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On the Consistency Rule in Causal Inference
Axiom, Definition, Assumption, or Theorem?

Judea Pearl

Abstract: In 2 recent communications, Cole and Frangakis (Epide-
miology. 2009;20:3–5) and VanderWeele (Epidemiology. 2009;20:
880–883) conclude that the consistency rule used in causal infer-
ence is an assumption that precludes any side-effects of treatment/
exposure on the outcomes of interest. They further develop auxiliary
notation to make this assumption formal and explicit. I argue that the
consistency rule is a theorem in the logic of counterfactuals and need
not be altered. Instead, warnings of potential side-effects should be
embodied in standard modeling practices that make causal assump-
tions explicit and transparent.

Informally, the consistency rule states that an individual’spotential outcome under a hypothetical condition that hap-
pened to materialize is precisely the outcome experienced by
that individual. When expressed formally, this rule reads1:

X�u� � xf Yx�u� � Y �u� (1)

where, X(u) stands for the exposure that individual u actually
experienced; Yx(u), the potential outcome of individual u had
the exposure been at level X � x; and Y(u) is the outcome
actually realized by u. As a mathematical tool, the consis-
tency rule permits us to write (for any z):

P�Yx � y�Z� z, X� x� � P�Y� y�Z� z, X� x�,

thus, converting expressions involving probabilities of coun-
terfactuals to expressions involving ordinary conditional
probabilities of measured variables. Most theoretical results
in causal inference, including those invoking “ignorability”
assumptions, the control of confounding and the validity of
propensity scores methods owe their derivations to the con-
sistency rule.

Since any mathematical derivation must rest on a for-
mal system of axioms, models, interpretations, and inference
rules, the status of the consistency rule can best be elucidated

by examining its role in formal theories of actions and
counterfactuals.

THE POSSIBLE WORLDS ACCOUNT
Stalnaker2 and Lewis,3 the philosophers who first de-

veloped such formal theories, gave a “possible worlds” in-
terpretation to action and counterfactual sentences. In their
account, the action sentence “If we paint the wall red my
uncle will be cheerful,” is equivalent to an “as if” counter-
factual sentence: “if the wall were red, my uncle would be
cheerful.” Such sentence is deemed true if the “closest world”
satisfying the antecedent proposition “the wall is red” also
satisfies the consequent proposition: “my uncle is cheerful.”
The “similarity” measure that ranks worlds for closeness can
be quite general, and requires only that every world be closest
to itself.

If an analyst believes that different ways of performing
action A are likely to have different effects on the outcome(s),
the analyst must specify the conditions that characterize each
nuance, and what differences they make to other variables in
the model. For example, if a certain type of paint tends to
produce toxic vapor, a specific nuance of the action “paint the
wall red” would read: “the wall is red and there is toxic vapor
in my uncle’s room” while another would read: “the wall is
red and there is no toxic vapor in my uncle’s room” The
antecedent A of the counterfactual sentence “if A were true
then B” would then be conjunctions of the primary effect of
the action (red wall) and its secondary effects (toxic vapor).
Naturally, the model must further explicate how each con-
junction affects the outcome of interest, eg, “my uncle being
cheerful.” These are encoded through the “similarity” mea-
sure that renders some worlds more similar than others and
thus determines the likely outcomes of each action. In our
example, every world entailing “toxic vapors” will also entail
“my uncle is far from cheerful,” and will be placed closer to
ours than any world in which “my uncle feels cheerful.”

Lewis’s3 “closest world” interpretation of counterfac-
tuals entails certain universal properties, called theorems, that
hold true regardless of the similarity measure used in ranking
worlds. One such theorem is the consistency rule, first stated
formally in Gibbard and Harper.4p.156 It reads as follows: For
all A and B, if A is true, then if B would have prevailed
(counterfactually) had A been true, it must be true already.
This may sound tautological, but when translated into exper-
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imental setting, it usually evokes reservations, for it reads: “a
person who chose treatment X � x and recovered would also
have recovered in a clinical trial if assigned treatment x by
design.” Here we become immediately suspicious of possible
side-effects that the experimental protocol might have on
recovery which, if significant, would seem to invalidate
the consistency rule. Not so. According to Lewis’s theory, the
existence of such side-effects should merely modify the
proposition “treatment � x” to include the additional condi-
tions imposed by the treatment (eg, toxic vapors in the case of
wall painting, psychological stress in the case of clinical
trials) to ensure that the counterfactual antecedent A repre-
sents the relevant features of the treatment actually received.

THE STRUCTURAL ACCOUNT
While Lewis’s “closest world” account may seem eso-

teric to practicing researchers, the structural account of
counterfactuals5ch.7 should make this argument more trans-
parent. The latter is based not on metaphysical notions of
“similarity” and “possible worlds,” but on the physical mech-
anisms that govern our world, as perceived by the modeler. In
this account, a “model”M embodies a collection of functions,
each representing a physical mechanism responsible for as-
signing a value to a distinct variable in the model. The value
assigned depends on values previously taken by other vari-
ables in the model and on a vector U of features that
characterize each experimental unit u. The definition of
counterfactuals Yx(u) in this model is based on solving the
equations in a modified version of M, called Mx, and it reads:

Yx�u� �
�
YMx�u�. (2)

In words, the value that outcome Y would take in unit
u, had X been x is given by the solution for Y in a
“modified” model Mx in which the equation for X is
replaced by the equation X � x. The modified model Mx
represents the “least invasive” perturbation of M necessary
for enforcing the condition X � x prescribed by the
antecedent of the counterfactual.

In practice, it is extremely rare that one would be able to
specify the functional relationships among the variables, or even
list the variables involved; partial, qualitative, and provisional
knowledge of these relationships is all that one can hope to

encode in a model. There is also no guarantee that the scanty
knowledge encoded in the model is free of errors, as for
example, when we neglect to encode the possibility of “toxic
vapor” in the wall painting example. However, having a formal
model ensures that we make consistent and maximum use of the
knowledge that we do select to encode in the model.

In particular, having a model M and a formal definition
for counterfactuals6 enables us to assign a truth value to any
statement involving counterfactuals, as well as joint proba-
bilities of counterfactuals, and such assignments enable us to
determine if the knowledge encoded in a partially specified
model is sufficient for drawing specific types of causal
conclusions from the data.7 More importantly, this definition
also enables us to derive theorems, namely, counterfactual
statements that hold true in all models M, regardless of the
content of the equations or their organization. Not surpris-
ingly, the consistency rule articulated in8 can be shown to be
among those theorems.9,10

This agreement between 2 diverse accounts of counter-
factuals is not coincidental; the structural account can be
given a “closest world” interpretation, provided worlds that
share identical histories are deemed equally similar.5

DISCUSSION
The implications of the last 2 sections are that the logic

of counterfactuals tolerates no departure from the consistency
rule and, therefore, there is no assumption conveyed by the
rule. Considerations of side-effects are embodied in the
standard modeling requirement that the action-defining prop-
osition, X � x, properly describes the conditions created by a
given treatment (or exposure).

When models are transparent, this translates into an
even milder requirement that a model should make no claim
which the analyst finds objectionable. The Figure depicts 2
models for the action statement: “If we paint the wall red my
uncle will be cheerful.” Figure A disregards the possibility
that some paints may release toxic vapor, and Figure B
explicitly displays this possibility. Readers versed in causal
diagrams11,12 will recognize immediately that, if the analyst
deems toxic paint to be a likely outcome of the action, Figure
A is not merely incomplete, but makes blatantly false claims.
It claims, for example, that my uncle’s mood is independent
of the action, given wall color. Assumptions, in the language

FIGURE. Two models interpreting the action
phrase: (A) “paint the wall red,” (B) neglects the
side effect “toxic vapor.”
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of diagrams, are encoded not in the arrows, but in the missing
arrows, hence the arrow missing between “action” and
“mood” vividly displays a false premise, one that is rectified
in Figure B.

A natural question to ask is how the consistency rule is
positioned in the “potential outcome” framework of Ney-
man,13 Wilks,14 and Rubin15; in which causal inference is
considered to be a statistical “missing value” problem, bear-
ing no relation to possible worlds, structural equations, or
causal diagrams. Is it a definition, an axiom, an assumption,
or a theorem?

Unlike the “possible worlds” and structural accounts,
the potential outcome framework does not define counterfac-
tuals but takes them as primitive, undefined quantities. It is
the consistency rule alone, often written

Y� xY1 � �1� x�Y0 (3)

that connects the undefined primitives, Y0 and Y1, to observed
quantities, X and Y, and endows the former with empirical
meaning. In the absence of this rule, the variables Y1 and Y0
would bear no relation to any measured quantity, except for
the verbal, informal understanding that each stands for the
“potential outcome” of a unit under unspecified conditions
indexed by the subscripts 1 and 0.

Thus, while the structural and possible worlds accounts
derive the consistency rule from formal definitions of coun-
terfactuals, the potential outcome framework reverses the
logic and uses the consistency rule to define counterfactuals.
In this role, the consistency rule acts as a self-evident axiom,
rather than a theorem or an assumption. How self evident it is,
depends on the context and application. As noted in Cole and
Frangakis, the consistency rule appears to be compelling in
ideal experiments where investigators are presumed to have
full control, and full awareness, of all treatment conditions.
Practical experimental designs, however, cannot guarantee
such control and the need invariably arises to enumerate the
conditions indexed by subscripts 1 and 0 in (3).This occurs
whenever we venture to transport conclusions of one study to
a new experimental setup (eg, a wider population), charac-
terized by somewhat different conditions, and to argue that
the differences are irrelevant. Whether the consistency rule
retains its self-evident status in this transport becomes a
matter of faith, or an assumption, which may benefit from the
explication offered by Cole and Frangakis and VanderWeele.

In the formal frameworks of possible worlds and struc-
tural models, however, these assumptions are explicated in a
different form and in a different phase of the analysis. The
task of ensuring that all relevant side-effects are accounted
for is solely the responsibility of the practitioner-modeler
and, assuming the modeler upholds this responsibility, the
analyst can safely use the simple, unmodified version of the
rule, as in Eq. (2). Separating modeling assumptions from

definitions and rules of inference has the advantage of freeing
the latters from the subtleties of the formers.

CONCLUSIONS
This note agrees with Cole and Frangakis1 and Vander-

Weele2 that assumptions of “no side effects” need be attended
to with utmost diligence, that they deserve a formal repre-
sentation, and that no representation, however sophisticated,
can capture side-effect assumptions that researchers fail to
notice or acknowledge.

It also agrees that it is practically not possible to
account analytically for all the different ways in which an
exposure of level x can be given. It argues however that, if
one possesses experience about what ways of giving exposure
x can be considered similar and what ways cannot, such
experience be encoded not by altering the consistency rule
but, rather, in the same model where other causal assumptions
are encoded. This model can take the form of a causal
diagram, where assumptions receive vivid and unambiguous
representation or, if one prefers algebraic notation, through
counterfactual formulae of the “ignorability” type. The latter
2 representations are logically equivalent,7,16pp.98–102 and
differ only in emphasis and transparency.

I further argue that the distinction between an “assump-
tion” and a “theorem” is not just a matter of semantics, but
carries profound implications in research, communication,
and education, not unlike the implications of labeling
Pythagoras Theorem a “theorem,” not “assumption.” Al-
though right-angle triangles hardly exist in the practical
world, the label “theorem” serves useful purposes to geom-
eters, astronomers, and engineers. First, it gives mathemati-
cians the license to communicate results using a few standard,
albeit ideal, mathematical objects, (eg, straight lines, right-
angles) rather than the much larger space of deviants from the
ideal. Second, it gives mathematicians the freedom to explore
properties of more intricate objects (eg, polygons, spherical
geometry, calculus) while delegating the task of assessing the
practical applicability of such properties to those who are
more intimately familiar with the details of each specific
application. Finally, a “theorem” conveys to practitioners the
comfortable presence of a solid science behind their practice
and the assurance that this science can be relied upon for
guidance despite its dealing with ideal mathematical objects.

The science of counterfactuals, like that of geometry,
deals with ideal mathematical objects such as local interven-
tions, indexed by a finite set X of variables, and counterfac-
tuals defined by such local interventions in accordance with
Eq. (2). Practicing epidemiologists would do well to acquire
the tools developed by the science of counterfactuals, despite
the ideal nature of its premises. The label “theorem” ac-
knowledges the consistency of that science; the label “as-
sumption” denies its existence.
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