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Abstract

This paper addresses the problem of measure-
ment errors in causal inference and highlights
several algebraic and graphical methods for
eliminating systematic bias induced by such
errors. In particulars, the paper discusses the
control of partially observable confounders in
parametric and non parametric models and
the computational problem of obtaining bias-
free effect estimates in such models.

1 INTRODUCTION

This paper discusses methods of dealing with measure-
ment errors in the context of graph-based causal infer-
ence. It is motivated by a result known to epidemi-
ologists (Greenland and Kleinbaum, 1983; Greenland
and Lash, 2008) and regression analysts (Carroll et al.,
2006; Selén, 1986) that has not been fully utilized in
causal analysis or graphical models.

Consider the problem of estimating the causal effect
of X on Y when a sufficient set Z of confounders can
only be measured with error (see Fig. 1), via a proxy
set W . Since Z is assumed sufficient, the causal effect
is identified from measurement on X, Y , and Z, and
can be written

P (y|do(x)) =
∑

z

P (y|x, z)P (z)

=
∑

z

P (x, y, z)/P (x|z) (1)

However, if Z is unobserved, and W is but a noisy
measurement of Z, d-separation tells us immediately
that adjusting for W is inadequate, for it leaves the
back-door path(s) X ← Z → Y unblocked.1 There-
fore, regardless of sample size, the effect of X on Y

1For concise definitions and descriptions of graphical
concepts such as “d-separation,” “back-door,” and “suffi-
ciency” see (Pearl, 2009, pp. 335–6, 344–5).

cannot be estimated without bias. It turns out, how-
ever, that if we are given the conditional probabilities
P (w|z) that govern the error mechanism we can per-
form a modified-adjustment for W that, in the limit of
a very large sample, would amount to the same thing
as observing and adjusting for Z itself, thus rendering
the causal effect identifiable.

X Y

( )P  w z|

Z

W

Figure 1: Needed the causal effect of X on Y when Z
is unobserved, and W provides a noisy measurement
of Z.

The possibility of removing bias by modified adjust-
ment is far from obvious, because, although P (w|z)
is assumed given, the actual value of the confounder
Z remains uncertain for each measurement W = w,
so one would expect to get either a distribution over
causal effects, or bounds thereof. Instead, we can ac-
tually get a repaired point estimate of P (y|do(x)) that
is asymptotically unbiased.

This result, which I will label “effect restoration,”
has powerful consequences in practice because, when
P (w|z) is not given, one can resort to a Bayesian
(or bounding) analysis and assume a prior distribu-
tion (or bounds) on the parameters of P (w|z) which
would yield a distribution (or bounds) over P (y|do(x))
(Greenland, 2009). Alternatively, if costs permit, one
can estimate P (w|z) by re-testing Z in a sampled sub-
population (Carroll et al., 2006).2

2In the literature on measurement errors and sensitiv-
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On the surface, the possibility of correcting for mea-
surement bias seems to undermine the importance of
accurate measurements. It suggests that as long as we
know how bad our measurements are there is no need
to correct them because they can be corrected post-hoc
by analytical means. This is not so. First, although an
unbiased effect estimate can be recovered from noisy
measurements, sampling variability increases substan-
tially with error. Second, even assuming unbounded
sample size, the estimate will be biased if the postu-
lated P (w|z) is incorrect.3

Effect restoration can be analyzed from either a statis-
tical or causal viewpoint. Taking the statistical view,
one may argue that, once the effect P (y|do(x)) is iden-
tified in terms of a latent variable Z and given by the
estimand in (1), the problem is no longer one of causal
inference, but rather of regression analysis, whereby
the regressional expression EzP (y|x, z) need to be es-
timated from a noisy measurement of Z, as given by
W . This is indeed the approach taken in the vast liter-
ature on measurement error (e.g., (Selén, 1986; Carroll
et al., 2006)).

The causal analytic perspective is different; it main-
tains that the ultimate purpose of the analysis is not
the statistics of X, Y , and Z, as is normally assumed
in the measurement literature, but a causal quantity
P (y|do(x)) that is mapped into regression vocabu-
lary only when certain causal assumptions are deemed
plausible. Moreover, the very idea of modeling the er-
ror mechanism P (w|z) requires causal considerations;
errors caused by noisy measurements are fundamen-
tally different from those caused by noisy agitators.
Indeed, the reason we seek an estimate P (w|z) as op-
posed to P (z|w), be it from judgment or from pilot
studies, is that we consider the former parameter to
be a more reliable and transportable than the lat-
ter. Transportability is a causal consideration that
is hardly touched upon in the statistical measurement
literature, where causal vocabulary is usually avoided
and causal relations relegated to informal judgment
(e.g., (Carroll et al., 2006, pp. 29–32)).

Viewed from this perspective, the measurement error
literature appears to be engaged (unwittingly) in a
causal inference exercise that can benefit substantially
from making the causal framework explicit. The ben-

ity analysis, this sort of exercise is normally done by re-
calibration techniques (Greenland and Lash, 2008). The
latter employs a “validation study” in which Z is measured
without error in a subpopulation and used to calibrate the
estimates in the main study (Selén, 1986).

3In extreme cases, wrongly postulated P (w|z) may con-
flict with the data, and no estimate will be obtained. For
example, if we postulate a non informative W , P (w|z) =
P (w), and we find that W strongly depends on X , a con-
tradiction arises and no effect estimate will emerge.

efit can in fact be mutual; identifiability with partially
specified causal parameters (as in Fig. 1) is rarely dis-
cussed in the causal inference literature (notable ex-
ceptions are Hernán and Cole (2009), Goetghebeur
and Vansteelandt (2005), and Cai and Kuroki (2008)),
while graphical models are hardly used in the measure-
ment error literature.

In this paper we will consider the mathematical as-
pects of effect restoration and will focus on asymptotic
analysis. Our aims are to understand the conditions
under which effect restoration is feasible, to assess the
computational problems it presents, and to identify
those features of P (w|z) and P (x, y, w) that are ma-
jor contributors to measurement bias, and those that
contribute to robustness against bias.

2 EFFECT RESTORATION BY

MATRIX ADJUSTMENT

The main idea, adapted from Greenland and Lash
(2008, p. 360), is as follows: Starting with the joint
probability P (x, y, z, w), and assuming that W de-
pends only on Z,4 i.e.,

P (w|x, y, z) = P (w|z) (2)

we write

P (x, y, w) =
∑

z

P (x, y, z, w)

=
∑

z

P (w|x, y, z)P (x, y, z)

=
∑

z

P (w|z)P (x, y, z)

For each x and y, we can interpret the transformation
above as a vector-matrix multiplication:

V (w) =
∑

z

M(w, z)V (z)

where V (w) = P (x, y, w) and M(w, z) = P (w|z) is a
stochastic matrix (i.e., the entries in each column are
non-negative and sum to one). It is well known that,
under fairly broad conditions, M has an inverse (call
it I), which allows us to write:

P (x, y, z) =
∑
w

I(z, w)P (x, y, w) (3)

We are done now, because (3) enables us to reconstruct
the joint distribution of X, Y , and Z from that of the

4This assumption goes under the rubric: “non-
differential error” (Carroll et al., 2006).



observed variables, X, Y , and W . Thus, each term
on the right hand side of (1) can be obtained from
P (x, y, w) through (3) and, assuming Z is a sufficient
set (i.e., satisfying the back-door test), P (y|do(x)) is
estimable from the available data. Explicitly, we have:

P (y|do(x)) =
∑

z

P (y, z, x)P (z)/P (x, z)

=
∑

z

∑
w

I(z, w)P (x, y, w)

∑
xyw I(z, w)P (x, y, w)∑
wy I(z, w)P (x, y, w)

=
∑

z

∑
w

I(z, w)P (x, y, w)

∑
w I(z, w)P (w)∑

w I(z, w)P (x, w)

(4)

Note that the same inverse matrix, I, appears in all
summations. This will not be the case when we do
not assume independent noise mechanisms. In other
words, if (2) does not hold, we must write:

P (x, y, w) =
∑

z

P (w|x, y, z)P (x, y, z)

=
∑

z

Mxy(w, z)P (x, y, z)

where Mxy and its inverse Ixy are both indexed by the
specific values of x and y, and we then obtain:

P (x, y, z) =
∑
w

Ixy(z, w)P (x, y, w) (5)

which, again, permits the identification of the causal
effect via (4) except that the expression becomes some-
what more complicated. It is also clear that errors in
the measurement of X and Y can be absorbed into a
vector W , and do not present any conceptual problem.

Equation (4) demonstrates the feasibility of effect re-
construction and proves that, despite the uncertainty
in the variables X, Y and Z, the causal effect is iden-
tifiable once we know the statistics of the error mech-
anism.5

This result is reassuring, but presents practical chal-
lenges of both representation, computation and es-
timation. Given the potentially high dimensional-
ity of Z and W , the parameterization of I would
in general be impractical or prohibitive. However,
if we can assume independent local mechanisms,
P (w|z) can be decomposed into a product P (w|z) =

5Kuroki and Pearl (2010) have further shown that, un-
der certain conditions, the matrix P (w|z) can be inferred
from the data alone.

P (w1|z1)P (w2|z2), . . . , P (wk|zk) which renders I de-
composable as well. Even when full decomposition is
not plausible, sparse couplings between the different
noise mechanisms would enable parsimonious param-
eterization using, for example, Bayesian networks.

The second challenge concerns the summations in Eq.
(4) which, taken literally, calls for exponentially long
summation over all values of w. In practice, however,
this can be mitigated since, for any given z, there will
be only small number of w’s for which I(z, w) is non-
negligible. This computation, again, can be performed
efficiently using Bayes networks inference.

This still would not permit us to deal with the prob-
lem of empty cells which, owed to the high dimen-
sionality of Z and W would prevent us from getting
reliable statistics of P (x, y, w), as required by (4). One
should resort therefore to propensity score (PS) meth-
ods, which map the cells of Z onto a single scalar.

The error-free propensity score L(z) = P (X = 1|Z =
z) being a functional of P (x, y, z) can of course be es-
timated consistently from samples of P (x, y, w) using
the transformation (3). Explicitly, we have:

L(z) = P (X = 1|Z = z)

= P (X = 1, Z = z)/P (z)

=
∑

y

P (X = 1, y, z)/
∑
xy

P (x, y, z)

where P (x, y, z) is given in (3).

Using the decomposition in (2), we can further write:

L(z) =
∑

y

P (X = 1, y, z)/
∑
xy

P (x, y, z)

=
∑
w

I(z, w)P (X = 1, w)/
∑
w

I(z, w)P (w) (6)

=
∑
w

I(z, w)L(w)P (w)/
∑
w

I(z, w)P (w)

where L(w) is the error-prone propensity score

L(w) = P (X = 1|W = w).

We see that L(z) can be computed from I(z, w), L(w)
and P (w). Thus, if we succeed in estimating these
three quantities in a parsimonious parametric form,
the computation of L(z) would be hindered only by the
summations called for in (5). Once we estimate L(w)
parametrically for each conceivable w, Eq. (6) permits
us to assign to each tuple z a bias-less score L(z) that
correctly represents the probability of X = 1 given
Z = z. This, in turn, should permit us to estimate,
for each stratum L = l, the probability

P (l) =
∑

z|L(z)=l

P (z)



then compute the causal effect using

P (y|do(x)) =
∑

l

P (y|x, l)P (l).

One technique for approximating P (l) was proposed
by Stürmer et al. (2005), and Schneeweiss et al. (2009)
which does not make full use of the inversion in (9)
or of graphical methods facilitating this inversion.
A more promising approach would be to construct
P (l) and P (y|x, l) directly from synthetic samples of
P (x, y, z) that can be created to mirror the empirical
samples of P (x, y, w). This is illustrated in the next
subsection, using binary variables.

3 EFFECT RESTORATION IN

BINARY MODELS

Let X, Y, Z and W be binary variables, and let the
noise mechanism be characterizes by

P (W = 0|Z = 1) = ε

P (W = 1|Z = 0) = δ

To simplify notation, let the propositions Z = 1 and
Z = 0 be denoted by z1 and z0, respectively, and the
same for W = 1 and W = 0, so that ε and δ can be
written

ε = P (w0|z1)

δ = P (w1|z0)

Equation (3) then translates to

P (x, y, z0) =
(1− ε)P (x, y, w0) − εP (x, y, w1)

(1− ε− δ)

P (x, y, z1) =
−δP (x, y, w0) + (1− δ)P (x, y, w1)

(1− ε− δ)
(7)

which represents the inverse matrix

I(w, z) =

[
1− δ ε

δ 1− ε

]−1

=
1

1− ε− δ

[
1− ε −ε
−δ 1− δ

]

Metaphorically, the transformation in (7) can be de-
scribed as a mass re-assignment process, as if every
two cells, (x, y, w0) and (x, y, w1), compete on how
to split their combined weight P (x, y) between the
two latent cells (x, y, z0) and (x, y, z1) thus creating a
synthetic population P (x, y, z) from which (4) follows.
Figure 2 describes how P (w1|x, y), the fraction of the
weight held by the (x, y, w1) cell determines the ra-
tio P (z1|x, y)/P (z0|x, y) of weights that is eventually

received by cells (x, y, z1) and (x, y, z0), respectively.
We see that when P (w1|x, y) approaches 1−ε, most of
the P (x, y) weight goes to cell (z1, x, y), whereas when
P (w1|x, y) approaches δ, most of that weight the twin
cell (z0, x, y).

P  w    x,y  (     |      )

P  z     x,y  (     |      )1

To cell

(          )1x,y,z

(          )x,y,z 0

To cell

10
1 − ε

1

undefined

1

undefined

Weight distribution

from cell

δ

x,y(     )

Figure 2: A curve describing how the weight P (x, y) is
distributed to cells (x, y, z1) and (x, y, z0), as a func-
tion of P (w1|x, y).

Clearly, when ε + δ = 1, W provides no information
about Z and the inverse does not exist. Likewise,
whenever any of the synthetic probabilities P (x, y, z)
falls outside the (0, 1) interval, a modeling constraint
is violated (see (Pearl, 1988, Chapter 8)) meaning that
the observed distribution P (x, y, w) and the postu-
lated error mechanism P (w|z) are incompatible with
the structure of Fig. 1 (see footnote 3). If we assign
reasonable priors to ε and δ, the linear function in Fig.
2 will become an S-shaped curve over the entire [0, 1]
interval, and each sample (x, y, w) can then be used to
update the relative weight P (x, y, z1)/P (x, y, z0).

To compute the causal effect P (y|do(x)) we need only
substitute P (x, y, z) from (7) into Eqs. (1) or (4),
which gives (after some algebra)

P (y|do(x)) =
P (x, y, w1)

P (x|w1)

[
1− δ

P(w1|x,y)

][
1− δ

P(w1)

]
1− δP (x)/P (w1)

+
P (x, y, w0)

P (x|w0)

[
1− ε

P(w0|x,y)

][
1− ε

P(w0)

]
1− εP (x)/P (w0)

.

(8)

This expression highlights the difference between the
standard and modified adjustment for W ; the former
(Eq. (1)), which is valid if W = Z, is given by the stan-
dard inverse probability weighting (e.g., (Pearl, 2009,
Eq. (3.11))):

P (y|do(x)) =
P (x, y, w1)

P (x|w1)
+

P (x, y, w0)

P (x|w0)



The extra factors in Eq. (8) can be viewed as modifiers
of the inverse probability weight needed for a bias-free
estimate. Alternatively, these terms can be used to
assess, given ε and δ, what bias would be introduced if
we ignore errors altogether and treat W as a faithful
representation of Z.

The infinitesimal approximation of (8), in the limit
ε→ 0, δ → 0, reads:

P (y|do(x))

∼=
P (x, y, w1)

P (x|w1)

[
1− δ

(
1

P (w1|x, y)
−

1− P (x)

P (w1)

)]

+
P (x, y, w0)

P (x|w0)

[
1− ε

(
1

P (w0|x, y)
−

1− P (x)

P (w0)

)]

We see that, even with two error parameters (ε and δ),
and eight cells, the expression for P (y|do(x)) does not
simplify to provide an intuitive understanding of the
effect of ε and δ on the estimand. Such evaluation will
be facilitated in linear models (Section 4).

Assuming now that Z is a sufficient set of K binary
variables and, similarly, W is a set of K local indicators
of Z, satisfying (2). Each sample (x, y, w) should give
rise to a synthetic distribution over the 2K cells of
(x, y, z) given by a product of K local distributions
in the form of (7). This synthetic distribution can be
sampled to generate synthetic (x, y, z) samples, from
which the true propensity score L(z) = P (X = 1|z) as
well as the causal effect P (y|do(x)) can be estimated,
as discussed in Section 2.

4 EFFECT RESTORATION IN

LINEAR MODELS

Figure 3 depicts a linear version of the structural equa-
tion model (SEM) shown in Fig. 1. Here, the task is
to estimate the effect coefficient c0, while the parame-
ters c3 and var(εw), representing the noise mechanism
W = c3Z + εW , are assumed given.

Linear models offer two advantageous in handling mea-
surement errors. First, they provide a more transpar-
ent picture into the role of each factor in the model.
Second, certain aspects of the error mechanism can of-
ten be identified without resorting to external studies.
This occurs, for example, when Z possesses two inde-
pendent indicators, say W and V (as in Fig. 3(b)), in
which case the product c2

3var(Z) is identifiable and is
given by:

c2
3var(Z) =

cov(XW )cov(WV )

cov(XV )
. (9)

As we shall see below, this product is sufficient for
identifying c0.

c
0

c
0

c
3

c
2

c
1

X YX Y

W V

c
4c

3

(a) (b)

ZZ

W

c
1

c
2

Figure 3: (a) A linear version of the model in Fig. 1.
(b) A linear model with two indicators for Z, permit-
ting the identification of c0.

Equation (9) follows from Wright’s rules of path analy-
sis and reflects the well known fact (e.g., (Bollen, 1989,
p. 224)) that, in linear models, structural parameters
are identifiable (up to a constant var(Z)) whenever
each latent variable (in our case Z) has three indepen-
dent proxies (in our case X, W , and V )6

Cai and Kuroki (2008) and Kuroki and Pearl (2010)
further showed that c0 is identifiable from measure-
ments of three proxies (of Z), even when these proxies
are dependent of each other. For example, connecting
W to X and V to Y , still permits the identification of
c0.

To find c0 in the model of Fig. 3, we write the three
structural equations in the model

Y = c2Z + c0X + εY

W = c3Z + εW

X = c1Z + εX

and express the structural parameters in terms of the
variances and covariances of the observed variables.
This gives (after some algebra):

c0 =
cov(XY )− cov(XW )cov(WY )/c2

3var(Z)

var(X) − cov2(XW )/c2
3var(Z)

(10)

and shows that the pivotal quantity needed for the
identification of c0 is the product

c2
3var(Z) = var(W ) − var(εW ) (11)

If we are in possession of several proxies for Z,
c2
3var(Z) can be estimated from the data, as in Eq.

(9), yielding:

c0 =
cov(XY )cov(WV )− cov(Y W )cov(XV ))

cov(WV )var(X) − cov(XW )cov(XV )
(12)

6This partial identifiability of the so called “factor load-
ings,” is not an impediment for the identification of c0.
However, if we were in possession of only one proxy (as in
Fig. 3(a)) then knowledge of c3 alone would be insufficient,
the product c

2

3var(Z) is required.
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If however Z has only one proxy, W , as in Fig. 3(a),
the product c2

3var(Z) must be estimated externally,
using either a pilot study or judgmental assessment.

The decomposition on the right hand side of Eq.
(11) simplifies the judgmental assessment of c2

3var(Z),
since c3 and εW are the parameters of an additive error
mechanism

W = c3Z + εW ;

c3 = E(W |z)/z measures the slope with which the
average of W tracks the value of Z, while var(εW )
measures the dispersion of W around that average.
var(W ) can, of course be estimated from the data.

Under a Gaussian distribution assumption, c3 and
var(εW ) fully characterize the conditional density
f(w|z) which, according to Section 2, is sufficient for
restoring the joint distribution of x, y, and z, and thus
secure the identification of the causal effect, through
(1). This explains why the estimation of c3 alone, be
it from experimental data or our understanding of the
physics behind the error process, is not sufficient for
neutralizing the confounder Z. It also explains why the
technique of “latent factor” analysis (Bollen, 1989) is
sufficient for identifying causal effects, even though it
fails to identify the “factor loading” c3 separately of
var(Z).

In the noiseless case, i.e., var(εW ) = 0, we have
var(Z) = var(W )/c2

3 and Eq. (10) reduces to:

c0 =
cov(XY ) − cov(XW )cov(WY )/var(W )

var(X) − cov2(XW )/var(W )

=
βyx − βywβwx

1− βxwβwx

= βyx·w (13)

where

βyx = cov(XY )/var(X)

=
∂

∂x
E(Y |x)

and βyx·w is the coefficient of x in the regression of Y
on X and W , or:

βyx·w =
∂

∂x
E(Y |x, w)

As expected, the equality c0 = βyx·z = βyx·w assures
a bias-free estimate of c0 through adjustment for W ,
instead of Z; c3 plays no role in this adjustment.

In the error-prone case, c0 can be written

c0 =
βyx − βywβwx/k

1− βxwβwx/k

where

k = 1− var(εW )/var(W )

and, as the formula reveals, c0 cannot be interpreted in
terms of an adjustment for a surrogate variable V (W ).

The strategy of adjusting for a surrogate variables has
served as an organizing principle for many studies in
traditional measurement error analysis (Carroll et al.,
2006). For example, if one seeks to estimate the coef-
ficient c1 = E(X|z)/z through a proxy W of Z, one
can always choose to regress X on another variable, V ,
such that the slope of X on V , E(X|v)/v, would yield
an unbiased estimate of c1. In our example of Fig. 3,
one should choose V to be the best linear estimate of
Z, given W , namely V = αW , where

α = Cov(ZW )/var(W ) = c3var(Z)/var(W )

is to be estimated separately, from a pilot study. How-
ever, this Two Stage Least Square strategy is not ap-
plicable in adjusting for latent confounders; i.e., there
is no variable V (W ) such that c0 = βyx·v.

5 MODEL TESTING WITH

MEASUREMENT ERROR

When variables are measured without error, a struc-
tural equation model can be tested and diagnosed sys-
tematically by examining how well the data agrees
with each statistical constraint that the model imposes
on the joint distribution (or covariance matrix). The
most common type of these constraints are conditional
independence relations (or zero partial correlations),
and these can be read off the causal diagram through
the d-separation criterion (Pearl, 2009, pp. 335–7). For
each missing edge in the diagram, say between X and
Y , the model dictates the conditional independence of
X and Y given a set Z of variables that d-separates
X from Y in the diagram; these independencies can
then be tested individually and systematically to as-
sure compatibility between model and data before pa-
rameter identification commences (Kyono, 2010).

When Z suffers from measurement errors (as in Fig.
1) those conditional independencies are not testable,
since the proxies of Z no longer d-separate X from
Y . The question arises whether surrogate tests exist
through the available proxies, to detect possible vio-
lations of the missing-edge postulate. The preceding
section suggests such tests, provided we know (or can
estimate) the parameters of the error process.

This is seen by substituting c0 = 0 in Eq. (10), and ac-
cepting the vanishing of the numerator as a surrogate
test for d-separation between X and Y :



Theorem 1. If a latent variable Z d-separates two

measured variables, X and Y , and Z has a proxy W ,

W = cZ + εW , then cov(XY ) must satisfy:

cov(XY ) = cov(XW )cov(WY )/c2var(Z)

= cov(XW )cov(WY )/[var(W ) − var(εW )]
(14)

We see that the usual condition of vanishing partial re-
gression coefficient is replaced by a modified condition,
in which c2 var(Z) needs to be estimated separately
(as in Fig. 3(b)). If the product c2var(Z) is estimated
from other proxies of Z, as in Fig. 3(b), Eq. (14) as-
sumes the form of a TETRAD condition (Bollen, 1989,
p. 304).

cov(XY ) = cov(V W )cov(WY )/cov(XV )

Cai and Kuroki (2008) derive additional conditions un-
der which this constraint applies to multivariate sets
of confounders and proxies.

Equation (14) can also be written

cov[Y (X −Wcov(XW )/α)] = 0 (15)

where α = var(W )−var(εW ), which provides an easy
test of (14), in the style of Two Stage Least Square:

1. estimate α = var(W ) − var(εW ) (using a pilot
study or auxiliary proxy variables)

2. collect samples Xi, Yi, Wi i = 1, 2, 3, . . . , n

3. estimate c1 = cov(XW )

4. Translate the data into fictitious samples
Yi, Vi i = 1, 2, 3, . . . , n with Vi = Xi − c1/αWi

5. Compute (by Least Square) the best fit coefficient
a in Yi = aVi + ei

6. Test if a = 0. If a vanishes with sufficiently high
confidence, then the data is compatible with the
d-separation condition X⊥⊥Y |Z.

Theorem 1 can be generalized to include missing edges
between latent variables, as well as between latent
and observed variables. In fact, if the graph result-
ing from filling in a missing edge permits the identi-
fication of the corresponding edge coefficient c, then
the original graph imposes a statistical constraint on
the covariance matrix that can be used to test the ab-
sence of that edge. Such tests should serve as model-
diagnostic tools, before (or instead) of submitting the
entire model to a global test of fitness.

6 CONCLUSIONS

The paper discusses computational and representa-
tional problems connected with effect restoration when
confounders are mismeasured or misclassified. In par-
ticular, we have explicated how measurement bias can
be removed by creating synthetic samples from empiri-
cal samples, and how inverse-probability weighting can
be modified to account for measurement error. Sub-
sequently, we have analyzed measurement bias in lin-
ear systems and explicated graphical conditions under
which such bias can be removed.
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