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 Structural equation modeling (SEM) is the leading method of causal inference in 
the behavioral and social sciences and, although SEM was first designed with causality in 
mind, the causal component has been obscured and lost over time due to a lack of 
adequate formalization.  The objective of this thesis is to introduce and integrate recent 
advancements in graphical models into SEM through user-friendly software modules, in 
hopes of providing SEM researchers valuable information, extracted from path diagrams, 
to guide analysis prior to obtaining data.  This thesis presents a software package called 
Commentator that assists users of EQS, a leading SEM tool.  The primary function of 
Commentator is to take a path diagram as input, perform analysis on the graphical input, and 
provide users with relevant causal and statistical information that can subsequently be used 
once data is gathered.  The methods used in Commentator are based on the d-separation 
criterion, which enables Commentator to detect and list: (i) identifiable parameters, (ii) 
identifiable total effects, (iii) instrumental variables, (iv) minimal sets of covariates 
necessary for estimating causal effects, and (v) statistical tests to ensure the compatibility of 
the model with the data.  These lists assist SEM practitioners in deciding what test to run, 
what variables to measure, what claims can be derived from the data, and how to modify 
models that fail the tests. 
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1 Introduction 
 
The relationship between a cause and its effect has been the motivation for many studies 
conducted in the biological, physical, behavioral, and social sciences [Pearl, 1998].  This 
thesis focuses on the leading method of causal inference in the social sciences known as 
structural equation modeling (SEM) [Wright, 1921].  SEM utilizes path diagrams, a type of 
graph, to show the linear relationships between variables [Duncan, 1975].  Though SEM 
was first designed with causality in mind, the causal component has been obscured and lost 
over time due to a lack of adequate formalization.   

Within the past two decades significant advances in graphical models has helped 
transform causality into a well-defined mathematical language, from which many problems 
in SEM can benefit [Pearl, 1998].  The objective of this thesis is to introduce and integrate 
these advancements into SEM through software implementation, in hopes of providing 
SEM researchers valuable information, extracted from path diagrams, to guide analysis 
prior to obtaining data. 

This thesis presents a software package called Commentator that assists a structural 
equation modeling program known as EQS [Bentler, 2006].  The main function of 
Commentator is to take a path diagram as input, perform analysis on the graphical input, and 
provide users with relevant causal and statistical information embedded in the input 
diagram.  Commentator’s output includes lists of: (i) identifiable parameters, (ii) identifiable 
total effects, (iii) instrumental variables, (iv) minimal admissible sets of covariates for 
determining the causal effect of X on Y, and (v) statistical implications to test the validity 
of the model. 

The methods used in engineering Commentator are based on the d-separation 
criterion presented in [Pearl, 1988], which locates conditional independence sets, each 
corresponding to a zero partial correlation implied by the model.  The ability to find d-
separating sets is the “working horse” or heart of Commentator since it drives and enables 
Commentator to identify parameters, total effects, and instrumental variables among others.   

Commentator offers many features to SEM researchers that are currently not 
available, using information from the path diagrams alone, prior to taking any data. Current 
techniques for assessing parameters in SEM require knowledge of both data and graph 
structure; they incur difficulties coping with non-identified parameters and tend to confuse 
errors in estimation with model misspecification. The list of vanishing correlations 
produced by Commentator offers an alternative method of model testing that favors local 
to global testing [Pearl, 1998]. In this method, misspecification errors are localized and 
therefore easier to diagnose and rectify. 

[Pearl, 1998] recognizes and emphasizes the importance of graphical analysis for 
model debugging and testing in SEM.  This thesis presents the first software 
implementation to apply these graphical algorithms for the benefit of the SEM community. 
 The rest of this thesis is organized as follows.  Section 2 provides an overview of 
the four main functions of Commentator.  Section 3 provides necessary background 
information regarding SEM, including a brief history, notational semantics, definitions and 
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problem clarification.  Section 4 describes the graphical algorithms and methods used in 
the design and implementation of the Commentator.  Sections 5 through 10 present how 
Commentator performs each of the six tasks: (i) finding minimal testable implications (Sec. 
5), (ii) identifying path coefficient (Sec. 6), (iii) identifying total effects (Sec. 7), (iv) finding 
instrumental variables (Sec. 8), (v) determining model equivalence and nestedness (Sec. 9), 
and (vi) finding minimal admissible sets of covariates for determining the causal effect of X 
on Y (Sec. 10).  In each of these sections, separate methods, pseudocode, and 
recommendations are presented.  In Section 11 conclusions are drawn and future work is 
suggested. 
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2 Overview 
 
This section presents a summary of the six tasks that Commentator performs. 
 
 
 

 
(a)                                                                  (b) 

Figure 1: (a) A Sample Path Diagram [Pearl, 2009].  (Note: latent variables are not shown 
explicitly, but are presumed to emit the double-head arrows.) (b) Conventional Path 

Diagram (Note: identical to (a) with latent variables and errors shown explicitly). 
 
 

2.1 Task 1: Find All Minimal Testable Implications 
 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  A list of the minimal testable implications of the model, specifically, a list of 
regression coefficients that must vanish, followed by a list of constraints induced by 
instrumental variables. 
 
Example:  Consider Figure 1 as input, Commentator produces the following list: 
 

 𝑟𝑉𝑊1
= 0 

 𝑟𝑉𝑊2
= 0 

 𝑟𝑉𝑋∙𝑊1𝑍1
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑍1𝑍2
= 0 

 𝑟𝑊1𝑍2∙𝑊2
= 0 

 

V 

W2 W1 

Z1 

X Y 

Z2 B 

A 

C 

ε1 ε 2 

ε 3 ε 4 

ε 7 

ε 5 ε 6 



4 

 𝑟𝑊2𝑍1∙𝑊1
= 0 

 𝑟𝑋𝑍2∙𝑉𝑊2
= 0 

 𝑟𝑍1𝑍2∙𝑉𝑊1
= 0  

 𝑟𝑍1𝑍2∙𝑉𝑊2
= 0  

 𝑟𝑊1𝑍1
∙ 𝑟𝑊1𝑊2

= 𝑟𝑍1𝑊2
 

 𝑟𝑊2𝑍2
∙ 𝑟𝑊1𝑊2

= 𝑟𝑍2𝑊1
 

 𝑟𝑊2𝑍2
∙ 𝑟𝑊1𝑋 = 𝑟𝑍2𝑋  

 𝑟𝑍1𝑋∙𝑊1
∙ 𝑟𝑍1𝑉 = 𝑟𝑋𝑉  

 𝑟𝑍2𝑌∙𝑉𝑊2
∙ 𝑟𝑍2𝑉∙𝑋 = 𝑟𝑌𝑉∙𝑋  

 
 

2.2 Task 2: Find Identifiable Path Coefficients 
 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  List of all path coefficients that are identifiable using simple regression.    
 
Example:  Consider Figure 1 as input, Commentator produces the following list: 
 

 The coefficient ∝ on V→Z1 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑉𝑍1
 

 The coefficient ∝ on V→Z2 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑉𝑍2
 

 The coefficient ∝ on W1→Z1 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑊1𝑍1
 

 The coefficient ∝ on W2→Z2 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑊2𝑍2
 

 The coefficient ∝ on Z1→X is identifiable controlling for W1, that is ∝= 𝑟𝑍1𝑋∙𝑊1
 

 The coefficient ∝ on Z2→Y is identifiable controlling for V W2, that is ∝= 𝑟𝑍2𝑌∙𝑉𝑊2
 

 
 

2.3 Task 3: Find Identifiable Total Effects 
 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  List of total effects that are identifiable using simple regression.  
 
Example:  Consider Figure 1 as input, Commentator produces the following list: 
 

 The total effect τ of V on X is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑋  

 The total effect τ of V on Y is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑌  

 The total effect τ of V on Z1 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑍1
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 The total effect τ of V on Z2 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑍2
 

 The total effect τ of W1 on Z1 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑊1𝑍1
 

 The total effect τ of W2 on Z2 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑊2𝑍2
 

 The total effect τ of Z1 on X is identifiable controlling for W1, that is 𝜏 = 𝑟𝑍1𝑋∙𝑊1
 

 The total effect τ of Z1 on Y is identifiable controlling for V W1, that is 𝜏 = 𝑟𝑍1𝑌∙𝑉𝑊1
 

 The total effect τ of Z2 on Y is identifiable controlling for V W2, that is 𝜏 = 𝑟𝑍2𝑌∙𝑉𝑊2
 

 
 

2.4 Task 4: Find All Instrumental Variables 
 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  List of all instrumental variables and the parameters they help identify. 
 
Example:  Consider Figure 1 as input, the Commentator produces the following list: 
 

 The coefficient ∝ on W1→Z1 is identifiable via instrumental variable W2 controlling for the 

Empty Set, that is ∝= 𝑟𝑍1𝑊2
/𝑟𝑊1𝑊2

 

 The coefficient ∝ on W2→Z2 is identifiable via instrumental variable W1 controlling for the 

Empty Set, that is ∝= 𝑟𝑍2𝑊1
/𝑟𝑊2𝑊1

 

 The coefficient ∝ on W2→Z2 is identifiable via instrumental variable X controlling for the 

Empty Set, that is ∝= 𝑟𝑍2𝑋/𝑟𝑊2𝑋  

 The coefficient ∝ on X→Y is identifiable via instrumental variable Z1 controlling for V W1, 

that is ∝= 𝑟𝑌𝑍1∙𝑉𝑊1
/𝑟𝑋𝑍1∙𝑉𝑊1

   

 The coefficient ∝ on Z1→X is identifiable via instrumental variable V controlling for the Empty 

Set, that is ∝= 𝑟𝑋𝑉/𝑟𝑍1𝑉   

 The coefficient ∝ on Z2→Y is identifiable via instrumental variable V controlling for X, that is 

∝= 𝑟𝑌𝑉∙𝑋/𝑟𝑍2𝑉∙𝑋   

 
 

2.5 Task 5: Test for Model Equivalence and Nestedness 
 
Input:  Two DAG’s, G and G’, and a list of observable and latent variables. 

 
Output:  Determine whether G is equivalent to G’, G is nested in G’, or vice versa. (This 
is a derivative of Task 1, whereby a comparison is made between the testable implications 
embedded in G and G’) 
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Figure 2: A Sample Path Diagram [Pearl, 2009].   
(Note: latent variables are not shown explicitly,  

but are presumed to emit the double-head arrows.) 
 
 
Example:  Consider Figure 1 and 2 as input, Commentator produces the output shown in 
Table 1, which implies that the model in Figure 2 is nested in the model in Figure 1. 
 
 

 
Table 1: Commentator Output: Testable Implications for Figure 1 and 2 

 
 

Commentator Output for Figure 2 

 𝑟𝑉𝑊1
= 0 

 𝑟𝑉𝑊2
= 0 

 𝑟𝑉𝑋∙𝑊1𝑍1
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑍1𝑍2
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑋𝑍2
= 0 

 𝑟𝑊1𝑍2∙𝑊2
= 0 

 𝑟𝑊2𝑍1∙𝑊1
= 0 

 𝑟𝑋𝑍2∙𝑉𝑊2
= 0 

 𝑟𝑍1𝑍2∙𝑉𝑊1
= 0  

 𝑟𝑍1𝑍2∙𝑉𝑊2
= 0  

 𝑟𝑌𝑍1∙𝑉𝑊1𝑊2𝑋 = 0 

 𝑟𝑌𝑍1∙𝑊1𝑊2𝑋𝑍2
=  0 

 

Commentator Output for Figure 1 

 𝑟𝑉𝑊1
= 0 

 𝑟𝑉𝑊2
= 0 

 𝑟𝑉𝑋∙𝑊1𝑍1
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑍1𝑍2
= 0 

 𝑟𝑊1𝑍2∙𝑊2
= 0 

 𝑟𝑊2𝑍1∙𝑊1
= 0 

 𝑟𝑋𝑍2 ∙𝑉𝑊2
= 0 

 𝑟𝑍1𝑍2∙𝑉𝑊1
= 0  

 𝑟𝑍1𝑍2∙𝑉𝑊2
= 0  
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2.6 Task 6: Find all Minimum-Size Admissible Sets of 
Covariates for Determining the Causal Effect of X on Y 
 
Input: A DAG G, a list of observable and latent variables, and a pair of variables, X and Y. 
 
Output:  List of all minimum-size admissible sets S, such that conditioning on S removes 
confounding bias between X and Y.  (This is a derivative of Task 2 and 3, tailored to a 
specific causal effect). 
 
Example 1:  Consider Figure 17(b) as input, Commentator produces the following output: 
 

 The causal effect 𝑃(𝑌|𝑑𝑜(𝑋)) can be estimated by adjustment on: 
o V, W1, W2 
o W1, W2, Z1 
o W1, W2, Z2 

 
Example 2:  Consider Figure 17(a) as input, Commentator produces the following output: 
 

 The causal effect 𝑃(𝑌|𝑑𝑜(𝑋)) cannot be identified by adjustment, i.e., no admissible set exists.   
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3    Structural Equation Modeling 

 
 

3.1 A Brief History 
 
For over half a century, causality in the social sciences and economics has been lead by 
structural equation modeling (SEM) [Pearl, 1988].  Although the forefathers of SEM 
originally designed structural equations as carriers of causal information, somewhere along 
the timeline of SEM development the causal component of structural equations has been 
lost and mystified.  Even amongst leading SEM practitioners, the causal interpretations of 
structural equation models are often unaddressed and avoided.  According to [Pearl, 1998], 
SEMs loss of cause-effect relationships can be attributed to the failure by the founders of 
SEM to utilize a formal language, since these early SEM pioneers believed cause and effect 
relationships could be managed mentally.  The formalization of graphs as a mathematical 
language provides promise for restoring causality to SEM, and motivated this thesis.   
 
 

3.2 Background Information 
 

 
Figure 3: A Simple Linear Model and its Causal Diagram 

 

A structural equation model for a vector of observed variables 𝑋 =  [𝑋1, … , 𝑋𝑛] is defined 
as a set of linear equations of the form  
 

𝑋𝑖 =   𝛼𝑖𝑘𝑋𝑘 + 𝜀𝑖𝑘≠𝑖 , for 𝑖 = 1, … , 𝑛.   (1) 
 

where the variables 𝑋 that are immediate causes of 𝑋𝑖  are summed over.  The direct effect of 

𝑋𝑘  on 𝑋𝑖  is quantified by the path coefficient 𝛼𝑖𝑘 .  Each 𝜀𝑖  represents omitted factors and is 
assumed to have a normal distribution.  The nonlinear, nonparametric generalization of 
equation (1) has the form 
 

𝑋𝑖 = 𝑓𝑖(𝑝𝑎𝑖 , 𝜀𝑖), for 𝑖 = 1, … , 𝑛         (2) 
 

𝑍 =  𝑒𝑍  
𝑊 =  𝑒𝑊  
𝑋 =  𝑎𝑍 + 𝑒𝑋  
𝑌 =  𝑏𝑊 + 𝑐𝑋 + 𝑒𝑌  
𝐶𝑜𝑣 𝑒𝑍 , 𝑒𝑊 =∝≠ 0 
𝐶𝑜𝑣 𝑒𝑋 , 𝑒𝑊 = 𝛽 ≠ 0 
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where the parents, 𝑝𝑎𝑖 , represents the set of variables that are immediate causes of 𝑋𝑖  and 
correspond to those variables on the right hand side of equation (1) that have nonzero 
coefficients.  A causal diagram (or path diagram) is formed by drawing an arrow from every 

member in 𝑝𝑎𝑖  to 𝑋𝑖 .  Figure 3 presents a causal diagram for a simple linear model. 
 
 

 
Figure 4: Bow-arc Between Variables X and Y 

 
 

A parameter is a path coefficient α for some edge X→Y.  Consider Figure 3, the 
structural parameters are the path coefficients: a, b, and c.  A parameter is identifiable if it can 
be estimated consistently from observed data, and a model is identified if all of the structural 
parameters are identifiable.  A formal definition of parameter identification is given in 
[Brito, 2004].   Identification of a model is guaranteed if a graph contains no bow-arcs, i.e., 
two variables with correlated error terms and a direct causal relationship between them 
(connected by an arrow) [Brito, 2002].  Figure 4 displays a bow-arc between the variables X 
and Y. 

 
 

       
  (a)                                                       (b) 

Figure 5: Path Diagrams with Correlated Errors 
 
 

Figures 5(a) and 5(b) depict the same semi-Markovian model with correlated error 
terms.  In this thesis error terms are considered irrelevant and are omitted unless they have 
a non-zero correlation, in which case are represented by a bi-directed edge as shown in 
Figure 5(b).  A Markovian model has a corresponding graph that is acyclic and does not 
contain any bi-directed arcs, whereas a semi-Markovian model has a graph that is acyclic and 
contains bi-directed arcs.   
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3.3 Problem Definition  
 
Although recent advancements in causal graph theory are foreign and unutilized by most 
SEM practitioners, many problems in SEM can benefit from these advancements.  
Following are a few issues in SEM that motivate this thesis and are discussed further in 
later sections. 
 
 

3.3.1 Model Testing Weaknesses 
 
Finding a structural model that fits statistical data is a task often performed by SEM 
practitioners in two steps.  The first involves finding stable path coefficient estimates 
through iteratively maximizing a fitness measure such as the likelihood function, and the 
second involves applying a statistical test to decide whether the covariance matrix implied 
by the parameter estimates could generate the sample covariances [Bollen, 1989; Chou and 
Bentler, 1995].  There are two main weaknesses to testing with this approach: (i) if a 
parameter is not identifiable, then stable path coefficient estimates may never be attained, 
potentially invalidating the entire model, and (ii) testers receive little insight as to which 
assumptions are violated in a misfit model [Pearl, 1998].   
 
 

3.3.2 The Identification Problem 
 
Finding a necessary and sufficient criterion to determine if a causal effect can be 
determined from observed data has challenged researchers for over fifty years [Tian, 2005], 
and is known by econometricians and SEM practitioners as “The Identification Problem” 
[Fisher, 1966; Tian, 2005].  Although, a necessary and sufficient condition has yet to be 
found, [Pearl, 1998] presents a criterion able to identify a majority of structural parameters 
except for a few uncommon counterexamples.  This thesis utilizes and implements the 
graphical conditions for identifying direct and total effects presented by [Pearl, 1998] and 
instrumental variable techniques presented in [Brito and Pearl, 2002a].   
 
 

3.3.3 Nesting and Model Equivalence 
 
In SEM, a model M1 is nested in a model M2 if and only if all covariance matrices that can be 
generated from M1 can also be generated from M2 [Bentler, 2010].  Further, two models are 
equivalent if they nest each other.  Currently, SEM researchers have difficulty determining if 
two models are covariance matrix nested or equivalent and use data in the determination 
[Bentler and Satorra, 2010].  The implementation presented in this thesis presents a data-
free determination of model nesting and equivalence [Pearl, 1998]. 
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4     Implementation  
 
The leading SEM program, known as EQS, is managed and owned by a team at UCLA 
consisting of Peter Bentler and Eric Wu [Bentler, 2006], and provides a user-friendly 
environment for simplifying, generating, estimating, and testing structural equation models.  
This section presents the algorithms and methods used to engineer Commentator, developed 
specifically for EQS. 
 
 

4.1 System Overview and Input/Output 
 
The input of Commentator is a text file representing a directed acyclic graph (DAG), and the 
outputs are lists of all testable implications, identifiable path coefficients, identifiable total 
effects, and instrumental variables.  The input file has the following general form: 
 

{number of variables} 
{list of variable names, if any} 
{number of edges} 
{list of edges, if any} 
{number of measured (observable) variables} 
{list of measured variables, if any} 
{number of latent (unobservable) variables} 
{list of latent variables, if any} 
{number of required variables} 
{list of required variables, if any} 

 
Figure 6 shows a sample input text file for the diagram in Figure 7, over the observable 
variables, V, W1, W2, X, Y, Z1 and Z2.  Note that the texts in parentheses in Figure 6 are 
comments and are not part of the actual input.  The first value read in as input is the 
number of variables and is used to read in the list of variable names, which for ease of 
programming are encoded or mapped to a specific integer value.  For example in Figure 6, 
the variable name “V” corresponds to 0, “W1” corresponds to 1, “W2” corresponds to 2, 
and so on.  The next value read as input corresponds to number of edges used to iterate 
over and read in the list of edges.  If X and Y are two integer values for two different 
variables, then edges are represented in the input as either: (i) “X 1 Y”, or (ii) “X 2 Y”.  
The 1 in condition (i) implies a directed edge (right-to-left) of the form X←Y, and the 2 in 
condition (ii) implies a bi-directed edge of the form X↔Y.  The next value read in 
corresponds to the number of observable variables used to iterate over and read in the 
observable variables.  Input for latent and required variables follow this same format and 
usage.  A variable that is required is forced to be part of all d-separating sets.   
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Figure 6: Sample Commentator Input File. 

 
 

 
Figure 7: A Sample Path Diagram [Pearl, 2009].  (Identical to Figure 1) 

7 
V W1 W2 X Y Z1 Z2 (list of variables) 
10 (number of edges)  
5 1 0 (edge Z1←V) 
6 1 0 (edge Z2←V) 
5 1 1 (edge Z1←W1) 
2 2 1 (edge W1↔W2) 
3 2 1 (edge W1↔X) 
6 1 2 (edge Z2←W2) 
4 2 2 (edge W2↔Y) 
4 1 3 (edge Y←X) 
3 1 5 (edge X←Z1) 
4 1 6 (edge Y←Z2) 
7 (number of observable variables) 
0 (V) 
1 (W1) 
2 (W2) 
3 (X) 
4 (Y) 
5 (Z1) 
6 (Z2) 
0 (number of latent variables) 
0 (number of required variables) 
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4.2 Graphical Notation 

 
In probabilistic systems such as Bayesian networks, graphically discovering a set of 
variables that render two other disjoint sets of variables independent is a common task.  
The fundamental rules for graphically deducing such “separating” sets for directed acyclic 
graphs are encompassed in the notion of d-separation (d denoting directional) [Pearl, 1988].  
Given a DAG G, let X and Y be two distinct variables in G.  Further, let Z be a set of 
variables in G, excluding X and Y.  Let a path between X and Y be defined as any sequence 
of consecutive edges, regardless of directionality, that connects X and Y such that no 
variable is revisited.  A path between two variables X and Y is d-separated by a set of nodes 
Z when: (i) the path contains either a sequential chain i → k → j or a divergent chain or fork i ← 
k → j such that k is a member of Z or (ii) the path contains a collider i → k ← j such that k 
nor any descendants of k are members of Z.  X is d-separated from Y by Z if and only if 
every path between X and Y is d-separated by Z [Pearl, 1988].  

The computational complexity of testing d-separation between two nodes is 
exponential when considering all paths between two nodes in a DAG, however Definition 
1 presents an algorithm for computing d-separation in time and space that is linear in the 
size (number of variables) of the DAG [Darwiche, 2009]. 
 
 
Definition 1 (Linear d-separation test)  Given three disjoint sets of variables X, Y, and Z in a 
DAG G, testing whether X and Y are d-separated given Z can be performed using the following steps:  

1. Delete any leaf nodes from G that does not belong to any of X, Y or Z.  Repeat this step 
until no further pruning is possible. 

2. Delete all outgoing edges of separating set Z. 

3. Test whether X and Y are disconnected in the resulting DAG.   

If X and Y are disconnected in Step 3, then Z d-separates X and Y, otherwise Z does not d-separate X 
and Y [Darwiche, 2009]. 

 
 

4.3 Removing Latent Variables 

 
An important feature of EQS, not found in all SEM software applications, is its ability to 
account for latent variables, which are unobservable causes of measured variables.  This 
subsection presents theories and algorithms for simplifying graphical structure, which 
bypass these latent variables and operates only on the observable or measurable variables.   
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4.3.1 Induced Path Graphs 
 
Given a directed acyclic graph G, [Verma and Pearl, 1991] have established a set of 
conditions involving the notion of an induced path that guarantee that two variables are 
not d-separated by any observable set.  An induced path relative to a set of observable 
variables O exists between two variables A and B, if and only if there exists an undirected 
path U between A and B, such that each node on U belonging to O, excluding the 
endpoints A and B, is both a collider and an ancestor of either endpoint A or B in G 
[Spirtes et al., 2001].  If an induced path exists between A and B, then they must be d-
connected (not d-separated) and an edge can be added between them.  Adding the edge 
A→B implies that “every” inducing path between A and B is out of A and into B, and 
similarly, adding the edge A↔B implies that there “exists” an inducing path A and B that is 
both into A and into B.  Note that a bidirectional edge is added only if latent variables are 
present [Spirtes et al., 2001].   
 An induced path graph G’ is generated from G by adding an edge between variables A 
and B with an arrowhead oriented at A if and only if there is an inducing path between A 
and B in G that is into A [Spirtes et al., 2001].  Induced path graphs preserve d-separation, 
such that two variables are d-separated in the induced path graph of a DAG G if and only 
if they are d-separated in G. 
 
 

 
Figure 8: Path Diagram with Latent Variables C and E  

 
 

 
Figure 9: Induced Path Graph for Figure 8 over variables A, B, F, and D 
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Figures 8 and 9 are borrowed from [Spirtes et al., 2001].  Figure 8 depicts a path 
diagram over the variables A, B, C, D, E and F, and Figure 9 shows the resulting induced 
path graph if C and E are latent variables.  Note that Figure 9 results in a graph containing 
only observable variables.  In Figure 8, an example of an induced path is the path through 
the variables A, B, C, D, and E respectively, since the observable variables B and D are 
both a collider on the path and also descendants of either A or F.  This is represented by a 
directed edge in Figure 9 from A to F.  The edge D↔F is added in Figure 9, since in 
Figure 8, there is an induced path through the variables D, E, and F that is both into D and 
into F.  Figure 10 presents pseudocode for generating an induced path graph from a DAG 
within exponential time and space. 
 
 

 
Figure 10: Pseudocode for Induced Path Graph 

 
 

4.3.2     Maximal Ancestral Graphs (MAG) 
 
An ancestral graph G’, for a DAG G, represents and preserves the conditional independence 
relationships between the observable variables of G.  By definition, a maximal ancestral graph 
(MAG) M is an ancestral graph for a DAG G if every pair of non-adjacent variables in M 
are d-separated by some set of variables, and it is not possible to add an edge to M without 
destroying the independence relationships of G [Ali et al., 2009; Tian, 2005].  MAGs 
preserve d-separation, such that two variables are d-separated in the MAG of a DAG G if 
and only if they are d-separated in G [Spirtes et al., 2001].  Three necessary and sufficient 
conditions for a graph M to be a MAG are given in Definition 2 [Spirtes et al., 1997; Tian, 
2005].   
 

Function: Induced-Path-Graph(G, O). 

Input:  A DAG G and a set of observable variables O in G. 

Output: The induced path graph of G. 

1. for all pairs of variables A and B in O do 

2.      for all undirected paths P between A and B do 

3. if all member of O on P are both a collider and 
an ancestor of either  A or B in G then 

4. Add an edge to G’ according to the 
definition of induced path    graph  

5.           end if 

6.      end for 

7. end for 

8. return G’ 
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Definition 2 (Maximal Ancestral Graph) Given a DAG G, an ancestral graph is a MAG M 
for G if and only if the following  

(i) There is an inducing path between two nodes A and B in M, only if they are adjacent in M. 

(ii) There is a unidirectional edge in M between A and B, oriented towards B, only if A is an 
ancestor of B and B is not an ancestor of A in M. 

(iii) There is a bidirectional edge in M between A and B, only if A is not an ancestor of B and B 
is not an ancestor of A in M. 

 
[Spirtes et al., 1997a] presents a method for constructing a MAG M from a DAG G 

over a set of observable variables O by: (i) adding the edge A→B in M if and only if there 
is an inducing path between A and B over O in G and A is an ancestor of B in G, and (ii) 
adding the edge in M if and only if there is an inducing path between A and B over O in G 
and A is an ancestor of B in G.  Figure 11 provides pseudocode for generating a MAG.   
 
 

 
Figure 11: Pseudocode for Generating a MAG 

  
 

4.4     Brute Force Search  
 
Two variables in a model may be d-separated by many different sets, and when testing local 
models for fitness it is advantageous to use smaller separating sets to improve statistical 
efficiency.  In this thesis, the smallest separating set between two variables is defined as the 
separating set that contains the fewest members compared to all other possible separating 

Function: MAG (G). 

Input:  A DAG G and a set of observable variables O in G. 

Output: The MAG of G. 

1. G’  Induced-Path-Graph(G, O) 

2. for all adjacent nodes A and B in G’ do 

3.      if there exists a directed path from A to B in G then 

4.           Add an edge to M directed from A to B 

5.      else if there exists a directed path from B to A in G then 

6.           Add an edge to M directed from B to A 

7.      else 

8.           Add a bidirected edge to M between A and B 

9.      end if 

10. end for 

11. return M 
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sets between the two variables.  In the current literature there are algorithms that find 
minimal separating sets, however no explicit algorithm exists which finds the smallest 
separating set between two variables.  Commentator finds the smallest separating set by a 
breadth-first search (BFS), testing first the empty set, then all sets of size one, all sets of 
size two, and so on, until either a separating set is found or no possible sets are left.   

Figure 12 presents the pseudocode for finding the smallest separating set using BFS 
with a first-in-first-out (FIFO) queue, and the d-separation test on Line 4 is calculated using 
Definition 1.  The computational time and space complexity using BFS is exponential in 
the number of nodes in the input graph.  However, [Tian et al., 1998] presents in Definition 
3 a useful property to reduce the search space [Korf, 2008], which, in the average case, will 
reduce searching approximately 50 percent of the graph.   
 
Definition 3 (Ancestral Subgraph)  Given two nodes A and B in a directed-acyclic graph G a set 
of nodes Z d-separates A and B in G if and only if Z d-separates A and B in the ancestral subgraph 
composed of the nodes A, B, and the ancestors of A or B [Tian et al., 1998]. 
 
 

 
Figure 12: Pseudocode for Breadth-First Search 

 

 In many cases, variables that are nonadjacent in a DAG do not have separating sets 
and searching for one between them becomes computationally prohibitive.  Commentator 
prevents this by only searching for separating sets amongst the nonadjacent variables in a 
MAG, which are guaranteed to exist.  

Function: BFS(G, A, B). 

Input:  A graph G. 

Output: The separating sets between variables A and B in G. 

1. Enqueue the empty set 

2. while queue is not empty do 

3.      S  Dequeue next element 

4.      if S d-separates A and B then 

5.           return S 

6.      else 

7.           for each observable node O in G not in S, A, or B do 

8.                S  S ⋃ O 

9.                Enqueue S 

10.           end for 

11.      end if 

12. end while 

13. return fault 
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Figure 13: A Sample Path Diagram [Pearl, 2009].  (Identical to Figure 1) 

 
5 Task 1: Find All Minimal Testable Implications 

 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  A list of the minimal testable implications of the model, specifically, a list of 
regression coefficients that must vanish, followed by a list of constraints induced by 
instrumental variables. 
 
Example:  Consider Figure 1 as input, Commentator produces the following list: 
 

 𝑟𝑉𝑊1
= 0 

 𝑟𝑉𝑊2
= 0 

 𝑟𝑉𝑋∙𝑊1𝑍1
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑍1𝑍2
= 0 

 𝑟𝑊1𝑍2∙𝑊2
= 0 

 𝑟𝑊2𝑍1∙𝑊1
= 0 

 𝑟𝑋𝑍2∙𝑉𝑊2
= 0 

 𝑟𝑍1𝑍2∙𝑉𝑊1
= 0  

 𝑟𝑍1𝑍2∙𝑉𝑊2
= 0  

 𝑟𝑊1𝑍1
∙ 𝑟𝑊1𝑊2

= 𝑟𝑍1𝑊2
 

 𝑟𝑊2𝑍2
∙ 𝑟𝑊1𝑊2

= 𝑟𝑍2𝑊1
 

 𝑟𝑊2𝑍2
∙ 𝑟𝑊1𝑋 = 𝑟𝑍2𝑋  

 𝑟𝑍1𝑋∙𝑊1
∙ 𝑟𝑍1𝑉 = 𝑟𝑋𝑉  

 𝑟𝑍2𝑌∙𝑉𝑊2
∙ 𝑟𝑍2𝑉∙𝑋 = 𝑟𝑌𝑉∙𝑋  
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5.1 Methodology 
 
For Markovian models, those without correlated error terms or bi-directed edges, [Pearl, 
1998] has established a graphical criterion identifying the partial correlations that must 
vanish in a model, and [Spirtes et al., 1997b] extended this criterion shown in Definition 4 
to include non-Markovian models.   
 
Definition 4 (Vanishing Regression Coefficients)  For any linear model for a causal diagram 
D that may include cycles and bi-directed arcs, which are interpreted as emanating from a latent common 

parent, the partial correlation 𝜌𝑋𝑌∙𝑍  must vanish if and only if node X is d-separated from node Y by the 
variables of Z in D [Spirtes et al., 1997b].   
 

Figure 14 provides pseudocode for finding a list of vanishing regression 
coefficients given a DAG.  The first two steps of Figure 14 generate a MAG from the 
input graph by first generating an induced path graph then converting the result into a 
MAG.  All pairs of variables that are nonadjacent in the MAG must have a separating set 
and is searched for by the BFS algorithm in Section 3.4.  Step 4 generates the ancestor 
subgraph discussed in Definition 3 to expedite and facilitate the BFS. 
 
 

 
Figure 14: Pseudocode for Finding Vanishing Regression Coefficients 

 
 

The list of constraints induced by instrumental variables follows immediately from 
the output provided by Task 2 and Task 4.  For example consider the path coefficient on 

W1→Z1 in Figure 1, Task 2 finds that “The coefficient ∝ on W1→Z1 is identifiable 

controlling for the Empty Set, that is ∝= rW 1Z1
”, likewise, Task 4 finds that “The 

coefficient ∝ on W1→Z1 is identifiable via instrumental variable W2 controlling for the 

Function:  Vanishing-Regression-Coefficients(G). 

Input:  A DAG G and a set of observable variables O in G. 

Output: A list of all pairs of observable variables in G and there smallest 
separating set, if one exists. 

1. G  MAG(G, O) 

2. for all non-adjacent observable pairs of variables A and B in G do 

3.      G’  ancestor subgraph of A and B in G 

4.      S  BFS(G’, A, B) 

5. end for 

6. return S 
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Empty Set, that is ∝= rZ1W2
/rW 1W 2

".   Equating the two values for ∝ from Task 2 and 4 

provides the constraint rW 1Z1
=

rZ1W 2

rW 1W 2

, so that rW 1Z1
∙ rW 1W 2

= rZ1W 2
.  Constraints of 

this type can be found whenever Task 2 and Task 4 identify the same path coefficient. 
 

   

5.2 Recommendations 
 
As mentioned earlier, model fitness testing in SEM occurs in two stages.  The first stage 
involves finding stable parameter estimates through iteratively maximizing a fitness 
measure, and the second stage involves statistically comparing the covariance matrix 
derived from the parameter estimates to the data or sample covariances.  There are two 
main weaknesses to the current approach in SEM fitness testing: (i) if a parameter is not 
identifiable the entire model is invalidated, and (ii) because the model is tested globally, 
errors are difficult to isolate and pinpoint.  [Shipley, 1997] has suggested an alternate testing 
method utilizing vanishing regression coefficients, instead of testing the entire model for 
fitness to data, simply test for the regression coefficients that must be zero according to 
Definition 4. 

A list of vanishing coefficients benefits model debugging, by isolating and locating 
where errors in a misfit model exist.  Currently, if a proposed model does not fit the data 
accurately enough, a test, known as the Lagrange Multiplier (LM) test, iteratively tests all 
possible combinations of edge replacements and removals to find a best fit model, making 
the LM test computationally prohibitive for large models.  However, the method in 
[Shipley, 1997] isolates errors to specific regression coefficients and potentially serves as a 
guide for the searching procedures of the LM test.   
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6 Task 2: Find Identifiable Path Coefficients 
 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  List of path coefficients that are identifiable using simple regression.    
 
Example:  Consider Figure 13 as input, Commentator produces the following list: 
 

 The coefficient ∝ on V→Z1 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑉𝑍1
 

 The coefficient ∝ on V→Z2 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑉𝑍2
 

 The coefficient ∝ on W1→Z1 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑊1𝑍1
 

 The coefficient ∝ on W2→Z2 is identifiable controlling for the Empty Set, that is ∝= 𝑟𝑊2𝑍2
 

 The coefficient ∝ on Z1→X is identifiable controlling for W1, that is ∝= 𝑟𝑍1𝑋∙𝑊1
 

 The coefficient ∝ on Z2→Y is identifiable controlling for V W2, that is ∝= 𝑟𝑍2𝑌∙𝑉𝑊2
 

 
 

6.1 Methodology 
 
[Pearl, 1998] has established a graphical criterion for the identification of direct effects (or 
path coefficients) known as the single-door criterion. 
 
 
Definition 5 (Single-Door Criterion for Direct Effects)  Given a path diagram G, let α be 

the path coefficient of the edge X→Y, and let 𝐺∝ be the diagram that results from removing the edge 
X→Y.  If there exists a set of variables Z such that 

(i) No member of Z is a descendant of Y and 

(ii) X is d-separated from Y by Z in 𝐺∝. 

If Z satisfies these conditions, then α is identifiable and is equal to the regression coefficient 𝑟𝑋𝑌∙𝑍  [Pearl, 
1998]. 

 
Figure 15 presents pseudocode for identifying path coefficients using the single-

door criterion; it takes a DAG as input and provides a list of all identifiable path 
coefficients.  For every directed edge X→Y in G, it is removed from the graph, then a test 
for adjacency between X and Y is conducted in the MAG generated from G.  If X and Y 
are non-adjacent in the MAG, then a separating set exists between X and Y guaranteeing 
that BFS will find a d-separator.  The ancestor subgraph as in Definition 3 expedites the 
search.   
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Figure 15: Pseudocode for Single-Door Criterion 

 
 

6.2 Recommendations 
 
In the current SEM literature, identification of path coefficients requires consideration of 
both data and model structure allowing for problems such as data degeneracy and statistical 
errors.  Commentator’s list of identifiable path coefficients is data-free, providing benefits in 
diagnosis and convergence as discussed in the introduction. 
 Commentator lists only those parameters that can be identified through the single-
door criterion.  Additional parameters can be identified using instrumental variables and 
total effects.  [Pearl, 1998] suggests a systematic procedure for recognizing identifiable path 
coefficients as follows: 
  

1. Using the single-door and back-door criterion, search for identifiable direct, 
total, and partial effects. 

2. For each identified effect, place the path coefficients involved in a bucket. 
3. Label the coefficients in the buckets as follows: 

a. If a bucket is a singleton, label its coefficient I (denoting identifiable) 
b. If a bucket is not a singleton but contains only a single unlabeled 

element, label that element I. 
c. If there are k non-redundant buckets that contain at most k unlabelled 

coefficients, label these coefficients. 
4. Repeat until no new labeling is possible. 
5. List all labeled coefficients; these are identifiable. 

 
This bucket elimination procedure and the identification of additional path coefficients can 
be implemented in future work.   

Function:  Single-Door-Criterion(G). 

Input:  A DAG G and a set of observable variables O in G. 

Output: A list of direct effects 

1. List L 

2. for all adjacent pairs of variables A→B in G do 

3.      G’  G with edge A→B removed 

4.      G’  MAG(G’, O) 

5.      G’  ancestor subgraph of A and B in G’ 

6.      L  BFS(G’, A, B) 

7. end for 

8. return L 
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7 Task 3: Find Identifiable Total Effects 
 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  List of total effects that are identifiable using simple regression.  
 
Example:  Consider Figure 13 as input, Commentator produces the following list: 
 

 The total effect τ of V on X is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑋  

 The total effect τ of V on Y is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑌  

 The total effect τ of V on Z1 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑍1
  

 The total effect τ of V on Z2 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑉𝑍2
 

 The total effect τ of W1 on Z1 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑊1𝑍1
 

 The total effect τ of W2 on Z2 is identifiable controlling for the Empty Set, that is 𝜏 = 𝑟𝑊2𝑍2
 

 The total effect τ of Z1 on X is identifiable controlling for W1, that is 𝜏 = 𝑟𝑍1𝑋∙𝑊1
 

 The total effect τ of Z1 on Y is identifiable controlling for V W1, that is 𝜏 = 𝑟𝑍1𝑌∙𝑉𝑊1
 

 The total effect τ of Z2 on Y is identifiable controlling for V W2, that is 𝜏 = 𝑟𝑍2𝑌∙𝑉𝑊2
 

 
 

7.1 Methodology 
 
Commentator uses a graphical criterion, presented in Definition 6, for the identification of 
total effects known as the back-door criterion [Pearl, 1998].  The pseudocode for this task is 
identical to that in Figure 15, but instead of removing one edge from the graph, all edges 
emanating from X are removed.   
 
 

Definition 6 (Back-Door Criterion for Total Effects)  Given a path diagram G, let 𝐺𝑋  be 
the subgraph generated from G by removing all edges out of X.  For any two variables X and Y in a path 
diagram G, the total effect of X on Y is identifiable, if there exists a set Z such that 

(i) No member of Z is a descendant of X and 

(ii) Z d-separates X from Y in 𝐺𝑋 . 

If both conditions are satisfied, then the total effect of X on Y is identifiable [Pearl, 1998]. 
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7.2 Recommendations 
 
Some total effects can be determined graphically without having to identify their individual 
path coefficients [Pearl, 2000].  This output is useful for detecting those cases where the 
individual path coefficients cannot be identified, but the total effect can.  For example, in 
Figure 1, through traditional methods the total effect of Z1 on Y would not be identified 
since the path coefficient from X → Y is not.  However, the output list for total effects 
shows that the total effect of Z1 on Y is identifiable, even though one of its components is 
not. 
 Commentator lists only those total effects that can be identified through the back-
door criterion.  For future work, additional total effects can be identified using 
instrumental variables and combinations of already known total effects.  These methods 
are shown in Chapter 5 of [Pearl, 1998]. 
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8 Task 4: Find All Instrumental Variables 
 
Input:  A DAG G and a list of observable and latent variables. 

 
Output:  List of all instrumental variables and the parameter they help identify. 
 
Example:  Consider Figure 1 as input, Commentator produces the following list: 
 

 The coefficient ∝ on W1→Z1 is identifiable via instrumental variable W2 controlling for the 

Empty Set, that is ∝= 𝑟𝑍1𝑊2
/𝑟𝑊1𝑊2

 

 The coefficient ∝ on W2→Z2 is identifiable via instrumental variable W1 controlling for the 

Empty Set, that is ∝= 𝑟𝑍2𝑊1
/𝑟𝑊2𝑊1

 

 The coefficient ∝ on W2→Z2 is identifiable via instrumental variable X controlling for the 

Empty Set, that is ∝= 𝑟𝑍2𝑋/𝑟𝑊2𝑋  

 The coefficient ∝ on X→Y is identifiable via instrumental variable Z1 controlling for V W1, 

that is ∝= 𝑟𝑌𝑍1∙𝑉𝑊1
/𝑟𝑋𝑍1∙𝑉𝑊1

   

 The coefficient ∝ on Z1→X is identifiable via instrumental variable V controlling for the Empty 

Set, that is ∝= 𝑟𝑋𝑉/𝑟𝑍1𝑉   

 The coefficient ∝ on Z2→Y is identifiable via instrumental variable V controlling for X, that is 

∝= 𝑟𝑌𝑉∙𝑋/𝑟𝑍2𝑉∙𝑋   

 
 

8.1 Methodology 
 
[Pearl, 2000a] defines a variable Z as instrumental relative to a cause X and an effect Y if: (i) 
Z is independent of all error terms that have an influence on Y that is not mediated by X, 
and (ii) Z is dependent of X.  Definition 7 describes a graphical criterion for instrumental 
variables [Pearl, 2000b].   Figure 16 presents the pseudocode that Commentator uses to find 
instrumental variables; it takes a DAG as input and returns a list of all instrumental 
variables together with the parameters they help identify.   
 
 
Definition 7 (Instrumental Variable)  Given a path diagram G, let α be the path coefficient of the 

edge X→Y, and let 𝐺∝ be the diagram that results from removing the edge X→Y.  Z is said to be an 
instrument relative to X→Y, conditioned on S, if: 

(i) No member of S is a descendant of Y and 

(ii) There exists a set S of variables that d-separates Z from Y in 𝐺∝, and S does not d-separate 
Z from X in G. 
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If Z satisfies these conditions, then Z is an instrument relative to the direct effect of X on Y and α is 

identifiable, and is given by the ratio of regression coefficients 𝑟𝑌𝑍∙𝑆/𝑟𝑋𝑍∙𝑆  [Pearl, 1998].   

 

 

 
Figure 16: Pseudocode for Instrumental Variables 

 
 

8.2 Recommendations 
 
Instrumental variables identify some of the path coefficients that Task 2 does not.  
Consider Figure 1, the list of identifiable path coefficients in Task 2 shows that the path 
coefficient on X→Y is not identifiable, however the output of Commentator in this section’s 
example shows that X→Y can be identified by instrumental variable Z1 controlling for V 
and W1.  Instrumental variables can be used for those instances where the single-door 
criterion fails to identify path coefficients.   

  

Function:  Instrumental-Variable(G). 

Input:  A DAG G and a set of observable variables O in G. 

Output: A list of instrumental variables 

1. List L 

2. for all adjacent pairs of variables A → B in G do 

3.      G’  G with edge A→B removed 

4.      G’  MAG(G’, O) 

5.      for all observable variables C not A or B do 

6. if C is not adjacent to B in G’ and C is adjacent 
to A in the MAG(G) then   

7.      G’  ancestor subgraph of A and B in G’ 

8.      L  BFS(G’, B, C) 

9. end if 

10.      end for      

11. end for 

12. return L 
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                                  (a)                                                                (b) 

Figure 17: Nested DAGs from [Pearl, 2009] 
(Identical to Figure 1 and 2, respectively) 

 
9 Task 5: Test for Model Equivalence and 
Nestedness 
 
Input:  Two DAG’s, G and G’, and a list of observable and latent variables. 

 
Output:  Determine whether G is equivalent to G’, G is nested in G’, or vice versa. (This 
is a derivative of Task 1, whereby a comparison is made between the testable implications 
embedded in G and G’) 
 
Example:  Consider Figure 17(a) and 17(b) as input, Commentator produces the output 
shown in Table 2, and infer that the model in Figure 17(b) is nested in the model in Figure 
17(a). 
 
 

9.1 Methodology 
 
Current methods for testing whether a model is covariance-matrix nested or equivalent to 
another model is considered a difficult, if not impossible task for SEM researchers [Bentler 
and Satorra, 2010].  By definition, two models are covariance equivalent if every covariance 
matrix generated by one model can also be generated by another.  According to [Pearl, 
1998], two Markovian (models without correlated errors) linear-normal models are 
covariance equivalent if and only if they have the same sets of vanishing regression 
coefficients.  Therefore the difficulties that SEM practitioners face regarding the 
determination of model equivalence is simplified to testing whether two models have the 
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same sets of vanishing regression coefficients.  In semi-Markovian (models with correlated 
errors) models, this is only a necessary condition.   

Testing for model nesting is similar to testing for model equivalence.  A Markovian 
model X is covariance nested in a Markovian model Y if and only if every covariance matrix 
that is compatible with X is compatible with Y.  Therefore, model X is nested in model Y 
only if the vanishing regression coefficients of model X are a superset of the vanishing 
regression coefficients of model Y.  For example, although Figure 17(a) and (b) have 
completely different graphical structure, yet Figure 17(b) is nested in Figure 17(a) as seen in 
Table 2, since the vanishing regression coefficients for Figure 17(a) is a proper superset of 
those for Figure 17(b).     
 
 

 
Table 2: Commentator Output: Testable Implications for Figure 17(a) and (b) 

(Identical to Table 1) 
 

 

9.1 Recommendations 
 
When models are equivalent they cannot be distinguished by statistical means, and 
choosing between them relies solely on available scientific theories.  It is therefore 
beneficial to have the facility to determine if two proposed models are equivalent or nested, 
so that the best model may be chosen from a group of competing or indistinguishable 
models.  Another standard SEM application is determining if a baseline model used in an 
incremental fit index is appropriately nested [Bentler and Satorra, 2010]. 

In causal models, conditional independencies are not the only type of constraint.  
Additional constraints known as dormant independencies (or Verma constraints) result from an 

Commentator Output for Figure 17(b) 

 𝑟𝑉𝑊1
= 0 

 𝑟𝑉𝑊2
= 0 

 𝑟𝑉𝑋∙𝑊1𝑍1
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑍1𝑍2
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑋𝑍2
= 0 

 𝑟𝑊1𝑍2∙𝑊2
= 0 

 𝑟𝑊2𝑍1∙𝑊1
= 0 

 𝑟𝑋𝑍2∙𝑉𝑊2
= 0 

 𝑟𝑍1𝑍2∙𝑉𝑊1
= 0  

 𝑟𝑍1𝑍2∙𝑉𝑊2
= 0  

 𝑟𝑌𝑍1∙𝑉𝑊1𝑊2𝑋 = 0 

 𝑟𝑌𝑍1∙𝑊1𝑊2𝑋𝑍2
=  0 

 

Commentator Output for Figure 17(a) 

 𝑟𝑉𝑊1
= 0 

 𝑟𝑉𝑊2
= 0 

 𝑟𝑉𝑋∙𝑊1𝑍1
= 0 

 𝑟𝑉𝑌∙𝑊1𝑊2𝑍1𝑍2
= 0 

 𝑟𝑊1𝑍2∙𝑊2
= 0 

 𝑟𝑊2𝑍1∙𝑊1
= 0 

 𝑟𝑋𝑍2 ∙𝑉𝑊2
= 0 

 𝑟𝑍1𝑍2∙𝑉𝑊1
= 0  

 𝑟𝑍1𝑍2∙𝑉𝑊2
= 0  

 



29 

intervention, written do(x), which is an operation that forces a variables X to have the value x 
regardless of their usual behavior in a causal model [Shpitser and Pearl, 2008].  A method 
for finding dormant independencies is presented in [Shpitser and Pearl, 2008], and 
implementation is set aside for future work. 
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10 Task 6: Find all Minimum-Size Admissible Sets of 
Covariates for Determining the Causal Effect of X on Y 
 
Input: A DAG G, a list of observable and latent variables, and a pair of variables, X and Y. 
 
Output:  List of all minimum-size admissible sets S, such that conditioning on S removes 
confounding bias between X and Y.  (This is a derivative of Task 2 and 3, tailored to a 
specific causal effect). 
 
Example 1:  Consider Figure 17(b) as input, Commentator produces the following output: 
 

 The causal effect 𝑃(𝑌|𝑑𝑜(𝑋)) can be estimated by adjustment on: 
o V, W1, W2 
o W1, W2, Z1 
o W1, W2, Z2 

 
Example 2:  Consider Figure 17(a) as input, Commentator produces the following output: 
 

 The causal effect 𝑃(𝑌|𝑑𝑜(𝑋)) cannot be identified by adjustment, i.e., no admissible set exists.   
 
 

10.1 Methodology 
 
This is a derivative of Task 2 and Task 3 focused on a specific causal effect.  Each 

admissible set S ensures a bias-free estimate of P(Y|do(X)) by controlling for S. 
 
 

 
Figure 18: Diagram: Effect of Warm-up Exercise on Injury. [Shrier and Platt, 2008] 
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10.2 Recommendations 
 
This task is applicable not only to linear-models, but to non-parametric models as well, 
benefiting researchers such as epidemiologists, who face the problem of deciding which 
measurements to take.  Since measurements vary in cost, reliability, and estimation power, 
some measurements are better than others, and therefore it is extremely useful to display 
the options available to investigators prior to taking any data.  Consider a real-world 
example, Figure 18 from [Shrier and Platt, 2008], showing the effect of warm-up exercise 
on injury, Commentator returns the following output: 

 

 The causal effect 𝑃(𝐼𝑛𝑗𝑢𝑟𝑦|𝑑𝑜(𝑊𝑎𝑟𝑚 − 𝑢𝑝)) can be estimated by adjustment on: 
o Coach, Pregame proprioception  
o Coach, Fitness level  
o Genetics, Fitness level  
o Team motivation, Pregame proprioception  
o Team motivation, Fitness level  
o Neuromuscular fatigue, Connective tissue disorder 
o Neuromuscular fatigue, Tissue weakness 

 
 

Presented are the minimum-size potential choices or options that epidemiologists 
can use to remove confounding bias; however these may not always be the cheapest to 
measure; in practice, it may be cheaper or more reliable to measure larger sets of size three 
or greater. With minor modification of Commentator, larger minimal sets can be identified 
and displayed so that epidemiologists will be able to assess the cost-effectiveness of the 
options available to them in any given study.  Another useful extension of Commentator 
would consider measurements that are sufficient for identifying causal effects by methods 
other than adjustment.  For example, measurement of Intra-game Proprioception and 
Neuromuscular Fatigue can be shown to be sufficient for identifying the effect of Warm-
up on Injury using the Front-Door criterion described in [Pearl, 2009].  Moreover, equality 
among the various causal-effect estimations, each using a different measurement set or a 
different method of identification, can be used as a test for the correctness of the model 
under investigation. 
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11 Conclusion 

 
This thesis presents one of the first attempts to apply graphical theories to SEM through 
software implementation.  Although SEM has been the frontrunner in the social sciences 
for the past fifty years, this thesis offers improvements for SEM practitioners based on 
recently developed graphical methods, primarily the d-separation criterion.  Commentator’s 
list of identifiable parameters and instrumental variables assists SEM researchers when 
testing and debugging models, and allows causal claims to be established even when the 
model in its entirety is not identified.  Commentator’s list of testable implications provides an 
alternative method for model testing, aids in the determination of model nesting and 
equivalence, and in model debugging with the LM test.  Commentator also successfully 
provides a complete list of identifiable total effects. 

For future work, Commentator’s output lists and the implications of them require 
user feedback about how flexible practitioners are in switching from global-testing tradition 
to modern style of empirical research.  Some of the algorithms, such as finding separators 
and finding induced paths, are exponential in the number of variables, and has yet to 
receive testing with larger and more complicated models.  These computational limits need 
verification and will benefit from faster or more efficient algorithms.   

Future work includes tasks that could be implemented using Commentator routines, 
for example given a model, return a list of all equivalent models.  Another task would be to 
list additional identifiable path coefficients and total effects.  These tasks have graphical 
criteria and algorithms discussed in [Pearl, 2009], but have yet to be implemented.     

In summary, the output lists of Commentator lay the foundation for other graphical 
theories to build upon and extend.  Commentator is just the first step in restoring causality to 
SEM, serving both as a research tool for practitioners and a pedagogical tool for students. 
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12 Appendix 
 
This code was compiled using Microsoft Visual Studio 2008. 
 
//Commentator.c 
 
#include <stdio.h> 

#include <string.h> 

#include <math.h> 

#define MAX 128 //Up to 128 variables MAXimum 

 

struct list_el { 

   int separator[MAX]; 

   struct list_el * next; 

}; 

 

typedef struct list_el node; 

 

 

/////////////////////////// 

///Forward Declarations//// 

/////////////////////////// 

int generateMAG(int graph[MAX][MAX], int observable[MAX], int 

numNodes); 

int generateAnDAG(int i, int j, int graph[MAX][MAX], int numNodes); 

int findInducedPath(int a, int b, int start, int end, int 

graph[MAX][MAX], int visitedNodes[MAX], int n, int numNodes, int 

observable[MAX]); 

int findSeparatorBFS(int a, int b, int graph[MAX][MAX], int numNodes, 

int forbidden[MAX], int required[MAX], FILE*fp, char 

*variableNames[MAX][32], int output); 

int clearGraph(int graph[MAX][MAX], int numNodes); 

int copyGraph(int graph[MAX][MAX], int tempGraph[MAX][MAX], int 

numNodes); 

int printGraph(int graph[MAX][MAX], int numNodes); 

int printUpdateGraph(int graph[MAX][MAX], int tempGraph[MAX][MAX], int 

numNodes); 

int inducedPath(int i, int j, int graph[MAX][MAX], int 

visitedNodes[MAX], int n, int numNodes, int observable[MAX], int 

direction); 

int ancestor(int a, int b, int graph[MAX][MAX], int numNodes); 

int dSeparates(int a, int b, int s[MAX], int graph[MAX][MAX], int 

numNodes); 

int disconnected(int a, int b, int graph[MAX][MAX], int 

visitedNodes[MAX], int numNodes); 

 

//////////////// 

//main program// 

//////////////// 
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int main(int argc, char **argv) 

{ 

 //file pointers 

 FILE *outFile; 

 FILE *outFile2; 

 FILE *inFile; 

 

 //iterators 

 int index = 0; 

 int i,j,k,x,y; 

 int iter = 0; 

 int temp;  

 

 //pointers 

 int *numEdges; 

 int *numForbidden; 

 int *numRequired; 

 int *numObservable; 

 int numNodes; 

 

 //data structures - change values to accomodate larger path 

diagrams 

 int edge[MAX]; 

 int from[MAX]; 

 int to[MAX]; 

 int inputGraph[MAX][MAX]; 

 int graph[MAX][MAX]; 

 int tempGraph[MAX][MAX]; 

 int forbidden[MAX];  

 int observable[MAX]; 

 int required[MAX]; 

 

 int practice[MAX]; // for debugging 

 

 

 char c;//for printing file storages. 

 char *variableNames[MAX][32]; 

 char *name[32]; 

 

 

////////////////////////////// 

/////FILE NAME HERE ////////// 

////////////////////////////// 

 inFile = fopen("warmup.txt","r"); 

////////////////////////////// 

/////FILE NAME HERE ////////// 

////////////////////////////// 
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 fscanf(inFile, "%i\n", &numNodes); 

 printf("Total number of nodes = %i\n\n", numNodes); 

 

  

 for (index = 0; index < numNodes; ++index) { 

  if (fmod((double)index, (double)10) == 0) { 

   fscanf(inFile, "%s\n", name); 

  } else { 

   fscanf(inFile, "%s ", name); 

  } 

  strcpy(variableNames[index], name); 

 } 

 

 fscanf(inFile, "%i\n", &numEdges); 

 printf("Total number of edges = %i\n\n", numEdges); 

 

 for (index = 0; index < numEdges; ++index)  

  fscanf(inFile, "%i %i %i\n", &(to[index]), &(edge[index]), 

&(from[index])); 

 

 

 fscanf(inFile, "%i\n", &numObservable); 

 for (index = 0; index < numNodes; ++index) observable[index] = 

0; //initialize observable list to all observable 

 for (index = 0; index < numObservable; ++index) {  

  fscanf(inFile, "%i\n", &temp); 

  observable[temp] = 1;  

 } 

 printf("\nNumObservable = %i\n",numObservable); 

 printf("Observable (Measureable) Nodes: "); 

 for (index = 0; index < numNodes; ++index) { 

  if (observable[index] != 0) printf("%i ", index); 

 } 

 printf("\n"); 

  

 fscanf(inFile, "%i\n", &numForbidden);  

 for (index = 0; index < numNodes; ++index) { 

  forbidden[index] = 0; //clear forbidden list 

 } 

 for (index = 0; index < numForbidden; ++index) {  

  fscanf(inFile, "%i\n", &temp); 

  forbidden[temp] = 1;  

 } 

 printf("\nNumForbidden = %i\n",numForbidden); 

 printf("Forbidden (Unobservable/Latent) Nodes: "); 

 for (index = 0; index < numNodes; ++index) { 

  if (forbidden[index] != 0) printf("%i ", index); 

 } 

 printf("\n"); 

 

 fscanf(inFile, "%i\n", &numRequired);  
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 //clear forbidden list 

 for (index = 0; index < numNodes; ++index) required[index] = 0;  

  

  

 for (index = 0; index < numRequired; ++index) { 

  fscanf(inFile, "%i\n", &temp); 

  required[temp] = 1; 

 } 

 printf("\nNumRequired = %i\n",numRequired); 

 printf("Required Nodes: "); 

 for (index = 0; index < numNodes; ++index) { 

  if (required[index] != 0) printf("%i ", index); 

 } 

 printf("\n\n"); 

 

 fclose(inFile); 

 

 //Initialize Matrix with "0" for "empty edges" 

 clearGraph(graph, numNodes);  

 

 printf("Input Graph:\n"); 

 for (index = 0; index < numEdges; ++index){ 

  if (edge[index] == 2) { 

   printf("%s <--> %s\n", variableNames[from[index]], 

variableNames[to[index]]); 

   graph[from[index]][to[index]] = 2; 

   graph[to[index]][from[index]] = 2; 

  } else if (edge[index] == 1){ 

   printf("%s ---> %s\n", variableNames[from[index]], 

variableNames[to[index]]); 

   graph[from[index]][to[index]] = 1; 

  } else { 

   printf("invalid edge"); 

  }  

 } 

 

 //copy and store original graph in inputGraph 

 copyGraph(graph, inputGraph, numNodes); 

  

 //print out edge graph 

 printf("\nMatrix (graph):\n"); 

 printGraph(graph, numNodes); 

 

 

//////////////////////////// 

////Testable Implications/// 

//////////////////////////// 

 

 generateMAG(graph, observable, numNodes); //graph now is a MAG 
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 outFile = fopen("testableImplications.txt", "w"); 

 fprintf(outFile, "The following regression coefficients should 

vanish:\n"); 

  

 

 for (i = 0; i < numNodes; ++i){ 

  for(j = i + 1; j < numNodes; ++j){ //iterate over all 

pairs of nodes 

   if(observable[i] == 1 && observable[j] == 1 && 

graph[i][j] == 0 && graph[j][i] == 0){ 

     

    //Finding vanishing coefficients 

    copyGraph(graph,tempGraph, numNodes); 

    generateAnDAG(i, j , tempGraph, numNodes); 

    findSeparatorBFS(i, j, tempGraph, numNodes, 

forbidden, required, outFile, variableNames, 0); 

 

   } 

  } 

 } 

 //Finding constraints induced by Instrumental Variables 

 for (i = 0; i < numNodes; ++i) { 

  for(j = 0; j < numNodes; ++j){ //iterate over all pairs 

(actually... adjacent) of nodes 

   if(i != j && observable[i] == 1 && observable[j] == 

1 && inputGraph[i][j] == 1){ 

     

    //copies original inputGraph into graph 

    copyGraph(inputGraph, graph, numNodes);  

    //remove edge i --> j 

    graph[i][j] = 0; 

    //preprocessing 

    generateMAG(graph, observable, numNodes); 

 

    for (k = 0; k < numNodes; ++k){  

     if (observable[k] != 0 && k != i && k != 

j  // k must be observable instrument 

      && graph[k][j] == 0 && graph[j][k] 

== 0  // test k d-separated form j 

      && (tempGraph[i][k] != 0 || 

tempGraph[k][i] != 0) //test k d-connected to i 

      && !(ancestor(i, k, tempGraph, 

numNodes))) {  

       findIVSeparatorBFS(k, i, j, 

graph, numNodes, forbidden, required, outFile, variableNames, 0); 

     } 

    } 

   } 

  } 

 } 

 fclose(outFile); 
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 copyGraph(graph, tempGraph , numNodes); //need for instrumental 

variables 

 

/////////////////////////////// 

////Direct Effects //////////// 

/////////////////////////////// 

 

 

 outFile = fopen("identifiableParameters.txt", "w"); 

 fprintf(outFile, "The following parameters are 

identifiable:\n"); 

 //printf("\nFinding Instrumental Variables:\n"); 

 outFile2 = fopen("instrumentalVariables.txt", "w"); 

 fprintf(outFile2, "The following are instrumental 

variables:\n"); 

 

 for (i = 0; i < numNodes; ++i) { 

  for(j = 0; j < numNodes; ++j){ //iterate over all pairs 

(actually... adjacent) of nodes 

 

   if(i != j && observable[i] == 1 && observable[j] == 

1 && inputGraph[i][j] == 1){ 

     

    //copies original inputGraph into graph 

    copyGraph(inputGraph, graph, numNodes);  

     

    //remove edge i --> j 

    graph[i][j] = 0; 

     

    //preprocessing 

    generateMAG(graph, observable, numNodes); 

     

    //Test for disconnectedness in graph 

    if ((graph[i][j] ==0) && (graph[j][i] == 0)){  

      

     //Uncomment this if a specific back door 

separator is needed. 

     generateAnDAG(i,j,graph, numNodes); 

     findSeparatorBFS(i, j, graph, numNodes, 

forbidden, required, outFile, variableNames, 1); 

    } 

    for (k = 0; k < numNodes; ++k){  

     if (observable[k] != 0 && k != i && k != 

j  // k must be observable instrument 

      && graph[k][j] == 0 && graph[j][k] 

== 0  // test k d-separated form j 

      && (tempGraph[i][k] != 0 || 

tempGraph[k][i] != 0) //test k d-connected to i 

      && !(ancestor(i, k, tempGraph, 

numNodes))) {  
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       findIVSeparatorBFS(k, i, j, 

graph, numNodes, forbidden, required, outFile2, variableNames, 1); 

     } 

    } 

   } 

  } 

 } 

 fclose(outFile); 

 fclose(outFile2); 

 

 

 

/////////////////////////////////// 

///// Total Effects ////////////// 

///////////////////////////////// 

 

 //printf("\nFinding Total Effects:\n"); 

 outFile = fopen("identifiableTotalEffects.txt", "w"); 

 fprintf(outFile, "The following total effects are 

identifiable:\n"); 

 

 //first iterate over all/each variable i 

 for (i = 0; i < numNodes; ++i) { 

  if (observable[i] == 1) { 

   //copy inputGraph to graph 

   copyGraph(inputGraph, graph, numNodes); 

    

   //remove all edges out of i 

   for (j = 0; j < numNodes; ++j) { 

    if (graph[i][j] == 1) { 

     graph[i][j] = 0;  

    } 

   } 

 

   //generate MAG 

   generateMAG(graph, observable, numNodes); 

 

   for(j = 0; j < numNodes; ++j){  

    if((observable[j] == 1) && (j != i) && 

(graph[i][j] == 0) && (graph[j][i] == 0)){ 

     //copyGraph 

     copyGraph(graph,tempGraph,numNodes); 

      

     //generate Ancestor DAG 

     generateAnDAG(i, j,tempGraph, numNodes); 

 

     //Run test for total effects 

     if (ancestor(i, j, inputGraph, numNodes) 

&& (graph[i][j] ==0) && (graph[j][i] == 0)) { 
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      //Test to find back door 

separators 

      findSeparatorBFS(i, j, tempGraph, 

numNodes, forbidden, required, outFile, variableNames, 2); 

     }  

    } 

   } 

  } 

 } 

 fclose(outFile); 

  

 

////////////////////////////// 

////Minimal Admissible Sets/// 

////////////////////////////// 

 

 //set x --> y to to be removed 

 x = 10; 

 y = 12; 

 

 //copies original inputGraph into graph 

 copyGraph(inputGraph, graph, numNodes);  

     

  

 if (graph[x][y] != 0) {//remove edge x --> y 

  graph[x][y] = 0; 

 }else { // remove all outgoing edges 

  for (i = 0; i < numNodes; ++i) { 

   if (graph[x][i] == 1) { 

    graph[x][i] = 0; 

   } 

  } 

 } 

     

 //preprocessing 

 generateMAG(graph, observable, numNodes); 

     

 //Test for disconnectedness in graph 

 outFile = fopen("minimalAdmissibleSets.txt", "w"); 

 fprintf(outFile, "The causal effect P(%s|do(%s)) can be 

estimated by adjustment on:\n", variableNames[y], variableNames[x]); 

 if ((graph[x][y] ==0) && (graph[y][x] == 0)){  

  generateAnDAG(x,y,graph, numNodes); 

  findSeparatorBFS(x, y, graph, numNodes, forbidden, 

required, outFile, variableNames, 4); 

 } 

 fclose(outFile); 

 

 

///////////////////////////// 

//// output files /////////// 
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///////////////////////////// 

 

 printf("\n"); 

 inFile = fopen("testableImplications.txt", "r"); 

 while((c = getc(inFile)) != EOF) { 

  putchar(c); 

 } 

 fclose(inFile); 

 

 printf("\n"); 

 inFile = fopen("identifiableParameters.txt", "r"); 

 while((c = getc(inFile)) != EOF) { 

  putchar(c); 

 } 

 fclose(inFile); 

 

 printf("\n"); 

 inFile = fopen("identifiableTotalEffects.txt", "r"); 

 while((c = getc(inFile)) != EOF) { 

  putchar(c); 

 } 

 fclose(inFile); 

 

 printf("\n"); 

 inFile = fopen("instrumentalVariables.txt", "r"); 

 while((c = getc(inFile)) != EOF) { 

  putchar(c); 

 } 

 fclose(inFile); 

 

 printf("\n"); 

 inFile = fopen("minimalAdmissibleSets.txt", "r"); 

 while((c = getc(inFile)) != EOF) { 

  putchar(c); 

 } 

 fclose(inFile); 

  

 return 0; 

} 

 

 

 

 

// generates a MAG from graph 

int generateMAG(int graph[MAX][MAX], int observable[MAX], int 

numNodes){ 

 

//////////////////////// 

///Induced Path Graph/// 

//////////////////////// 
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 FILE *inFile; 

 int i, j, k, h; 

 int index; 

 int isInducer; 

 int visitedNodes[MAX]; 

 int n; 

 int *num; 

 int *temp; 

 int tempGraph[MAX][MAX]; 

 int path[MAX]; 

 int bidirected; 

 int inducingPath; 

 int aAncestor; 

 int bAncestor; 

 

 clearGraph(tempGraph,numNodes); 

 

 for (i = 0; i < numNodes; ++i){ 

  for(j = i + 1; j < numNodes; ++j){ //Iterate over all 

pairs of nodes 

   if (observable[i] == 1 && observable[j] == 1) { 

     

    aAncestor = 0; 

    bAncestor = 0; 

     

    //add i to the list and initialize n; 

    visitedNodes[0] = i; 

    n = 1; 

 

    //find all paths between i and j and store it 

in inFile 

 

    if (findInducedPath(i, j, i, j, graph, 

visitedNodes, n, numNodes, observable)) { 

     //add edges 

     if (ancestor(i, j, graph, numNodes)){ 

      aAncestor = 1; 

     } 

     if (ancestor(j, i, graph, numNodes)){ 

      bAncestor = 1; 

     } 

     if (aAncestor == 1) { 

      tempGraph[i][j] = 1; 

     } else if (bAncestor == 1) { 

      tempGraph[j][i] = 1; 

     } else { 

      tempGraph[i][j] = 2; 

      tempGraph[j][i] = 2; 

     } 

    } 

   } 
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  } 

 } 

 copyGraph(tempGraph, graph, numNodes); //copy values from 

tempGraph to graph 

 return 1; 

} 

 

 

//finds induced path recursively between start and end.   

int findInducedPath(int a, int b, int start, int end, int 

graph[MAX][MAX], int visitedNodes[MAX], int n, int numNodes, int 

observable[MAX]) { 

 int i,j; 

 int visited; 

 int colliders; 

 int ancestors; 

 //FILE *fp; 

 

 if(a != b) { 

  for (i = 0; i < numNodes; ++i){ 

   if (i == a && (graph[a][b] != 0 || graph[b][a] != 

0)){ 

 

    ancestors = 1; 

    colliders = 1; 

    

    visitedNodes[n] = end; 

 

    for(j = 1; j <  n; ++j) { 

     if (observable[visitedNodes[j]] == 1) { 

       

      if (graph[visitedNodes[j-

1]][visitedNodes[j]] == 0 || graph[visitedNodes[j+1]][visitedNodes[j]] 

== 0) { 

       colliders = 0; 

      } 

      if ((ancestor(visitedNodes[j], 

start, graph,numNodes) == 0) && (ancestor(visitedNodes[j], end, graph, 

numNodes) == 0)){ 

       ancestors = 0; 

      } 

    

     } 

    } 

    if (ancestors == 1 && colliders == 1) { 

     return 1; 

    }  

   } 

   visited = 0; 

   for (j = 0; j < n; j++){ 

    if (visitedNodes[j] == i) visited = 1; 
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   } 

   if((graph[a][i] != 0 || graph[i][a] != 0) && (i != 

a) && (visited == 0)) { 

    visitedNodes[n] = i; 

    n = n + 1; 

    if (findInducedPath(i, b, start, end, graph, 

visitedNodes, n, numNodes, observable) == 1) return 1; 

    n = n -1; 

    visitedNodes[n] = 0; 

   } 

  } 

 } 

 return 0; 

} 

 

 

 

 

 

// generates Ancestor DAG of i and j from 'graph' 

int generateAnDAG(int i, int j, int graph[MAX][MAX], int numNodes){ 

 int iter, index; 

 int tempGraph[MAX][MAX]; 

 

 

 //copy graph over to tempGraph; 

 copyGraph(graph, tempGraph, numNodes); 

 

 for (index = 0; index < numNodes; ++index){ 

  if ((index != i) && (index != j)){ 

   if (!(ancestor(index, i, graph, numNodes)) && 

!(ancestor(index,j, graph,numNodes))){ 

    for (iter = 0; iter < numNodes; ++iter){  

      

     //Remove edges and nodes 

     tempGraph[iter][index] = 0; 

     tempGraph[index][iter] = 0; 

    } 

   } 

  } 

 } 

 

 //copy tempGraph back over to graph 

 copyGraph(tempGraph, graph, numNodes); 

 

 return 1; 

} 

 

//finds all minimum separators between a and b in graph via breadth-

first search 
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int findSeparatorBFS(int a, int b, int graph[MAX][MAX], int numNodes, 

int forbidden[MAX], int required[MAX], FILE *fp, char 

*variableNames[MAX][32], int output) { 

 //output = 0 --> testable implications 

 //output = 1 --> identiable parameters 

 //output = 2 --> identifiable total effects 

 //output = 3 --> instrumental variables (has been implmented in 

findIVSeparatorBFS(...)); 

 //output = 4 --> admissible sets 

 //output = 5 --> returns 1 single-door separator between a and 

b. 

 node *current, *head, *tail; 

 int i,j,k; 

 int visitedNodes[MAX]; 

 int depth; 

 int currentDepth; 

 int maxVal; 

 

 head = NULL; 

 tail = NULL; 

 current = (node*)malloc(sizeof(node)); 

  

 for (i = 0; i < numNodes; ++i) { 

  current->separator[i] = 0; //Initialize separator to empty 

set 

  if (required[i] != 0) 

   current->separator[i] = 1;  

 } 

  

 current->next = NULL; 

 head = current; 

 tail = current; 

 

 depth = -1; 

 

 while (current){ 

  if (depth > -1) { 

   currentDepth = 0; 

   for (i = 0; i < numNodes; ++i) { 

    if (current->separator[i] != 0) { 

     currentDepth = currentDepth + 1; 

    } 

   } 

   if(currentDepth > depth) { 

    fprintf(fp, "\n"); 

    return 1; 

   } 

  } 

 

  if (dSeparates(a, b, current->separator, graph, numNodes)) 

{ 
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   if (output == 0) { //Print list of vanishing 

regression coefficients 

    if (depth > -1) { //a separator has been found 

before 

     fprintf(fp, "\n"); 

    } 

    fprintf(fp, "%R_%s.%s", variableNames[a], 

variableNames[b]); 

    j = 0; 

    for (i = 0; i < numNodes; ++i) if (current-

>separator[i] != 0) j = j + 1; 

 

    if (j != 0) fprintf(fp, "*"); 

 

    k = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      if (k < j - 1) { 

       fprintf(fp, "%s.", 

variableNames[i]); 

      } else { 

       fprintf(fp, "%s", 

variableNames[i]); 

      } 

     k = k + 1; 

     } 

    } 

    depth = j; 

    if (j == 0) fprintf(fp, " "); //The empty set 

 

    fprintf(fp, "= 0"); 

   } else if (output == 1){ 

    if (depth > - 1) { 

     fprintf(fp,"\n");  

    } 

    fprintf(fp, "-*- The coefficient alpha on %s--

>%s is identifiable controlling for", variableNames[a], 

variableNames[b]); 

    j = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      fprintf(fp, " %s", 

variableNames[i]); 

      j = j + 1; 

     } 

    } 

    

 

 

    depth = j; 

    if (j == 0) fprintf(fp, " the Empty Set"); 
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    fprintf(fp, ", that is alpha = R_%s.%s", 

variableNames[a], variableNames[b]); 

    if (j == 0) { 

     fprintf(fp, " "); 

    } else { 

     fprintf(fp, "*"); 

     k = 0; 

     for (i = 0; i < numNodes; ++i) { 

      if (current->separator[i] != 0) { 

       if (k < j - 1) { 

        fprintf(fp, "%s.", 

variableNames[i]); 

       } else { 

        fprintf(fp, "%s", 

variableNames[i]); 

       } 

      k = k + 1; 

      } 

     } 

    } 

   } else if (output == 2){ 

    if (depth > - 1) { 

     fprintf(fp,"\n");  

    } 

    fprintf(fp, "-*- The total effect, tau, of %s 

on %s is identifiable controlling for", variableNames[a], 

variableNames[b]); 

    j = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      fprintf(fp, " %s", 

variableNames[i]); 

      j = j + 1; 

     } 

    } 

    depth = j; 

    if (j == 0) fprintf(fp, " the Empty Set"); 

    fprintf(fp, ", that is tau = R_%s.%s", 

variableNames[a], variableNames[b]); 

    if (j == 0) { 

     fprintf(fp, " "); 

    } else { 

     fprintf(fp, "*"); 

     k = 0; 

     for (i = 0; i < numNodes; ++i) { 

      if (current->separator[i] != 0) { 

       if (k < j - 1) { 

        fprintf(fp, "%s.", 

variableNames[i]); 

       } else { 
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        fprintf(fp, "%s", 

variableNames[i]); 

       } 

      k = k + 1; 

      } 

     } 

    } 

   } else if (output == 3){ 

    //has been implmented in 

findIVSeparatorBFS(...) 

   } else if (output == 4) { 

    if (depth > - 1) { 

     fprintf(fp,"\n");  

    } 

    j = 0; 

    fprintf(fp, " *"); 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      fprintf(fp, "%s ", 

variableNames[i]); 

      j = j + 1; 

     } 

    } 

    depth = j; 

    if (j == 0) fprintf(fp, "the Empty Set "); 

   } else if (output == 5) { 

    j = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      j = j + 1; 

     } 

    } 

    depth = j; 

    fprintf(fp, "R_%s.%s", variableNames[a], 

variableNames[b]); 

    if (j == 0) { 

     fprintf(fp, " "); 

    } else { 

     fprintf(fp, "*"); 

     k = 0; 

     for (i = 0; i < numNodes; ++i) { 

      if (current->separator[i] != 0) { 

       if (k < j - 1) { 

        fprintf(fp, "%s.", 

variableNames[i]); 

       } else { 

        fprintf(fp, "%s", 

variableNames[i]); 

       } 

      k = k + 1; 

      } 
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     } 

    } 

    return 1; 

   } 

  } else { 

   //Enqueue  

   maxVal = 0; 

   //Find the maxVal 

   for (i = 0; i < numNodes; ++i) { 

    if (current->separator[i] != 0) maxVal = i; 

   } 

 

 

   for (i = maxVal; i < numNodes; ++i) { 

    if ((current->separator[i] == 0) && (i != a && 

i != b)) { //create new node and add it to queue 

     head = (node*)malloc(sizeof(node)); 

     for (k = 0; k < numNodes; ++k) { 

      head->separator[k] = current-

>separator[k]; 

     } 

     head->separator[i] = 1; 

     head->next = NULL; 

     tail->next = head; 

     tail = tail->next; 

     visitedNodes[i] = 1; 

    } 

   } 

  } 

  //Dequeue current node  

  head = current; 

  current = current->next; 

  head->next = NULL; 

  free(head); 

 } 

 fprintf(fp, "\n"); 

 return 1; 

} 

 

 

// finds separator using instrumental variable IV, between X and Y, in 

graph. 

int findIVSeparatorBFS(int IV, int x, int y, int graph[MAX][MAX], int 

numNodes, int forbidden[MAX], int required[MAX], FILE *fp, char 

*variableNames[MAX][32], int output) { 

 // if output == 0, then output testable constraints via 

instrumental variables 

 // if output == 1, then output IV  

 node *current, *head, *tail; 

 int i,j,k; 

 int visitedNodes[MAX]; 
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 int depth; 

 int currentDepth; 

 int maxVal; 

 

 FILE* outFile; 

 

 head = NULL; 

 tail = NULL; 

 

 

 current = (node*)malloc(sizeof(node)); 

  

 for (i = 0; i < numNodes; ++i) { 

  current->separator[i] = 0; //Initialize separator to empty 

set 

  if (required[i] != 0) 

   current->separator[i] = 1;  

 } 

  

 current->next = NULL; 

 head = current; 

 tail = current; 

 

 depth = -1; 

 

 while (current){ 

  if (depth > -1) { 

   currentDepth = 0; 

   for (i = 0; i < numNodes; ++i) { 

    if (current->separator[i] != 0) { 

     currentDepth = currentDepth + 1; 

    } 

   } 

   if(currentDepth > depth) { 

    //fprintf(fp, "\n"); 

    return 1; 

   } 

  } 

 

  if (dSeparates(IV, y, current->separator, graph, 

numNodes)) { 

   if (output == 0) { 

    //fprintf(fp, "Hello worlds\n"); 

    if (graph[x][y] == 0 && graph[y][x] == 0) { 

//then a d-separator exists 

     fprintf(fp, "("); 

     findSeparatorBFS(x, y, graph, numNodes, 

forbidden, required, fp, variableNames, 5); 

     fprintf(fp, ") * (R_%s.%s", 

variableNames[x], variableNames[IV]); 

    } 
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    j = 0; 

    for (i = 0; i < numNodes; ++i) if (current-

>separator[i] != 0) j = j + 1; 

 

    if (j != 0) fprintf(fp, "*"); 

 

    k = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      if (k < j - 1) { 

       fprintf(fp, "%s.", 

variableNames[i]); 

      } else { 

       fprintf(fp, "%s", 

variableNames[i]); 

      } 

     k = k + 1; 

     } 

    } 

 

    fprintf(fp, ") = (R_%s.%s", variableNames[y], 

variableNames[IV]); 

     

    if (j != 0) fprintf(fp, "*"); 

 

    k = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      if (k < j - 1) { 

       fprintf(fp, "%s.", 

variableNames[i]); 

      } else { 

       fprintf(fp, "%s", 

variableNames[i]); 

      } 

     k = k + 1; 

     } 

    } 

 

    fprintf(fp, ")\n"); 

    return 1; 

   } else if (output == 1) { 

    if (depth > -1) { //a separator has been found 

before 

     fprintf(fp, "\n"); 

    }  

    fprintf(fp, "-*- The coefficient alpha on %s--

>%s is identifiable via instrumental variable %S controlling for", 

variableNames[x], variableNames[y], variableNames[IV]); 
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    j = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      fprintf(fp, " %s", 

variableNames[i]); 

      j = j + 1; 

     } 

    } 

    depth = j; 

    if (j == 0) fprintf(fp, " the Empty Set"); 

//The empty set 

     

    fprintf(fp, ", that is alpha = (R_%s.%s", 

variableNames[y], variableNames[IV]); 

 

    if (j != 0) fprintf(fp, "*"); 

    k = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      if (k < j - 1) { 

       fprintf(fp, "%s.", 

variableNames[i]); 

      } else { 

       fprintf(fp, "%s", 

variableNames[i]); 

      } 

     k = k + 1; 

     } 

    } 

 

    fprintf(fp, ") / (R_%s.%s", variableNames[x], 

variableNames[IV]); 

    if (j != 0) fprintf(fp, "*"); 

    k = 0; 

    for (i = 0; i < numNodes; ++i) { 

     if (current->separator[i] != 0) { 

      if (k < j - 1) { 

       fprintf(fp, "%s.", 

variableNames[i]); 

      } else { 

       fprintf(fp, "%s", 

variableNames[i]); 

      } 

     k = k + 1; 

     } 

    } 

    fprintf(fp, ")\n"); 

   } 

  } else { 

   //Enqueue  

   maxVal = 0; 



53 

   //Find the maxVal 

   for (i = 0; i < numNodes; ++i) { 

    if (current->separator[i] != 0) maxVal = i; 

   } 

 

 

   for (i = maxVal; i < numNodes; ++i) { 

    if ((current->separator[i] == 0) && (i != IV 

&& i != y)) { //create new node and add it to queue 

     head = (node*)malloc(sizeof(node)); 

     for (k = 0; k < numNodes; ++k) { 

      head->separator[k] = current-

>separator[k]; 

     } 

     head->separator[i] = 1; 

     head->next = NULL; 

     tail->next = head; 

     tail = tail->next; 

     visitedNodes[i] = 1; 

    } 

   } 

  } 

  //Dequeue current node  

  head = current; 

  current = current->next; 

  head->next = NULL; 

  free(head); 

 } 

 //fprintf(fp, "\n"); 

 return 1; 

} 

 

//clears graph to all 0 

int clearGraph(int graph[MAX][MAX], int numNodes){ 

 int col, row; 

 for (row = 0; row < numNodes; ++row) 

  for(col = 0; col < numNodes; ++col) 

   graph[row][col] = 0; 

 return 1; 

} 

 

//copy values over from graph to tempGraph 

int copyGraph(int graph[MAX][MAX], int tempGraph[MAX][MAX], int 

numNodes){ 

 int col, row; 

 for (row = 0; row < numNodes; ++row) 

  for(col = 0; col < numNodes; ++col) 

   tempGraph[row][col] = graph[row][col]; 

 return 1; 

} 
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//print out Graph 

int printGraph(int graph[MAX][MAX], int numNodes){ 

 int col, row; 

 for (col = 0; col < numNodes; ++col){ 

  for(row = 0; row < numNodes; ++row){ 

   printf("%i ", graph[row][col]); 

  } 

  printf("\n"); 

 } 

 return 1; 

} 

 

//copy values over from tempGraph to graph and print graph. 

int printUpdateGraph(int graph[MAX][MAX], int tempGraph[MAX][MAX], int 

numNodes) {  

 int col, row; 

 for (col = 0; col < numNodes; ++col){ 

  for(row = 0; row < numNodes; ++row){ 

   graph[row][col] = tempGraph[row][col]; 

   tempGraph[row][col] = 0; 

   printf("%i ", graph[row][col]); 

  } 

  printf("\n"); 

 } 

 return 1; 

} 

 

 

//returns 1 if A is an ancestor of B 

int ancestor(int a, int b, int graph[MAX][MAX], int numNodes)  { 

 int i; 

 int retVal = 0; 

 if (graph[a][b] == 1) return 1; //BASE CASE 

 

 for (i = 0; i < numNodes; ++i){ //Iterate over all children 

  if (graph[a][i] == 1) { // INDUCTIVE CASE 

   if(ancestor(i, b, graph, numNodes)) return 1; 

  } 

 } 

 return 0; 

} 

 

// returns 1 if s[] d-separates a and b in graph, 0 otherwise. 

int dSeparates(int a, int b, int s[MAX], int graph[MAX][MAX], int 

numNodes) { 

 /* 

 ALGORITHM: 

 1) Delete all leaf nodes not an element of X, Y, or evidence Z 

 2) Delete all outgoing edges leaving evidence Z 

 3) Test if X and Y are disconnected 
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 */ 

 int index, iter; 

 int row, col; 

 int ancestors; 

 int i; 

 int tempGraph[MAX][MAX]; 

 int visitedNodes[MAX]; 

 

 s[a] = 1; 

 s[b] = 1; 

 

  

 copyGraph(graph, tempGraph, numNodes); 

 

  

 for (index = 0; index < numNodes; ++index){ 

  if(s[index] == 0) { 

   ancestors = 0; 

   for (i = 0; i < numNodes; ++i) { 

    if(s[i] != 0) { 

     if (ancestor(index, i, graph, numNodes)) 

{ 

      ancestors = ancestors + 1; 

     } 

    } 

   } 

   if (ancestors == 0) {  //That means it is a leaf 

node 

    for (iter = 0; iter < numNodes; ++iter){ 

//Remove edges and nodes 

     tempGraph[iter][index] = 0; 

     tempGraph[index][iter] = 0; 

    } 

   } 

  } 

 } 

    

 //DELETE ALL EDGES comming out of evidence (s[]) 

 s[a] = 0; 

 s[b] = 0; 

 

 for (col = 0; col < numNodes; ++col){ 

  if (s[col] != 0){ 

   for(row = 0; row < numNodes; ++row) { 

    if (tempGraph[col][row] == 1) 

tempGraph[col][row] = 0; 

   } 

  } 

 } 

 

 //TEST IF A and B are disconnected 
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 for(i = 0; i < numNodes; ++i) //initialize visitedNodes[] 

  visitedNodes[i] = 0; 

 if (disconnected(a, b, tempGraph, visitedNodes, numNodes)) { 

  return 1; 

 } 

 

 return 0; 

} 

 

//returns 1 if a and b are disconnected in graph, 0 otherwise 

int disconnected(int a, int b, int graph[MAX][MAX], int 

visitedNodes[MAX], int numNodes) { 

 int i; 

 int numNeighbors = 0; 

 visitedNodes[a] = 1; 

 if (graph[a][b] != 0 || graph[b][a] != 0) return 0;//BASE CASE: 

check if a and b are connected 

 

 for (i = 0; i < numNodes; ++i) //count the number of neighbors 

  if (graph[a][i] != 0 || graph[i][a] != 0) numNeighbors = 

numNeighbors + 1; 

 

 if (numNeighbors == 0) return 1; //disconnected, since no 

neighbors 

 

 for (i = 0; i < numNodes; ++i) { 

  if ((graph[a][i] != 0 || graph[i][a] != 0) && 

visitedNodes[i] == 0) { 

   if (disconnected(i, b, graph, visitedNodes, 

numNodes) == 0) return 0; 

  } 

 } 

 return 1; 

} 
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