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Abstract

This note deals with a class of variables that,
if conditioned on, tends to amplify confound-
ing bias in the analysis of causal effects. This
class, independently discovered by Bhat-
tacharya and Vogt (2007) and Wooldridge
(2009), includes instrumental variables and
variables that have greater influence on treat-
ment selection than on the outcome. We offer
a simple derivation and an intuitive explana-
tion of this phenomenon and then extend the
analysis to non linear models. We show that:

1. the bias-amplifying potential of instru-
mental variables extends over to non-
linear models, though not as sweepingly
as in linear models;

2. in non-linear models, conditioning on in-
strumental variables may introduce new
bias where none existed before;

3. in both linear and non-linear models, in-
strumental variables have no effect on
selection-induced bias.

1 INTRODUCTION

The common method of reducing confounding bias in
the analysis of causal effects is to adjust for a set of
variables judged to be “confounders,” that is, vari-
ables capable of producing spurious associations be-
tween treatment and outcome, not attributable to
their causal dependence. It is well known that a suffi-
cient condition for the elimination of confounding bias
is that the set of adjusted variable be “admissible,”
namely, that it satisfies the back-door criterion (Pearl,
1993, 2009a).1 Moreover, if the chosen set is not ad-
missible, adjustment for certain type of covariates may

1Admissible sets are sometimes referred to as “suffi-
cient” (Greenland et al., 1999) and, upon adjustment,

actually increase bias (Pearl, 1995, 2009a,c; Green-
land et al., 1999; Heckman and Navarro-Lozano, 2004;
Schisterman et al., 2009).2 Such covariates include:
(1) colliders, (2) intermediate variables on the causal
pathways between treatment and outcome, and (3)
descendants of such intermediaries (Weinberg, 1993;
Pearl, 2009a, pp. 339–40).

Recently, Bhattacharya and Vogt (2007) and
Wooldridge (2009) have identified a new class of
covariates which, although not introducing new bias,
tend to amplify bias if such exists.3 They have shown
that, in linear systems, conditioning on an instru-
mental variable (IV)4 invariably causes an increase
in confounding bias if such exists. IV measurements
should therefore be discarded.

This result is far from obvious. First, an instrumental
variable meets all the statistical properties that one
normally associates with a confounder:

1. It is a pre-treatment variable, so, it is certainly
not affected by the treatment, nor does it inter-
fere with the causal pathways from treatment to
outcome.

the treatment is said to become “ignorable” (Rosenbaum
and Rubin, 1983) or “unconfounded” (Pearl, 2009a). The
“bias” considered here is bias of identification, not estima-
tion, and is sometimes referred to as “inconsistency.”

2The same applies to stratifying on these variables, us-
ing them for matching, using them as predictors in regres-
sion, or including them in inverse probability weighting or
in the “propensity score” function (Rosenbaum and Ru-
bin, 1983). The asymptotic equivalence of these methods
is demonstrated in Pearl (2009a, pp. 348–51).

3A previous version of this paper attributed the dis-
covery to Wooldridge (2009), I have subsequently become
aware of the Working Paper by Bhattacharya and Vogt
(2007).

4Roughly speaking, an instrumental variable is a vari-
able associated with treatment but not with other factors
that may affect outcome when treatment is fixed (by inter-
vention). See (Pearl, 2009a, p. 248) for formal definitions
and Fig. 1 for graphical representation.
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2. It is related to treatment

3. It is related to outcome

4. It is related to outcome conditioned on treatment.

Thus, an IV seems to behave just like an ordinary
confounder that begs to be controlled. Although the
analysis of “confounding-equivalence” (Pearl, 2009a,
pp. 345–6; Pearl and Paz, 2010) identifies IV’s as bias
modifiers, i.e., capable of increasing or decreasing bias,
the idea that the modification always goes in the wrong
direction (i.e., increased bias), is rather surprising, and
calls for further analysis.

Second, the phenomenon stands contrary to current
practices of covariate selection, such as those employed
in propensity score methods. The prevailing practice
is dominated by the belief that adding more covari-
ates to the analysis can cause no harm (Rosenbaum,
2002, p. 76), especially covariates that are powerful
predictors of the “treatment assignment.” For exam-
ple, a popular tutorial article by D’Agostino, Jr. (1998)
states:

“...if one has the ability to measure many of
the covariates that are believed to be related
to the treatment assignment, then one can
be fairly confident that approximately unbi-
ased estimates for the treatment effect can be
obtained.” p. 2267.

Rubin (2009) has further reinforced this attitude by
stating that “To avoid conditioning on some observed
covariates... is distinctly frequentist and non-scientific
ad hockery.”

This attitude relieves investigators from thinking
about cause-effect relationships in the problem but
is based on false premises (Pearl, 2009b) and leads,
as noted by Bhattacharya and Vogt (2007), to wrong
practical advice. For example, a major 2007 pa-
per in the Journal of the American Medical Associa-

tion advises investigators to include variables that are
predictive of treatment assignment without regard to
whether they are predictive of outcome (D’Agostino,
Jr. and D’Agostino, Sr., 2007). The findings of this pa-
per prove the opposite; disregarding the outcome leads
to unwanted consequences. Whenever some residual
bias persists, the more accurately one predicts the
“treatment assignment” the higher the bias. More gen-
erally, we will show that the prevailing over-emphasis
on modeling the “treatment assignment” while disre-
garding the outcome (Rubin, 2002) is misguided; mod-
eling the “outcome mechanism” is in fact a much safer
strategy for estimating causal effects in observational
studies.

In this paper we derive (Section 2) and explain (Sec-
tion 3) the bias-amplification phenomenon in a struc-
tural model setting and then extend the analysis in
three directions. First (Section 4), we quantify the
condition under which a confounding variable ceases
to act as a bias reducer and instead becomes a bias
amplifier. Second (Section 5), we consider non lin-
ear systems and show that the bias-amplification po-
tential of instrumental variables extends over to non-
linear models, though not as pervasively as in linear
models; there are cases where conditioning on an IV
reduces bias and, moreover, conditioning on instru-
mental variables may introduce new bias where none
existed before. Finally (Section 6), we examine the ef-
fect of instrumental variables on selection bias created
by preferential exclusion of units from the study (as
in case-controlled studies,) and show that, in general,
conditioning on an IV has no effect on such bias, unless
the exclusion depends on factors that cause the treat-
ment. The conclusion section summarizes the main
findings of the paper and assesses their methodological
ramifications in view of the on going conflict between
the “experimentalist” and “structural” approaches to
causal inference.

2 ANALYSIS

We will first consider a linear structural model, given
in Fig. 1 where X represents treatment, Y is the out-
come of interest, U is an unobserved confounder, and
Z is an instrumental variable with respect to the causal
effect of X on Y . For simplicity, all variables will be
assumed to be zero-mean and unit-variance. We will
show that conditioning on Z is harmful, for it increases
the bias in the estimate of c0.

We need to compare three quantities:

A1 =
∂

∂x
E(Y |do(x))

A2 =
∂

∂x
E(Y |x)

A3 =
∂

∂x
E(Y |x, z)

A1 is the incremental causal effect5 of X on Y, A2 is
the (unconditional) incremental dependence of Y on
X, given by the regression coefficient of Y on X, and
A3 is the incremental conditional dependence of Y on
X, given by the coefficient of X in the regression of Y

5Readers versed in potential-outcome notation can iden-
tify E(Y |do(x)) with the counterfactual expression E(Yx);
both are given by the conditional expectation E(Y |x) in a
modified structural model, with c1 and c3 set to zero (see
(Pearl, 2009a)).



on X and Z. A2 is often referred to as the “crude,” or
“naive” estimate of A1 = c0.

The unadjusted bias is given by the difference

B0 = A2 − A1

while the bias after conditioning on Z = z is given by

Bz = A3 − A1

Our task is to compare the magnitudes of B0 and Bz

under various assumptions about the data-generating
model.

For the model of Fig. 1, we have:

UZ

c
3

c
1

c
2

c
0

YX

Figure 1: Linear model with instrumental variable Z
and confounder U .

A1 = c0 (1)

A2 = c0 + c1c2 (2)

A3 =
∂

∂x
E(Y |x, z) =

∂

∂x

∑

u

E(Y |x, z, u)P (u|x, z)

=
∂

∂x

∑

u

E(Y |x, u)P (u|x, z)

=
∂

∂x

∑

u

(c0x + c2u)P (u|x, z)

= c0 + c2

∂

∂x
E(U |x, z) (3)

Eq. (1) follows from the definition of A1, Eq. (2) fol-
lows from Wright’s rule of path analysis, and Eq. (3)
was derived above using the structural assumption
E(Y |x, z, u) = c0x + c2u.

Our next step is to evaluate the right hand side of Eq.
(3) in terms of the structural coefficients c3 and c1.
We start with the regression of U on X and Z:

u = βx + αz + ε (4)

where ε is the residual error and β and α are chosen
so as to minimize the square error E[u − βx − αz]2.
It is well known that this minimization is achieved
when cov(ε, x) = cov(ε, z) = 0 and then, if E(U |x, z)
is linear in x and z, we have E(U |x, z) = βx + αz.
Therefore, to evaluate (3) we need to express β and

α in terms of c3 and c1. Multiplying (4) by Z and
X, taking expectations, and invoking the instrumental
assumption cov(Z, U) = 0, we obtain:

E(UZ) = 0 = βE(XZ) + αE(Z2) = βc3 + α

E(UX) = c1 = βE(X2) + αE(XZ) = β + αc3

yielding:

β =
c1

1− c2

3

α = −
c1c3

1− c2

3

(5)

Substituting (5) in (3) enables us to evaluate A3, giv-
ing:

A3 = c0 + c2

∂

∂x
(βx + αz) = c0 +

c2c1

1− c2

3

(6)

We now have A1, A2, and A3 evaluated, from which
we can compute the biases B0 and Bz , giving

Bz =
c2c1

1− c2

3

, B0 = c1c2, Bz =
B0

1− c2

3

(7)

Clearly, |Bz | ≥ |B0| regardless of the signs of c1 and
c2 with strict inequality holding whenever |B0| > 0
and |c3| > 0. The same result holds when U is a
vector of confounding variables. Thus, conditioning on
Z amplifies the unconditioned bias by a factor 1

1−c2

3

.

3 INTUITION

For intuitive understanding of this phenomenon, con-
sider the transition from X = 0 to X = 1, assuming a
simplified equation X = U + cZ. By conditioning on
Z = z, we are comparing units for which U + cz = 0
with those for which U + cz = 1. The mean difference
in U is of course unity

E(U |X = 1, Z = z)− E(U |X = 0, Z = z) = 1

and this difference will be transmitted to Y and trans-
late into the bias

E(Y |X = 1, Z = z) −E(Y |X = 0, Z = z) − c0 = c2

If, on the other hand, we do not condition on Z but
let it vary freely, the variation in Z will “absorb,”
or “account for” part of the change in X, and only
part of that change will be transmitted through E(U)
onto E(Y ). This can be seen quite clearly if we imag-
ine that U and Z are uniformly distributed over the
unit square. For any stratum X = x, 0 ≤ x ≤ 1, U
will be uniformly distributed from 0 to x, with mean
E(U |X = x) = x/2. Therefore, the mean difference
(in U) between units for which X = U + cZ = 0 and
those for which U + cZ = x becomes

E(U |X = x) −E(U |X = 0) = x/2− 0 = x/2



which is merely half of the difference in the conditional
expectation

E(U |X = x, Z = z)− E(U |X = 0, Z = z) = x

More generally, for any joint distribution of U and Z,
we can write:

E(U |x) = ΣzE(U |x, z)P (z|x)
= Σz(x− cz)P (z|x)
= x− cE(Z|x)

from which we obtain

E(U |X = 1)− E(U |X = 0)

= 1− c(E(Z|X = 1) −E(Z|X = 0)).

The second term on the right is always positive, re-
gardless of whether X and Z are positively or nega-
tively correlated (respectively, c > 0 or c < 0).6 We
conclude therefore that mean difference in U dimin-
ishes when we refrain from conditioning on Z:

E(U |X = 1)−E(U |X = 0)

< E(U |X = 1, Z = z) −E(U |X = 0, Z = z)

= 1

and the bias transmitted onto Y will likewise be re-
duced:

E(Y |X = 1)− E(Y |X = 0)

< E(Y |X = 1, Z = z) −E(Y |X = 0, Z = z).

The last remark worth noting in this section is that an
IV may easily exhibit Simpson’s reversal, also called
“suppression effect” or “Simpson’s Paradox” (see Pearl
(2009a) for survey and analysis). This can be seen
from Eqs. (3) and (6); if c0 and c1c2 have opposite
signs, A2 and A3 may be of opposite signs as well.
This means that the association between X and Y in
each stratum of Z may be of opposite sign to the crude
association, taken over all strata of Z. While such re-
versal is usually attributed to Z being a confounder,
the analysis above shows that the reversal can just as
easily be generated by an IV. Indeed, this follows from
the fact that, if U is unobserved and X continuous,
the IV model of Fig. 1 is statistically indistinguish-
able from a model in which Z is a cause of both X
and Y (as in Fig. 2); every joint distribution P (x, y, z)
compatible with one model is also compatible with the
other (Pearl, 2009a, pp. 274–5).

6More formally, we have:

E(U |X = x)/x = Cov(XU)/V ar(X)
= Cov[U(U + cZ)/V ar[(U + cZ)2]
= V ar(U)/(V ar(U) + c2V ar(Z)) < 1

Thus, only a fraction of the unit change in X will be trans-
ported over to U , and then to Y .

4 THE LINE BETWEEN

INSTRUMENTS AND

CONFOUNDERS

We now extend this result in three directions. First
we relax the assumption that Z is a “perfect” instru-
mental variable by allowing it to influence Y directly
as shown in Fig. 2. We ask for the relative values of

c
3

c
2

c
4

c
1

Z U

0
c YX

Figure 2: Model in which Z is both a confounder and
an (imperfect) instrumental variable relative to X, Y .

c3 and c4 that would turn Z from a bias-amplifier to
a bias-reducer. Repeating the derivation of (6) with
E(Y |x, z, u) = c0x + c4z + c2u leaves A3 and Bz the
same, but changes A2 to read

A2 =
∂

∂x
E(Y |x) = c0 + c2c1 + c3c4 (8)

We see that Z becomes a bias-reducer when

Bz ≤ B0 = c2c1 + c3c4

or
c4

c3

≥
c2c1

1− c2

3

(9)

Thus, for Z to become a bias-reducer, the effect of Z on
Y must exceed its effect on X by a factor c2c1/1− c2

3.
This may be a tall order to meet when c3 is close to
unity. Ironically, this means that the best predictors
(of X) are also the most dangerous bias amplifiers.

This finding should be of concern to program evalu-
ation researchers and propensity score analysts. Pre-
treatment covariates should be chosen for control or
for propensity score matching, not because they are
good predictors of treatment or outcome, but because
they are deemed likely to reduce bias, when such is sus-
pected. The analysis of this section shows that being a
good predictor of treatment assignment compromises
the bias-reducing potential of a covariate, for it tends
to amplify bias due to other, uncontrolled confounders.
One would do better therefore to rank order covari-
ates based on their importance with respect to the
outcome variable, a strategy advocated by Brookhart
et al. (2006, 2010); Austin et al. (2007) and Hill (2008)
which, in light of Eq. (9), deserves a general endorse-
ment.



5 A GLIMPSE AT NON-LINEAR

SYSTEMS

The second extension deals with the question of
whether the amplification phenomenon described in
(7), which prevails over all linear models regardless
of parameter values extends over to non-linear models
as well. We will show that, although the phenomenon
persists in non-linear model, it is not as pervasive –
there are non-linear models for which |B0| > |Bz|.

Consider the model of Fig. 1, in which the equation
determining X remains the same,

X = c3z + c1u + ε′ (9a)

but the one for Y becomes non-linear in X:

Y = f(x) + ug(x) + ε′′ (9b)

This yields

E(Y |x, z) = f(x) + g(x)E(U |x, z)

= f(x) + g(x)(βx + αz)

= f(x) + βg(x)(x − c3z)

with β and α given in (5); and, from (9a) and (9b)

E(Y |x) = f(x) + g(x)E(U |x)

= f(x) + g(x)c1x

Consequently, A1, A2, and A3 evaluate to

A1 =
∂

∂x
E(Y |do(x)) =

∂

∂x
E(f(x) + ug(x)) = f ′(x)

A2 =
∂

∂x
E(Y |x) = f ′(x) + c1(xg′(x) + g(x)) (10)

A3 =
∂

∂x
E(Y |x, z) = f ′(x) + β(xg′(x) + g(x)

− c3g
′(x)z) (11)

and the two bias measures become

B0 = c1(xg′(x) + g(x))

Bz =
1

1− c2

3

[c1(xg′(x) + g(x)− c3g
′(x)z)] (12)

=
1

1− c2

3

(B0 − c1c3g
′(x)z)

Clearly, if B0 ≥ 0 and c1c3g
′(x)z > 0, we can get

|Bz| < |B0|. This means that conditioning on Z may
reduce confounding bias, even though Z is a perfect
instrument and both Y and X are linear in U . Note
that, owed to the non-linearity of Y (x, u), the condi-
tional bias depends on the value of Z and, moreover,

for Z = 0 we obtain the same bias amplification as in
the linear case (Eq. (7)).

Equation (12) also shows that conditioning on Z can
introduce bias where none exists. This occurs when
c1 > 0 and g(x) = A/x, a condition that yields B0 = 0
and Bz > 0. This potential of instrumental variables
to produce new bias is suppressed in linear systems, as
seen in Eq. (7), but is unleashed in non-linear systems.
Still, this can only occur when Z and Y are dependent
given X (see (Pearl and Paz, 2010)); it will not occur
therefore in situations where the zero bias condition
B0 = 0 is structural, that is, where one of the struc-
tural equations x = h(z, u) or y = h′(x, u) is trivial in
its u argument.7

6 THE RESILIENCE OF

SELECTION BIAS

Our final extension concerns the effect of instrumen-
tal variables on selection bias, that is, bias induced by
preferential selection of units for data analysis which
is often governed by unknown factors including treat-
ment, outcome and their consequences. Case con-
trol studies are particularly susceptible to such bias,
e.g., when the outcome is a disease or complication
that warrants reporting (see (Glymour and Greenland,
2008, pp. 111–37; Robins, 2001; Hernán et al., 2004)).

To illuminate the nature of this bias, consider the lin-
ear model of Fig. 3 in which S is a variable affected
by both X and Y , indicating entry into the data pool.
Such preferential selection to the data pool amounts

c
3

YX

c
0

2
β

1
β

U
Y

S

Z

Figure 3: A model illustrating selection bias; condi-
tioning on S induces spurious associations between X
and Y .

to conditioning on S, and creates spurious association
between X and Y through two mechanisms. First,
conditioning on the collider S induces spurious associ-
ation between its parents, X and Y . Second, S is also
a descendant of a “virtual collider” Y , whose parents
are X and the error term UY (also called “omitted

7The condition g(x) = A/x that gave rise to B0 = 0
can be thought of as “unstable” (Pearl, 2009a, Ch. 2) for
it depends critically on the exact form of the function y =
h′(x, u).



factors”) which is always present, though often not
shown.8 The first mechanism is suppressed when β1

is zero, while the latter is suppressed when c0 is zero;
both are suppressed when β2 is zero.

Writing

A1 =
∂

∂x
E(Y |do(x)) = c0 (13)

A2 =
∂

∂x
E(Y |x, s) (14)

A3 =
∂

∂x
E(Y |x, z, s) (15)

the bias due to conditioning on S, A2 − A1, can be
calculated through the usual method of expectations
(as in Eqs. (3)-(6)) and yields:

B0 = A2 − A1 =
−β2(1− c2

0)(β1 + c0β2)

1− (β1 + c0β2)2
(16)

We see that B0 can be substantial and it vanishes if
and only if one of the following conditions holds:

β2 = 0, c2

0 = 1 or β1 = −c0β2.

In view of the amplification effect of IV’s on confound-
ing bias, one may be tempted to surmise that a simi-
lar effect can be expected vis-à-vis selection bias. This
however is not the case. Conditioning on Z has no
effect whatsoever on selection-induced bias, formally,

A3 =
∂

∂x
E(Y |x, s, z) =

∂

∂x
E(Y |x, s) = A2 (17)

This equality can be derived, of course, from the
parametric model of Fig. 3, going through the nec-
essary (yet painstaking) steps of algebraic manipula-
tions. However, the validity of this equality is much
broader, for it holds in non-linear systems as well. This
can be seen immediately from the structure of the di-
agram of Fig. 3, which asserts that, regardless of the
functional relationships between the variables in the
diagram, Y and Z are independent given X and S,9

which entails Eq. (17).

We thus conclude that selection bias differs fundamen-
tally from confounding bias in that the former, as dis-
tinct from the latter, is insensitive to conditioning on
an IV. This distinction can be used in practice to de-
tect the presence of confounding bias. If one has a

8See (Pearl, 2009a, pp. 339–41) for further explanation
of this bias mechanism, which seems to have escaped the
taxonomies in (Hernán et al., 2004) and (Schisterman et al.,
2009).

9This is verified through the d-separation rule (Pearl,
2009a, pp. 335–7), which identifies the conditional inde-
pendencies implied by a system of non-linear structural
equations.

solid theoretical basis to believe that a variable Z is a
valid instrument relative to the effect of X on Y , and
if data shows that the association between X and Y
changes upon conditioning on Z, chances are the study
is marred by confounding bias, and remedial steps are
necessary, possibly through covariate control. Con-
versely, if no such changes can be detected in the data,
chances are no confounding bias exists, though the
study can still be contaminated with selection-induced
bias, resistant to covariate control.10

The question naturally arises whether IV-sensitivity
can also be used to assess the relative magnitude of
the biases associated with two or more effect estimates,
each produced by a different method of covariate con-
trol. The answer is trivially affirmative in linear mod-
els, since all effects are identifiable in the IV model of
Fig. 1. In nonlinear models, where causal effects are
nonidentifiable, the IV-sensitivity can serve to rank es-
timates, but the utility of such ranking is limited; low
sensitivity, hence low bias, may as well be assessed in-
directly, by measuring the degree to which Y and Z
are dependent given X.

It is important to keep in mind though that the se-
lection bias analyzed above was “pure,” in the sense
of inducing no confounding component. In general, if
the reasons for excluding units from the study data
involves ancestors of X, confounding bias may also be
induced, as shown in Fig. 4. S3 induces “pure” con-

U
1

U
2

U
Y

X Y

2
S

3
S

1
S

Z

Figure 4: Model in which conditioning on S2 induces
selection bias, conditioning on S3 induces confounding
bias, and conditioning on S1 induces both.

founding bias that would be amplified by conditioning
on Z, while S2 induces a “pure” selection bias that
will be impervious to conditioning on Z. S1 induces
both selection and confounding bias through to the
path X − U1 − S1 − Y ; the latter will be sensitive to
Z. Conditioning on U2 will eliminate the entire bias
induced by S2, while conditioning on U1 will eliminate

10I use the cautionary term “chances are” to allow for
the rare possibilities that Z introduces its own bias (see
footnote 7) or that the bias will not be changed by Z.
These possibilities are not structural, in the sense that they
require fine tuning of the functional relationships in the
model.



only the confounding part of the bias induced by S1;
the selection-induced part, due to the association cre-
ated between X and UY , cannot be eliminated by any
method. S3 induces purely confounding bias, which
can be eliminated by conditioning on either U1 or U2.

Formally, the distinction between confounding and se-
lection bias can be articulated thus: Confounding bias
is any X − Y association that is attributable to paths
traversing ancestors of X (i.e., factors affecting treat-
ment.) Operationally, the distinction may refer to ex-
perimental paradigm: Confounding bias is any X − Y
association that can be eliminated by randomization.
The theory of causal diagrams (Pearl, 2009a; Spirtes
et al., 2000) establishes the equivalence of the two cri-
teria.

7 CONCLUSIONS

We have examined the effect of instrumental variables
on various types of bias. We first showed that, while
in linear systems conditioning on an IV always am-
plifies confounding bias (if such exists), bias in non-
linear systems may be amplified as well as attenuated.
In some cases an IV may introduce new bias where
none exists. We further examined the effect of IV’s
on selection-induced bias and showed that no such ef-
fect exists as long as the bias contains no confounding
component. A formal criterion for distinguishing the
two types of bias sources was introduced, and the pos-
sibility of using IV-sensitivity as a diagnostic tool for
bias detection was suggested.

From a practical viewpoint, the immediate implica-
tion of this analysis is that covariates should be cho-
sen based on their importance with respect to the out-
come, rather than the treatment. Those that have
meager effects on the outcome mechanism and strong
effects on the treatment should be discarded, to pre-
vent bias amplification, while those that have strong
effects on the outcome mechanism should be retained
and serve as predictors in the propensity score. In the
absence of unobserved confounders, a propensity score
constructed from the direct causes of the outcome gives
the same effect estimate (asymptotically) as one con-
structed from the direct causes of the treatment (Pearl,
2009a, pp. 348–52); the former, however, is safer in the
presence of residual unobserved confounders.

The phenomenon illuminated in this paper also has
a profound methodological significance on the conflict
between the so-called “structural” and “experimental-
ist” camps in causal analysis. The former requires that
every causal analysis commences with an explicit rep-
resentation of the available causal assumptions behind
the study, be it in the form of structural equations
or in their non-parametric version as causal diagrams

(Pearl, 2010). The latter attempts to avoid such rep-
resentation, fearing that causal assumptions, if made
transparent, would be deemed indefensible.

The consequences of avoiding structural considerations
can be seen through the ill-advised practices that the
“experimentalist” approach has nourished in the past
two decades. Unprincipled covariate selection is one
such practice.

Guido Imbens, for example, one of the staunchest
proponents of the “experimentalist” approach, recom-
mends that variables be selected for the propensity
score as follows: “After estimating all [univariate] lo-
gistic regressions we end up with the subset of covari-
ates whose marginal correlation with the treatment
indicator is relatively high. We orthogonalize the set
of selected covariates, and use these to estimate the
propensity score” (Hirano and Imbens, 2001). Reluc-
tance to consider the causal structure of the problem
and, in particular, whether candidate covariates affect
the outcome may easily invite strong predictors that
amplify, rather than diminish confounding bias.

Bhattacharya and Vogt (2007) attribute this attitude
of the experimentalist approach to the traditional
reluctance of statisticians to rely on theoretical or
judgmental assumptions. Pearl (2009b) on the other
hand attributes this reluctance to the deficiency of
the potential-outcome notation which, lacking trans-
parency, discourages the articulation of causal as-
sumptions, even those defensible on scientific grounds.
Whichever the case, there is no substitute to structural
knowledge in causal analysis.
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