compatible with

G.

Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w)

if (Y ⊥⊥ Z|X, W )G
X

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w)

if (Y ⊥⊥ Z|X, WG
XZ

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w)

if (Y ⊥⊥ Z|X, W )G
XZ(W )

,

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .

The do-calculus was proven to be complete [Shpitser and Pearl, 2006], in the sense

that if an equality cannot be established by repeated application of these three rules, it is

not valid.

Appendix 2

Derivation of the transport formula for the causal effect in the model of Fig. 4(d) (Eq. (14)),

P ∗(y|do(x)) = P (y|do(x), s)

=
∑

zP (y|do(x), s, z)P (z|do(x), s)

=
∑

zP (y|do(x), z)P (z|do(x), s)
(

2nd cond. of thm. 2, S-admissibility of Z for CE(X, Y )
)

=
∑

zP (y|do(x), z)
∑

w P (z|do(x), w, s)P (w|do(x), s)

=
∑

zP (y|do(x), z)
∑

w P (z|w, s)P (w|do(x), s)
(

3rd cond. of thm. 2, (X ⊥⊥ Z|S, W )
)

=
∑

zP (y|do(x), z)
∑

w P (z|w, s)P (w|do(x))
(

2nd cond. of thm. 2, S-admissibility of {} for CE(X, W )
)

=
∑

zP (y|do(x), z)
∑

w P ∗(z|w)P (w|do(x)) (18)
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