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Summary.
This paper highlights several areas where graphical techniques can be harnessed to address
the problem of measurement errors in causal inference. In particular, the paper discusses the
control of partially observable confounders in parametric and non parametric models and the
computational problem of obtaining bias-free effect estimates in such models.
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1. Introduction

This paper discusses methods of dealing with measurement errors in the context of graph-based

causal inference. It is motivated by a powerful result reported in Greenland and Lash (2008) which

is rooted in classical regression analysis (Greenland and Kleinbaum, 1983; Sel�en, 1986; Carroll et

al., 2006), but has not been fully utilized in causal analysis or graphical models.

Let pr��� be the joint distribution of �
�
� ���� � � � � ��� � ���� � � � � ���, pr������� the condi-

tional distribution of �� � �� given �� � �� and pr���� the marginal distribution of �� � ��. Similar

notation is used for other distributions. For the graph-theoretic terminology used in this paper, we

refer readers to Pearl (1988, 2009).

Given a directed acyclic graph � � �� ��� with a set � of variables and a set � of arrows, a

probability distribution pr��� is said to be compatible with � if it can be factorized as:

pr��� �
�

�
���

pr����pa������ (1)
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where pa���� is a set of parents of ��. When pa���� is an empty set, pr����pa����� is the marginal

distribution pr����. When equation (1) holds, we also say that � is a Bayesian network of pr���

(Pearl, 2009,pp.13–16).

If a joint distribution is factorized recursively according to the graph �, then the conditional

independencies implied by the factorization (1) can be obtained from the graph � according to the

d-separation criterion (Pearl, 1988). That is, for any distinct subsets �, � and �, if � d-separates

� from � in �, then � is conditionally independent of � given �, denoted as � �� � ��, in

every distribution satisfying equation (1).

If every parent-child family in the graph � stands for an independent data-generating mecha-

nism, the Bayesian network is called a causal diagram (see Pearl, 2009, p.24, for formal definition).

Based on a causal diagram �, for any ��� �� , the causal effect of � on � is defined as

pr���������
�
�

�
�������

pr��� ������� ���
pr���������

�

where ����� indicates that � is fixed to � by an external intervention (Pearl, 2009). When the

causal effect can be determined uniquely from a joint distribution of observed variables, the causal

effect is said to be identifiable. The most common identifiability condition that can be obtained

from the graph structure is the back door criterion. A set � of variables is said to satisfy the back

door criterion relative to an ordered pair of variables ���� � if (i) no vertex in � is a descendant of

� , and (ii) � d-separates � from � in the graph obtained by deleting from a graph � all arrows

emerging from � . If any such set can be measured, the causal effect of � on � is identifiable and is

given by the formula pr��������� �
�
�

pr����� ��pr��� (Pearl, 2009, pp.79–80); � is then called

sufficient.

With the preparation above, we consider the problem of estimating the causal effect of � on

� when a sufficient confounder 	 is unobserved, and can only be measured with error (see Fig.1),

via a proxy variable 
 . In Fig.1, 	 satisfies the back door criterion relative to an ordered pair

of variables ���� �, but its proxy variable 
 does not. Since 	 is sufficient, the causal effect is

identifiable from measurement on � , � and 	 , and can be written as

pr��������� �
�
	

pr����� ��pr���� (2)
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Fig.1: Needed the causal effect of � on � when 	 is unobserved, and 
 provides a noisy mea-
surement of 	 .

However, since 	 is unobserved and 
 is but a noisy measurement of 	 , d-separation tells us

immediately that adjusting for 
 is inadequate, for it leaves the back door path(s) ��		�

unblocked. Therefore, regardless of sample size, the causal effect of � on � cannot be estimated

without bias. It turns out, however, that if we are given the conditional distribution pr���� that

governs the error mechanism, we can perform a modified-adjustment for 
 that, in the limit of

very large sample, would amount to the same thing as observing and adjusting for 	 itself, thus

rendering the causal effect identifiable. The possibility of removing bias by modified adjustment is

far from obvious, because, although pr���� is assumed to be given, the actual value of a confounder

	 remains uncertain for each measurement 
 � , so one would expect to get either a distribution

over causal effects, or bounds thereof. Instead, we can actually get a repaired point estimate of

pr���do���� that is asymptotically unbiased.

This result, which we will label effect restoration, has powerful consequences in practice be-

cause, when pr���� is not given, one can resort to a Bayesian (or bounding) analysis and as-

sume a prior distribution (or bounds) on the parameters of pr���� which would yield a distribution

(or bounds) over pr��������� (Greenland, 2005). Alternatively, if costs permit, one can estimate

pr���� by re-testing 	 in a sampled subpopulation (Carroll et al., 2006). This is normally done

by re-calibration techniques (Greenland and Lash, 2008), called a validation study, in which 	 is

measured without error in a subpopulation and used to calibrate the estimates in the main study

(Sel�en, 1986).

On the surface, the possibility of correcting for measurement bias seems to undermine the im-

portance of accurate measurements. It suggests that as long as we know how bad our measurements

are there is no need to improve them because they can be corrected post-hoc by analytical means.

This is not so. First, although an unbiased effect estimate can be recovered from noisy measure-
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ments, sampling variability increases substantially with error. Second, even assuming unbounded

sample size, the estimate will be biased if the postulated pr���� is incorrect. In extreme cases,

wrongly postulated pr���� may even conflict with the data, and no estimate will be obtained. For

example, if we postulate a non informative 
 , pr���� � pr��, and we find that 
 strongly

depends on � , a contradiction arises and no effect estimate will emerge.

Effect restoration can be analyzed from either a statistical or causal viewpoint. Taking the

statistical view, one may argue that, once the causal effect is identified in terms of a latent variable 	

and given the estimand in equation (2), the problem is no longer one of causal inference, but rather of

regression analysis, whereby the regressional expression �	�pr����� ��� need to be estimated from

a noisy measurement of 	 , given by 
 . This is indeed the approach taken in the vast literature on

measurement error (e.g., Sel�en, 1986; Carroll et al., 2006).

The causal analytic perspective is different; it maintains that the ultimate purpose of the analysis

is not the statistics of � , � , and 	 , as is normally assumed in the measurement-error literature, but

the causal effect pr��������� that is mapped into regression vocabulary only when certain causal

assumptions are deemed plausible. Awareness of these assumptions should shape the way we deal

with measurement error. For example, the very idea of modeling the error mechanism pr���� re-

quires causal considerations; errors caused by noisy measurements are fundamentally different from

those caused by noisy agitators. Likewise, the reason we seek an estimate pr���� as opposed to

pr����, be it from scientific judgments or from pilot studies, is that we consider the former to be

a more reliable and transportable parameter than the latter. Transportability (Pearl and Bareinboim,

2011) is a causal notion that is hardly touched upon in the measurement-error literature, where

causal vocabulary is usually avoided and causal relations relegated to informal judgment (e.g., Car-

roll et al., 2006, pp.29-32).

Viewed from this perspective, the measurement-error literature appears to be engaged (unwit-

tingly) in causal considerations that can benefit from making the causal framework explicit. The

benefit can in fact be mutual; identifiability with partially specified causal parameters (as in Fig.1) is

rarely discussed in the causal inference literature (notable exceptions are Goetghebeur and Vanstee-

landt (2005), Cai and Kuroki (2008), Hern�an and Cole (2009) and Pearl (2010)), while graphical

models are hardly used in the measurement-error literature.
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In this paper, we will consider the mathematical aspects of effect restoration and will focus on

asymptotic analysis. Our aims are to understand the conditions under which effect restoration is

feasible, to assess the computational problems it presents, and to identify those features of pr����

and pr��� �� � that are major contributors to measurement bias.

2. Effect Restoration with External Studies

2.1. Matrix Adjustment Method

Guided by the graph shown in Fig.1, we start with the joint probability pr��� �� � �� and assume that


 depends only on 	 , i.e., pr���� �� �� �pr����. This assumption is often called non-differential

error (Carroll et al., 2006).

We further assume that:

(a) the distribution pr���� of the error mechanism are available from external studies such as

pilot studies or scientific judgments, and

(b) the confounder 	 is a discrete variable with a given finite number of categories, while ���

and 
 may be continuous or discrete, as long as the number of categories of 
 is greater or

equal to that of 	 .

The main idea of recovering pr��� �� �� from both pr��� �� � and pr����, adapted from Greenland

and Lash (2008, p.360) and Pearl (2010), is as follows: for 	 and 
 such that � � ���� ����
� and

 � ��� ���� 
�, we have

pr��� �� � �

�

���

pr��� �� ���pr������ (3)

Then, for any specific values � and �, letting

������ �

�
��

pr��� �� ���
...

pr��� �� �
�

�
�� � ����� �

�
��

pr��� �� ��
...

pr��� �� 
�

�
�� ���� �� �

�
��

pr������ � � � pr����
�
...

. . .
...

pr�
���� � � � pr�
 ��
�

�
�� �

equations (3) can be written as matrix multiplication:

����� � ��� ��������� (4)

Now, assuming that
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(c) ��� �� is invertible,

the elements pr��� �� �� of ������ are estimable and are given by

������ � ��� �������� (5)

where ��� �� � ��� ����. Thus, equation (5) enables us to reconstruct pr��� �� �� from pr��� �� �.

In other words, each term on the right hand side of equation (2) can be obtained from pr��� �� �

and pr���� through equation (5) and, assuming 	 is sufficient, the causal effect pr��������� is es-

timable from the available data. Explicitly, letting ��� �� be the corresponding element of ��� ��

that corresponds to �
�	� � �� ��, we have:

pr��������� �

�

���

pr��� �� ���pr����
pr��� ���

�

�
���


�
���

��� � ���pr��� �� ��

�

���

��� � ���pr���


�
���

��� � ���pr��� ��

�(6)

Note that the same inverse matrix, ��� �� appears in all summations.

When we do not assume independent noise mechanisms, this will not be the case. In other

words, if pr���� �� �� �pr���� does not hold, we must write:

pr��� �� � �

�

���

pr���� �� ���pr��� �� ����

which can be transformed to matrix multiplication ����� � ����� ��������, where

����� �� �

�
��

pr����� �� ��� � � � pr����� �� �
�
...

. . .
...

pr�
 ��� �� ��� � � � pr�
��� �� �
�

�
�� �

and its inverse ����� �� are both indexed by the specific values of � and �. Thus, when both � and

� are discrete variables with a given finite number of categories, we obtain:

������ � ����� ������� (7)

which, again, permits the identification of the causal effect via equation (2) except that the expres-

sion becomes somewhat more complicated. It is also clear that errors in the measurement of � and

� can be absorbed into 
 , and do not present any conceptual problem.
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Equation (6) demonstrates the feasibility of effect reconstruction and proves that, despite the

uncertainty in the variables � , � and 	 , the causal effect is identifiable once we know the statistics

of the error mechanism.

This result is asymptotic, and presents practical challenges of computation and estimation. In

particular, one needs to address the problem of empty cells which, owed to the high dimensionality

of 
 and 	 would prevent us from getting reliable statistics of pr��� �� �, as required by equation

(6). When � is a binary variable, one can resort then to propensity score (PS) methods (Rosenbaum

and Rubin, 1983), which map the cells of 	 onto a single scalar.

The error-free propensity score ���� � pr������ being a functional of pr��� �� �� can be esti-

mated consistently from samples of pr��� �� � using the transformation (5). Explicitly, we have:

���� � pr������ �
pr���� ��

pr���
�

where pr���� �� and pr��� are given in equations (5).

Using the decomposition in pr���� �� ���pr����, we can further write:

���� �


�
���

��� � ��pr���� ��


�
���

��� � ��pr���

�


�
���

��� � �����pr���


�
���

��� � ��pr���

� (8)

where ��� is the error-prone propensity score ��� � pr�����. We see that ���� can be com-

puted from ��� ��, ��� and pr��. Thus, if we succeed in estimating these three quantities in a

parsimonious parametric form, the computation of ���� would be hindered only by the summations

called for in equation (5). Once we estimate ��� parametrically for each conceivable , equation

(8) permits us to assign to each tuple � a bias-less score ���� that correctly represents the probabil-

ity of � � �� given 	 � �. This, in turn, should permit us to estimate, for each stratum ���� � �,

the probability

pr��� �
�

	���	���

pr����

then compute the causal effect using

pr��������� �
�
�

pr����� ��pr����
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One technique for approximating pr��� was proposed by St	urmer et al. (2005) and Schneeweiss

et al. (2009), which did not make full use of the inversion in equation (8) or of graphical methods

facilitating this inversion. A more promising approach would be to construct pr��� and pr����� ��

directly from synthetic samples of pr��� �� �� that can be created to mirror the empirical samples of

pr��� �� �. This is illustrated in the next subsection, using binary variables.

2.2. Matrix Adjustment in Binary Models

Let � , � , 
 and 	 be binary variables, ���� ��, ������ ���, and let the noise mechanism be

characterizes by pr������ and pr������. Then, equation (5) translates to

pr��� �� ��� �
�

 pr�������pr��� �� ��
 pr������pr��� �� ��



 pr������
 pr������

pr��� �� ��� �
�

 pr�������pr��� �� ��
 pr������� ��� �� ��



 pr������
 pr������
�

�		

		�

(9)

which represents the inverse matrix

��� �� �





 pr������
 pr������

�


 pr������ 
pr������

pr������ 

 pr������



Metaphorically, the transformation in equation (9) can be described as a mass re-assignment pro-

cess, as if every two cells, ��� �� �� and ��� �� ��, compete on how to split their combined weight

pr��� �� between the two latent cells ��� �� ��� and ��� �� ��� thus creating a synthetic population

pr��� �� �� governed by equation (6). Fig.2 describes how pr����� ��, the fraction of the weight

held by the ��� �� �� cell determines the ratio pr������ ���pr������ �� that is eventually received by

cells ��� �� ��� and ��� �� ��� respectively. We see that when pr����� �� approaches 

pr������,

most of the pr��� �� weight goes to cell ��� �� ���, whereas when pr����� �� approaches pr������,

most of that weight goes to cell ��� �� ���.

Clearly, when pr������ � pr������ � 
, or 	 �� 
 , 
 provides no information about 	

and the inverse does not exist. Likewise, whenever any of the synthetic distributions pr��� �� ��

falls outside the ��� 
� interval, a modeling constraint is violated (see Pearl (1988, Chapter 8))

meaning that the observed distribution pr��� �� � and the postulated error mechanism pr���� are

incompatible with the structure of Fig.1. If we assign reasonable priors to pr������ and pr������,

the linear function in Fig.2 will become an S-shaped curve over the entire �� 
� interval, and each

sample ��� �� � can then be used to update the relative weight pr��� �� ����pr��� �� ���.
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Fig.2: A curve describing how the weight pr��� �� is distributed to cells ��� �� ��� and ��� �� ���, as
a function of pr����� ��.

To compute the causal effect pr��������� , we need only substitute pr��� �� �� from equation

(9) into equation (2) or (6), which gives

pr��������� �
pr��� �� ��

pr�����

�




pr������

pr����� ��

�




pr������

pr���






pr������pr���

pr���

�
pr��� �� ��

pr�����

�




pr������

pr����� ��

�




pr������

pr���






pr������pr���

pr���

(10)

This expression highlights the difference between the standard and modified adjustment for 
 ;

the former (equation (2)), which is valid if 
 � 	 , is given by the standard inverse probability

weighting (e.g., Pearl, 2009, equation (3.11)):

pr��������� �
pr��� �� ��

pr�����
�

pr��� �� ��

pr�����
�

The extra factors in equation (10) can be viewed as modifiers of the inverse probability weight

needed for a bias-free estimate. Alternatively, these terms can be used to assess, given pr������

and pr������, what bias would be introduced if we ignore errors altogether and treat 
 as a

faithful representation of 	 . When both pr������ � 
 and pr������ � 
 hold, the first-order
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Fig.3: A causal model with two proxy variables of 	 , permitting the identification of pr���������.

approximation of equation (10) reads:

pr��������� �
pr��� �� ��

pr�����

�


 pr������

�



pr����� ��





 pr���
pr���

�

�
pr��� �� ��

pr�����

�


 pr������

�



pr����� ��





 pr���
pr���

�
�

We see that, even with two error parameters (i.e. pr������ and pr������), and eight cells, the

expression for pr��������� does not simplify to provide an intuitive understanding of the effect

of pr������ and pr������ on the estimand. Such evaluation will be facilitated in linear models

(Section 4).

Assuming now that 	 is a sufficient set of � binary variables and, similarly, 
 is a set of �

local indicators of 	 satisfying equation pr���� �pr���� �� ��. Each samples ��� �� � should

give rise to a synthetic distribution over the � cells of ��� �� �� given by a product of � local

distributions in the form of equation (9). This synthetic distribution can be sampled to generate

synthetic ��� �� �� samples, from which the true propensity score ���� �pr������ as well as the

causal effect pr���do���� can be estimated, as discussed in Section 2.1.

3. Effect Restoration without External Studies

In this section, we will tackle the more difficult problem of estimating causal effects without prior

knowledge of the noise statistics. We will show that, under certain conditions, causal effects can be

restored from proxy measurements alone.

Consider a causal diagram shown in Fig. 3 which is obtained by adding an observed variable �

to Fig.1. We will first show that pr��� �� �� can be recovered from pr��� �� �� � under the following

conditions:

(a) two proxy variables of 	 which are conditionally independent of each other given 	 can be
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observed (e.g. 
 and � in Fig.3), and 	 satisfies both 
 �� ����� ���	 and � �� �
�����	���,

as in Fig.3.

(b) the confounder 	 is a discrete variable with a given finite number of categories, while ��� ,

�, and 
 may be continuous or discrete, as long as the number of categories of 
 and � is

greater or equal to that of 	 .

To show that, we first rearrange pr����� ���� ���� pr����� �
� in decreasing order and relabel ���� ���� �
�

as ������ ���� ��
�� such that pr����� ����� ���pr����� ��
�� for a given � and �, and, then, we re-

cover pr��� �� �� from pr��� �� �� � using eigenvalue analysis.

From Fig.3, with 	 , 
 and � taking on values, � � ���� � ����
� � ������ � �����
��,  �

��� ���� 
� and � � ���� ���� �
� respectively, we have

pr��� ��� �


�
���

pr�����pr����� ���pr������ �

�

���

pr�������pr����� �����pr���������

pr��� ��� �


�
���

pr�����pr����� ���pr������ �

�

���

pr�������pr����� �����pr���������

pr��� ���� �

�

���

pr����� ���pr����� ���pr������ �

�

���

pr����� �����pr����� �����pr���������

pr��� �� ��� �

�

���

pr�����pr����� ���pr����� ���pr������

�


�
���

pr�������pr����� �����pr����� �����pr���������

Denote by � ��� �, ���� �, 	�� �� and ���� �� the following matrices:

� ��� � �

�
����


 pr����� � � � pr�
�����
pr������ pr���� ���� � � � pr���� 
�����

...
...

...
...

pr��
����� pr��
��� ���� � � � pr��
��� 
�����

�
���� �

���� � �

�
����

pr����� pr��� ���� � � � pr��� 
�����
pr��� ����� pr��� ��� ���� � � � pr��� ��� 
�����

...
...

...
...

pr��� �
����� pr��� �
��� ���� � � � pr��� �
��� 
�����

�
���� �

	�� �� �

�
��


 pr�������� � � � pr�
��������
...

...
...

...

 pr�����
�� � � � pr�
�����
��

�
�� �
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���� �� �

�
��


 pr������ ����� � � � pr��
����� �����
...

...
...

...

 pr������ ��
�� � � � pr��
����� ��
��

�
�� �

and let���� � diag�pr����� ������ � � � � pr����� ��
��� and ���� � diag�pr��������� � � � � pr���
�����,

where diag���� ���� �
� is a ��� dimensional diagonal matrix whose diagonal entries starting in the

upper left corner are ��� ���� �
.

Assume further that

(c) both � ��� � and ���� � are invertible, and

(d) pr����� ���� � � � � pr����� �
� take on distinct values

for any � and �. Then, writing � ��� � � ���� �������	�� �� and ���� � � ���� �����������	�� ��,

we have

� ��� ������� � � ����� �������	�� ���
��
����� �����������	�� ���

� 	�� �������������� ��������� �����������	�� ��

� 	�� ������������������	�� �� � 	�� ��������	�� ���

where a prime notation (�) indicates that a vector/matrix is transposed. Thus, the recovery problem

of pr���� from 	�� �� rests on solving the eigenvalue problem of � ��� ������� �. Once

pr���� is known, we can evaluate causal effects by using the matrix adjustment method in Section

2.1. Based on this consideration, the following theorem can be obtained:

Theorem 1:Under conditions (a),(b), (c) and (d), if 	 is a sufficient confounder relative to an

ordered pair of variables ���� �, then the causal effect pr��������� of � on � is identifiable.

The proof is provided in Appendix.

Here, it should be noted that pr��� �� �� is not identifiable because we do not know whether

pr��� �� ��� � pr��� �� ����� holds for � � 
� ���� �. That is, letting ���� ���� �
� be a set of eigenvalues

of � ��� ������� �, we know that a set ���� ���� �
� of solutions of �� ��� ������� �
��
 � � �

is consistent with a set �pr����� ���� ���� pr����� �
�� of distributions, but we do not know which

solution of �� ��� ������� � 
 ��
 � � � corresponds to each pr����� ����� � 
� ���� ��. The

causal effect is nevertheless identifiable because it involves the summation over 	 � �, not the

individual solutions of �� ��� ������� �
 ��
� � �.
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If, on the other hand, we have knowledge of the correspondence, e.g., by establishing the orders

�� � ��� � �
 and pr����� ��� � ��� � pr����� �
� and � is a discrete variable with a given finite

number of categories, then the condition 
 �� ��� � ��	 can be relaxed to 
 �� ��� � ���	���.

To see this, when we replace 	�� �� by a � dimensional matrix

	��� �� �

�
��


 pr����� ����� � � � pr�
����� �����
...

...
...

...

 pr����� ��
�� � � � pr�
����� ��
��

�
�� �

both � ��� � � ���� �������	��� �� and ���� � � ���� �����������	��� �� hold. If both

� ��� � and ���� � are invertible, then using the steps in Appendix, the causal effect is identifiable.

This deviation demonstrates that, whenever we observe two independent proxy variables asso-

ciated with an unmeasured confounder, the distribution of the latter can be constructed from the

proxies, which renders the causal effect identifiable. Thus, our result extends the range of solvable

identification problems (Pearl, 2009, Chapters. 3 and 4; Shpitser and Pearl, 2006; Tian and Pearl,

2007) to cases where discrete confounders are measured with error. However, it should be noted

that the identifiability criteria developed in (Pearl, 2009; Shpitser and Pearl, 2006; Tian and Pearl,

2003) apply to nonparametric models where the dimensionality of the variables is assumed arbi-

trary, while our result applies to causal models with finitely discretized confounder. Our method

also provides guidance on how to choose proxy variables so as to construct the distribution of the

unmeasured confounders from the proxies.

4. Effect Restoration in Linear Structural Equation Models

4.1. Linear Structural Equation Model

In this section, we assume each child-parent family in the graph � represents a linear structural

equation model (SEM)

�� �
�

���������

������� �  �� � � � 
� �� � � � � !� (11)

where normal random disturbances  �� �  �� � � � � �  �� are assumed to be independent of each other

and have mean �. In addition, ����� is a constant value, and ����� ����� is called a path coefficient

or a direct effect. For the details on linear structural equation models, see Bollen (1989).
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The following notation will be used in our discussion. For univariates � and � and a set � of

variables, let "��	� � cov���� �� � 	� and "��	� � var�� �� � 	� and #��	� � "��	��"��	� .

For disjoint sets �, � and �, let ���	� be the conditional covariance matrix of � and � given

� � 	. In addition, let ���	� be the conditional covariance matrix of � given � � 	, and let

$��	� � ���	��
��
��	� be the regression coefficient matrix of 
 in the regression of � on ���. We

use the same notation in the case where either � or � is univariate. When � is an empty set, �

will be omitted from the expressions above. Similar notation is used for other parameters. Note the

critical distinction between ��� and #��. The former are structural coefficients that convey causal

information, the latter are regression coefficients which are purely statistical.

The total effect %�� of � on � is defined as the total sum of the products of the path coefficients

on the sequence of arrows along all directed paths from � to � . %�� can often be identified from

graphs using the back door criterion. That is, if a set � of observed variables satisfies the back

door criterion relative to an ordered pair of variables ���� �, then the total effect %�� of � on � is

identifiable, and is given by the regression coefficient #��	� (Pearl, 2009).

Another identification condition invokes an instrumental variable (IV) (Brito and Pearl, 2002).

Let ����� �� and � be disjoint subsets of � in a directed acyclic graph �. If a set ����� of

variables satisfies (i) � contains no descendants of � or � in �, and (ii) � d-separates � from �

but not from � in the graph obtained by deleting all arrows emerging from � , then � is said to be

a conditional instrumental variable (CIV) given � relative to an ordered pair of variables ���� �

(Pearl, 2009, p.366; see also Brito and Pearl, 2002). By CIV, we mean a variable that becomes an

instrument relative to the target effect upon conditioning on a set � of variables. If an observed

variable � is a CIV given � relative to an ordered pair of variables ���� �, then the total effect %��

of � on � is identifiable, and is given by "��	��"��	� (Brito and Pearl, 2002). Especially, when �

is an empty set, � is called an instrumental variable (IV) (Bowden and Turkington, 1984).

To derive a new graphical identification condition for total effects, we review some properties

of the regression coefficients. First, when ���� � � � � � are normally distributed, we have the

identity #��	� � #��	�� � $��	��$��	� (Cochran, 1938). Second, if � is conditionally independent

of � given � or � is conditionally independent of � given �����, then #��	�� � #��	� (Wermuth,

1989). Third, #��	� is given by #��	� � �"�� 
 ����
��
�� ������"�� 
 ����

��
�� ���� because we
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(a) (b)

(c) (d)
Fig.4: Linear SEMs with proxy variables of 	 , for the identification of %��. (a) requires knowledge
of ��

�	"		, while (b), (c) and (d) identify %�� from data.

have "��	� � "�� 
����
��
�� ��� and "��	� � "�� 
 ����

��
�� ���.

4.2. Identification using proxy variables

In this section, we consider the linear version of the problem discussed in Section 3, i.e., estimating

the total effect of � on � when a sufficient covariate 	 is measured via proxy variables, as shown

in Fig. 4.

The linear SEM offers two advantages in handling measurement errors. First, it provides a more

transparent picture into the role of each factor in the model. Second, there are quite a few graphical

structures in which the causal effect is identifiable in linear models but not in nonparametric models.

To see this, consider the causal diagrams shown in Fig.4. Since 	 is sufficient in Fig.4, the

total effect is identifiable from the measurement on � , � and 	 , and is given by %�� � #��		,

the regression coefficient of � on � and 	 . However, if 	 is unobserved and 
 is but a noisy

measurement of 	 , as in Fig.4 (a), knowledge of the error mechanism 
 � ��		 �  � is needed

in order to identify %�� � #��		. We note, however, that knowledge of both ��	 and "		 is not
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necessary; the product ��
�	"		 is sufficient. To see this, we write

%�� � #��		 �
"�� 


"�	"�	
"		

"�� 

"��	
"		

�

"�� 

��
�	"�	"�	

��
�	"		

"�� 

��
�	"

�
�	

��
�	"		

and, from "�� � "�	��	 and "�� � "�	��	, we have

%�� �

"�� 

"��"��
��
�	"		

"�� 

"���

��
�	"		

(12)

We see that, if ��
�	"		 is given, %�� is identifiable.

Next, we consider the identification of %�� without external information. We first show that

if 	 possesses two independent proxy variables, say 
 and � (as in Fig. 4(b)) then ��
�	"		 is

identifiable. Indeed, writing "�� � ��	��	"		� "�� � ��	��	"		 and "�� � ��	��	"		, we

have
"��"��

"��
�

���	��	"		����	��	"		�

��	��	"		
� ��

�	"		� (13)

By substituting equation (13) into equation (12), we can see that %���� ���� is identifiable and is

given by

%�� � #��		 �
"��"�� 
 "��"��
"��"�� 
 "��"��

� (14)

This result reflects the well known fact (e.g., (Bollen, 1989, p. 224)) that, in linear SEMs, structural

parameters are identifiable, up to a constant "		, whenever each latent variable (in our case 	 ) has

three independent proxies (in our case � , 
 and �). We see that the non-identifiability of "		 is

not an impediment for the identification of ���.

We next relax the requirement that 	 possesses three independent proxies (as in Fig. 4(b)) and

consider a situation as in Fig. 4(c), where two of these proxies (� and �) are dependent. Here we

note that ���	� d-separates � , � and 
 from each other. Therefore, given � , the tuple � , �

and 
 work as three independent indicators of 	 (i.e., �� � and 
 are conditionally independent

of each other given ���	�). This will permit us to identify the key factor, ��
�	"		 from the

measurement of ���� � and 
 , and obtain:

��
�	"		 �

"��	�"��	�
"��	�

�
"���
"��

� (15)
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The derivation is as follows. Since "��	� � "�		�"�		��"			�, "��	� � "�		�"�		��"			� and

"��	� � "�		�"�		��"			�, we have

"��	�"��	�
"��	�

�
�"�		�"�		��"			���"�		�"�		��"			��

"�		�"�		��"			�
�

"��		�
"			�

� #��		�"			� � #��	"			��

Further, noting that #�	 � ��	 and "�� � #�	"�	 � ��	"�	, we have

��
�	"			� � ��

�	"		 

��
�	"

�
�	

"��
� ��

�	"		 

"���
"��

�

Using these results, equation (15) is obtained. The first term of equation (15) can be interpreted as

the conditional modified-adjustment of 	 through the proxy variable 
 given � , and the second is

a correction term, which transforms the conditional modified-adjustment of 	 through 
 given �

to the unconditional modified-adjustment of 	 through 
 .

To derive an explicit expression for ���, we substitute equation (15) into equation (12), and

using "��	� � "�� 
 "��"���"�� we have

��� �

"�� 

"��"��
��
�	"		

"�� 

"���

��
�	"		

�
"���"��	�"��	�"�� � "��	�"

�
���
 "��"��"��"��	�

"���"��	�"��	�"�� � "��	�"����
 "���"��"��	�

�
"��"��	�"��	�"�� � "��	�"���"��"�� 
 "��"���

"��	�"��	�"���

�
"��"��	�"��	�"�� 
 "��"��	�"��"��	�

"��	�"��	�"���
�

"��"��	� 
 "��	�"��
"��	�"��

� (16)

We see that ��� � #��		 is identifiable and is given by equation (14).

From Fig. 4 (a), (b) and (c), we see that the pivotal quantity needed for the identification of ���

is the product

��
�	"		 � "�� 
 "���� � (17)

which stands for the portion of "�� that is contributed by variations of 	 . As seen from the consid-

eration above, if we are in possession of several proxies for 	 , then ��
�	"		 can be estimated from

the data as in equation (13) or (15), yielding equation (12). If however 	 has only one proxy 
 , as

Fig.4 (a), the product ��
�	"		 must be estimated externally, using either a pilot study or judgmental

assessment.

Judgmental assessment of the product ��
�	"		 can be made more meaningful through the de-

composition on the right hand side of equation (17), since both ��	 and  � are causal parameters
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of the error mechanism 
 � ��		 �  �, ��	 � ��
 ����� measures the slope with which the

average of 
 tracks the value of 	 , while "���� measures the dispersion of 
 around that average.

"�� can, of course be estimated from the data.

Under a Gaussian distribution assumption, ��	 and "���� fully characterize the conditional

density &���� which, according to Section 2, is sufficient for restoring the joint distribution of �,

� and �, and thus secure the identification of the causal effect, through equation (2). This explains

why the estimation of ��	 alone, be it from experimental data or our understanding of the physics

behind the error process, is not sufficient for neutralizing the confounder 	 . It also explains why the

technique of latent factor analysis (Bollen, 1989) is sufficient for identifying causal effects, even

though it fails to identify the factor loading ��	 separately of "		.

In the noiseless case, i.e., "���� � �, we have "		 � "�����
�	 and equation (12) reduces to:

��� �
"�� 


"��"��
"��

"�� 

"���
"��

�
"��	�
"��	�

� #��	�� (18)

where #��	� is the regression coefficient of � in the regression model of � on � and 
 , or:

#��	� �
'

'�
��� �����

As expected, the equality ��� � #��		 � #��	� assures a bias-free estimate of ��� through adjust-

ment for 
 , instead of 	 ; ��	 plays no role in this adjustment.

In the error-prone case, ��� can be written as

��� �
#�� 


#��#��
�




#��#��

�

�

where � � 
 
 "�����"�� and, as the formula reveals, ��� cannot be interpreted in terms of an

adjustment for a proxy variable 
 .

The strategy of adjusting for a proxy variable has served as an organizing principle for many

studies in traditional measurement error analysis (Carroll et al., 2006). For example, if one seeks

to estimate the regression coefficient #�	 � ��� ����� through a proxy 
 of 	 , one can always

choose to regress � on another variable, � , such that the slope of � on � , ��� �����, would yield

an unbiased estimate of #�	. Choosing � to be the best linear estimate of 	 , given 
 would permit
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such regression. In our example of Fig.4 (b), one should choose � � (
 , where

( �
"��
"��

�
��	"		
"��

is to be estimated separately, from a pilot study. However, this Two Stage Least Square strategy is

not applicable in adjusting for latent confounders; i.e., there is no variable � �
 � such that ��� �

#��	�.

Fig. 4 (d) represents a new challenge; although ��
�	"		 is not identifiable, the total effect

��� is nevertheless identifiable without external studies. In the next section, we will discuss this

identification strategy.

4.3. Instrumental Variable (IV) method with a proxy variable

In Fig.4 (d), if 	 can be observed, then both the CIV condition and the back door criterion can be

applied to evaluating the total effect simultaneously, giving %�� � #��		 and %�� � "��		�"��		,

respectively. We shall now show that equating these two expressions to each other, together with

the independence condition ����� �� 
 �	 will allow us to remove all terms involving � as a

subscript. Indeed, starting with "�� � "�	"�	�"		 and "�� � "�	"�	�"		, we have "�	 �

"�	"���"��. Then, using

%�� � #��		 �
"��		
"��		

�
"�� 


"�	"�	
"		

"�� 

"��	
"		

�

we have �
"�� 


"��	
"		


%�� � "�� 


"�	"�	
"		

�

and, from %�� � "��		�"��		 and "�	 � "�	"���"��, we have
�
"�� 


"�	"�	
"		


%�� � "��


"�	"�	
"		

� that is�

�
"�� 


"��
"��

"��	
"		


%�� � "��


"��
"��

"�	"�	
"		

�

By solving these equations for %��, we obtain

%�� �
"�� 
 "��

"��
"��

"�� 
 "��
"��
"��

�

which is consistent with equation (12). This derivation demonstrates a more general approach that

differs from Cai and Kuroki (2007) which was based on latent factor analysis (e.g. Bollen, 1989;
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Fig.5: Causal diagram with unmeasured confounders

Stanghellini, 2004; Stanghellini and Wermuth, 2005; Vicard, 2000). Our approach extends the

identification conditions to cases where the total effect can not be identified by any single strategy

but by a combination of several strategies (e.g., the back door criterion and the CIV condition in this

case). In addition, unlike the discussion in Section 4.2, the identification of ��
�	"		 is not required;

instead, we will require a proxy variable 
 such that 	 d-separates 
 from �����.

The power of this approach can be demonstrated in the model of Fig.5 where a sufficient set

�	����� of variables is unobserved. Here, 	� is univariate but the number of variables in� � can

be uncertain. In this situation, the back door criterion can not be used to identify the total effect of

� on � , and the uncertain number of variables in � � prevents us from identifying the total effect

based on latent factor analysis in which we need to know the number of unobserved variables. In

addition, because neither �� nor �� is (conditionally) independent of �	�� � � �, they can not be

used as the CIVs. Nevertheless, we will show that the total effect is identifiable as follows: Since

both �� and �� are CIV given 	� relative to an ordered pair of variables ���� �, the total effect is

given by

%�� �
"���		�
"���		�

�
"���		�
"���		�

Moreover, since ���� ��� �� 
 �	� holds in the model, we have "��� � "��	�"�	��"	�	� �� �


� ��, and we can write

"���

"�	�"��	�

"	�	�

"���
"���

� %��

�
"��� 


"�	�"��	�
"	�	�

"���
"���


� and� "���


"�	�"��	�
"	�	�

� %��

�
"��� 


"�	�"��	�
"	�	�


�

By solving these equations for %��, we have

%�� �
"���"��� 
 "���"���
"���"��� 
 "���"���

� (19)

We now summarize these considerations in a theorem.

Theorem 2: Suppose that
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(i) a non-empty set ���� ��� of distinct variables satisfies one of the following conditions:

(i-a) both �� and �� are CIVs given a univariate 	 relative to an ordered pair of variables

���� �, (i-b) �� is a CIV given 	 relative to an ordered pair of variables ���� �, and �� � �

and 	 satisfies the back door criterion relative to an ordered pair of variables ���� �.

(ii) 	 d-separates ���� ��� from an observed variable 
 .

Then, the total effect %�� of � on � is identifiable and is given by the formula (19). �

5. Conclusion

The paper discusses computational and representational problems connected with effect restora-

tion when confounders are mismeasured or misclassified. In particular, we have explicated how

measurement bias can be removed by creating synthetic samples from empirical samples, and how

inverse-probability weighting can be modified to account for measurement error. These techniques

required an estimate of the noise mechanism, which can be obtained from external studies or as-

sessed judgmentally. Subsequently, we have derived conditions under which causal effects can be

restored without resorting to external studies, provided the confounder is discrete and is measured

through proxies of sufficiently high cardinality. Finally, we have analyzed measurement bias in

linear systems and explicated graphical conditions under which such bias can be removed.

Appendix: The proof of Theorem 1

The proof of Theorem 1 is based on the following two-step procedure which recovers pr��� �� ��

from pr��� �� �� �.

Step 1: Solve an eigenvalue problem of � ��� ������� � to recover pr���� from 	�� ��.

Step 2: Recover pr��� �� �� using the matrix adjustment method introduced in Section 2.1.

Step 1: To find pr���� encoded in 	�� ��, in terms of observed probabilities, let us consider the

eigenvalue problem of � ��� ������� �. First, noting that �	�� ����� � 
��	�� ���, we solve

�� ��� ������� �
��
� � � for � to obtain the set of eigenvalues of � ��� ������� �. In other

words, � should satisfy

�� ��� ������� �
 ��
 � � �	�� ��������	�� ��
 �	�� ����	�� ���
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� �	�� ����������
 ��
 ��	�� ��� � �����
 ��
 �

� �pr����� �����
 ������pr����� ��
��
 �� � �� (20)

From this equation, letting �� � ��� � �
 for eigenvalues of � ��� ������� �, we have �� �

pr����� ����� �� � 
� ���� ��, thus the elements of ���� are estimable. In order to obtain the eigen-

vector � for ��, letting ) � ��� ����
�, we solve the following simultaneous linear equations

�� ��� ������� �
 ���
�� � �� � � 
� ���� � (21)

or, equivalently,

� ��� ������� �) � ����� ���� �

� � ��� ����
�

�
���

�� � � � �

�
. . .

. . .
... � �


�
��� � )�����

Here, it is noted that �� ����
 are uniquely determined except for a multiplicative constant be-

cause ��� ���� �
 take different values according to assumption (d). On the other hand, letting

* � 	�� ����� and � � diag���� ���� �
� for any non-zero values of ��� ���� �
, we have

�
� ��� ������� �

�
* �

�
	�� ��������	�� ��

� �
	�� �����

�

� 	�� ��������� � 	�� ��������� � *�����

This means that * is also a matrix from eigenvectors of � ��� �������� �� and we have *��

	�� ������ � ) by taking certain values of ��� ���� �
. Then, for the inverse )�� � �+���

of the estimable matrix ) , we have using 	�� ����� � ) ,

	�� �� �

�
��


 pr�������� ��� pr�
��������
...

...
...

...

 pr�����
�� ��� pr�
�����
��

�
�� � �)�� �

�
��

��+�� ��� ��+�

...

...
...

�
+
� ����
+



�
�� �

Equating the first column of both hand sides of the equation, the diagonal element �� � 
�+��� ���� �
 �


�+
� of � can be obtained, which indicates that 	�� �� is identifiable from �)��, since )�� is

estimable. Thus, every element pr���� of 	�� �� can be obtained.

Step 2:To express pr��� �� �� in terms of observed probabilities, we use the matrix adjustment

method introduced in Section 2.1. Since we have

pr��� �� � �

�

���

pr��� �� ���pr����� �

�

���

pr��� �� �����pr��������
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substitute elements of pr�������� ��� , � 
� ���� �� obtained in Step 1 for ��� �� in equation (5).

Then, if ��� �� is invertible, we can obtain elements of ������. Thus, the causal effect

pr��������� �

�

���

pr����� ���pr���� �

�

���

pr����� �����pr������ �

�

���

pr��� �� �����

pr��� �����
pr������

is identifiable.
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