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Abstract

This paper reviews recent advances in the foundations of causal in-
ference and introduces a systematic methodology for defining, estimat-

ing, and testing causal claims in experimental and observational stud-
ies. It is based on nonparametric structural equation models (SEM)—

a natural generalization of those used by econometricians and social
scientists in the 1950s and 1960s, which provides a coherent mathe-

matical foundation for the analysis of causes and counterfactuals. In
particular, the paper surveys the development of mathematical tools
for inferring the effects of potential interventions (also called “causal

effects” or “policy evaluation”), as well as direct and indirect effects
(also known as “mediation”), in both linear and nonlinear systems.

Finally, the paper clarifies the role of propensity score matching in
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of this manuscript, and to two anonymous referees for their thorough editorial input. This
research was supported in parts by NIH grant #1R01 LM009961-01, NSF grant #IIS-
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causal analysis, defines the relationships between the structural and
potential-outcome frameworks, and develops symbiotic tools that use

the strong features of both.

1 Introduction

The questions that motivate most studies in the social and behavioral sciences
are causal, not statistical. For example, what is the efficacy of a given social
program in a given community? Can data prove an employer guilty of hiring
discrimination? What fraction of past crimes could have been prevented by
a given policy? Why did one group of students succeed where others failed?
What can a typical public school student gain by switching to a private
school? These are causal questions because they require some knowledge of
the data-generating process; they cannot be computed from the data alone,
regardless of sample size.

Remarkably, although much of the conceptual and algorithmic tools needed
for tackling such problems are now well established, and although these tools
invoke structural equations—a modeling tool developed by social scientists—
they are hardly known among rank and file researchers. The barrier has
been cultural; formulating causal problems mathematically requires certain
extensions to the standard mathematical language of statistics, and these
extensions are not generally emphasized in the mainstream literature and
education. As a result, the common perception among quantitative social
scientists is that causality is somehow “controversial” or “ill understood” or
requiring esoteric assumptions, or demanding extreme caution and immense
erudition in the history of scientific thought. Not so.

The paper introduces basic principles and simple mathematical tools that
are sufficient for solving most (if not all) problems involving causal and coun-
terfactual relationships. The principles are based on the nonparametric struc-
tural equation model (SEM)—a natural generalization of the models used by
econometricians and social scientists in the 1950s and 1960s, yet cast in new
mathematical underpinnings, liberated from the parametric blindfolds that
have conflated regression with causation and thus obscured the causal content
of traditional SEMs. This semantical framework, enriched with a few ideas
from logic and graph theory, gives rise to a general, formal, yet friendly calcu-
lus of causes and counterfactuals that resolves many long-standing problems
in sociological methodology.
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To this end, Section 2 (based on Pearl 2009a, pp. 38–40)begins by illumi-
nating two conceptual barriers that impede the transition from statistical to
causal analysis: (1) coping with untested assumptions and (2) acquiring new
mathematical notation; it is then followed by a brief historical account of how
these barriers have impeded progress in social science methodology. Crossing
these barriers, Section 3.1 (based on Pearl 2009a, ch. 1) then introduces the
fundamentals of the structural theory of causation, with emphasis on the
formal representation of causal assumptions, and formal definitions of causal
effects, counterfactuals, and joint probabilities of counterfactuals. Section 3.2
(based on Pearl 2009a, ch. 3) uses these modeling fundamentals to represent
interventions and develops mathematical tools for estimating causal effects
(Section 3.3) and counterfactual quantities (Section 3.4). Sections 3.3.2 and
3.5 introduce new results, concerning the choice of measurements (3.3.2) and
the limits of analytical tools in coping with heterogeneity (3.5).

The tools described in Section 3 permit investigators to communicate
causal assumptions formally using diagrams, then to inspect the diagram
and

1. decide whether the assumptions made are sufficient for obtaining con-
sistent estimates of the target quantity;

2. derive (if the answer to item 1 is affirmative) a closed-form expression
for the target quantity in terms of distributions of observed quantities;
and

3. suggest (if the answer to item 1 is negative) a set of observations and
experiments that, if performed, would render a consistent estimate fea-
sible.

4. identify the testable implications (if any) of the model’s assumptions,
and devise ways of testing the assumptions behind each causal claim.

5. decide, prior to taking any data, what measurements ought to be taken,
whether one set of measurements is as good as another, and which mea-
surements tend to bias our estimates of the target quantities.

Section 4 outlines a general methodology to guide problems of causal
inference. It is structured along five major steps: (1) define, (2) assume,
(3) identify, (4) test, and (5) estimate. Each step benefits from the tools
developed in Section 3. This five-step methodology is an expansion of the
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one presented in Pearl (2010a) and clarifies the role of local testing (4.3.1),
propensity score matching (4.3.2), and approximation methods (4.3.3).

Section 5 relates these tools to those used in the potential-outcome frame-
work, and offers a formal mapping between the two frameworks and a sym-
biosis (based on Pearl, 2009a, pp. 231–34) that exploits the best features
of both and demystifies enigmatic terms such as “potential outcomes,” “ig-
norability,” “treatment assignment,” and more. Finally, the benefit of this
symbiosis is demonstrated in Section 6, in which the structure-based logic
of counterfactuals is harnessed to estimate causal quantities that cannot be
defined within the paradigm of controlled randomized experiments. These
include direct and indirect effects, or “mediation,” a topic with long tradition
in social science research, which only recently has been given a satisfactory
formulation in nonlinear systems (Pearl, 2001, 2010b).

2 From Association to Causation

2.1 The Basic Distinction and Its Implications

The aim of standard statistical analysis, typified by regression, estimation,
and hypothesis testing techniques, is to assess parameters of a distribution
from samples drawn of that distribution. With the help of such parameters,
one can infer associations among variables, estimate probabilities of past and
future events, as well as update those probabilities in light of new evidence
or new measurements. These tasks are managed well by standard statis-
tical analysis so long as experimental conditions remain the same. Causal
analysis goes one step further; its aim is to infer not only beliefs or probabil-
ities under static conditions, but also the dynamics of beliefs under changing
conditions—for example, changes induced by treatments, new policies, or
other external interventions.

This distinction implies that causal and associational concepts do not mix.
There is nothing in the joint distribution of symptoms and diseases to tell us
that curing the former would or would not cure the latter. More generally,
there is nothing in a distribution function to tell us how that distribution
would differ if external conditions were to change—say from observational to
experimental setup—because the laws of probability theory do not dictate
how one property of a distribution ought to change when another property
is modified. This information must be provided by causal assumptions that
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identify relationships that remain invariant when external conditions change.
A useful demarcation line that makes the distinction between associa-

tional and causal concepts crisp and easy to apply can be formulated as
follows. An associational concept is any relationship that can be defined in
terms of a joint distribution of observed variables, and a causal concept is any
relationship that cannot be defined from the distribution alone. Examples
of associational concepts are correlation, regression, dependence, conditional
independence, likelihood, collapsibility, propensity score, risk ratio, odds ra-
tio, marginalization, Granger causality, conditionalization, “controlling for,”
and so on. Examples of causal concepts are randomization, influence, effect,
confounding, “holding constant,” disturbance, error terms, structural coef-
ficients, spurious correlation, faithfulness/stability, instrumental variables,
intervention, explanation, and attribution. The former can, while the latter
cannot, be defined in term of distribution functions.

This demarcation line is extremely useful in tracing the assumptions that
are needed for substantiating various types of scientific claims. Every claim
invoking causal concepts must rely on some premises that invoke such con-
cepts; it cannot be inferred from or even defined in terms statistical associa-
tions alone.

This principle, though it goes back to the late ninteenth century, has far
reaching consequences that are not generally recognized in the standard lit-
erature. Wright (1923), for example, specifically declared that “prior knowl-
edge of the causal relations is assumed as prerequisite” before one can draw
causal conclusions from path diagrams. The same understanding overrides
the classical works of Blalock (1964) and Duncan (1975). And yet, even
today, it is not uncommon to find “sociologists [who] routinely employ re-
gression analysis and a variety of related statistical models to draw causal
inferences from survey data” (Sobel, 1996, p. 353). More subtly, it is not un-
common to find seasoned sociologists wondering why an instrumental variable
is a causal concept while a propensity score would not be.1 Such confusions
may tempt one to define the former in terms of the latter, or to ignore the
untestable causal assumptions that are necessary for the former.

This association/causation demarcation line further implies that causal
relations cannot be expressed in the language of probability and, hence, that

1The answer of course is that the defining conditions for an instrumental variable invoke
unobserved variables (see Pearl, 2009a, p. 247–48) while the propensity score is defined in
terms of the conditional probability of observed variables (see equation 31). I am grateful
to one reviewer for demonstrating this prevailing confusion.
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any mathematical approach to causal analysis must acquire new notation for
expressing causal relations—probability calculus is insufficient. To illustrate,
the syntax of probability calculus does not permit us to express the simple
fact that “symptoms do not cause diseases,” let alone draw mathematical
conclusions from such facts. All we can say is that two events are dependent—
meaning that if we find one, we can expect to encounter the other, but
we cannot distinguish statistical dependence, quantified by the conditional
probability P (disease|symptom) from causal dependence, for which we have
no expression in standard probability calculus.

2.2 Untested Assumptions and New Notation

The preceding two requirements—to commence causal analysis with untested,2

theoretically or judgmentally based assumptions, and to extend the syntax
of probability calculus—constitute the two main obstacles to the acceptance
of causal analysis among professionals with traditional training in statistics.

Associational assumptions, even untested, are testable in principle, given
sufficiently large samples and sufficiently fine measurements. Causal assump-
tions, in contrast, cannot be verified even in principle, unless one resorts
to experimental control. This difference stands out in Bayesian analysis.
Though the priors that Bayesians commonly assign to statistical parameters
are untested quantities, the sensitivity to these priors tends to diminish with
increasing sample size. In contrast, sensitivity to prior causal assumptions,
say that treatment does not change gender, remains substantial regardless of
sample size.

This makes it doubly important that the notation we use for expressing
causal assumptions be cognitively meaningful and unambiguous so that we
can clearly judge the plausibility or inevitability of the assumptions artic-
ulated. Analysts can no longer ignore the mental representation in which
scientists store experiential knowledge, since it is this representation, and
the language used to access it that determine the reliability of the judgments
upon which the analysis so crucially depends.

How do we recognize causal expressions in the social science literature?
Those versed in the potential-outcome notation (Neyman, 1923; Rubin, 1974;
Holland, 1988; Sobel, 1996) can recognize such expressions through the sub-
scripts that are attached to counterfactual events and variables—for exam-

2By “untested” I mean untested using frequency data in nonexperimental studies.
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ple, Yx(u) or Zxy. (Some authors use parenthetical expressions such as Y (0),
Y (1), Y (x, u), or Z(x, y).) The expression Yx(u), for example, stands for
the value that outcome Y would take in individual u, had treatment X
been at level x. If u is chosen at random, Yx is a random variable, and
one can talk about the probability that Yx would attain a value y in the
population, written P (Yx = y) (see Section 5 for a formal definition). Al-
ternatively, Pearl (1995) used expressions of the form P (Y = y|set(X = x))
or P (Y = y|do(X = x)) to denote the probability (or frequency) that event
(Y = y) would occur if treatment condition X = x were enforced uniformly
over the population.3 Still a third notation that distinguishes causal ex-
pressions is provided by graphical models, where the arrows convey causal
directionality, or structural equations, in which the equality signs (=) repre-
sent right-to-left assignment operators (:=) (Pearl, 2009a, p. 138).4

2.3 SEM and Causality: A Brief History5

Quantitative sociological researchers have chosen structural equation mod-
els and their associated causal diagrams as the primary language for causal
analysis. Influenced by the pioneering work of Sewall Wright (1923) and early
econometricians (Haavelmo, 1943; Simon, 1953; Marschak, 1950; Koopmans,
1953), Blalock (1964) and Duncan (1975) considered SEM a mathematical
tool for drawing causal conclusions from a combination of observational data
and theoretical assumptions. They were explicit about the importance of the
latter, and about the unambiguous causal reading of the model parameters,
once the assumptions are substantiated.

In time, however, the proper causal reading of structural equation models
and the theoretical basis on which it rests became suspect of ad hockery, even

3Clearly, P (Y = y|do(X = x)) is equivalent to P (Yx = y). This is what we normally
assess in a controlled experiment, with X randomized, in which the distribution of Y is
estimated for each level x of X.

4These notational clues should be useful for detecting inadequate definitions of causal
concepts; any definition of confounding, randomization, or instrumental variables that is
cast in standard probability expressions, void of graphs, counterfactual subscripts or do(∗)
operators, can safely be discarded as inadequate.

5A more comprehensive account of the history of SEM and its causal interpretations
is given in Pearl (1998). Pearl (2009a, pp. 368–74) further devotes a whole section of his
book Causality to advise SEM students on the causal reading of SEM and how do defend
it against the skeptics.
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to seasoned workers in the field. This occurred partially due to the revolution
in computer power, which made sociological workers “lose control of their
ability to see the relationship between theory and evidence” (Sørensen, 1998,
p. 241). But it was also due to a steady erosion of the basic understanding
of what SEMs stand for.

In his critical paper Freedman (1987, p. 114) challenged the causal inter-
pretation of SEM as “self-contradictory,” and none of the 11 discussants of
his paper were able to articulate the correct, noncontradictory interpretation
of the example presented by Freedman. Instead, SEM researchers appeared
willing to live with the contradiction. In his highly cited commentary on
SEM, Chin (1998) writes: “researchers interested in suggesting causality in
their SEM models should consult the critical writing of Cliff (1983), Freed-
man (1987), and Baumrind (1993).”

This, together with the steady influx of statisticians into the field, has left
SEM researchers in a quandary about the meaning of the SEM parameters,
and has caused some to avoid causal vocabulary altogether and to regard
SEM as an encoding of parametric family of density functions, void of causal
interpretation. Muthén (1987), for example, wrote “It would be very healthy
if more researchers abandoned thinking of and using terms such as cause and
effect” (Muthén, 1987). Many SEM textbooks have subsequently considered
the word “causal modeling” to be an outdated misnomer (e.g., Kelloway,
1998, p. 8), giving clear preference to causality-free nomenclature such as
“covariance structure,” “regression analysis,” or “simultaneous equations.”

The confusion between regression and structural equations has further
eroded confidence in the latter adequacy to serve as a language for causation.
Sobel (1996), for example, states that the interpretation of the parameters of
the model as effects “do not generally hold, even if the model is correctly spec-
ified and a causal theory is given,” and “the way sociologists use structural
equation models to draw causal inferences is problematic in both experimen-
tal and nonexperimental work.” Comparing structural equation models to
the potential-outcome framework, Sobel (2008) further states that “In gen-
eral (even in randomized studies), the structural and causal parameters are
not equal, implying that the structural parameters should not be interpreted
as effect.” In Section 3 of this paper we show the opposite: structural and
causal parameters are one and the same thing, and they should always be
interpreted as effects.

Another advocate of the potential-outcome framework is Holland (1995,
p. 54), who explains the source of the confusion: “I am speaking, of course,
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about the equation: {y = a+bx+ε}. What does it mean? The only meaning
I have ever determined for such an equation is that it is a shorthand way
of describing the conditional distribution of {y} given {x}.” We will see
that the structural interpretation of the equation above has in fact nothing
to do with the conditional distribution of {y} given {x}; rather, it conveys
counterfactual information that is orthogonal to the statistical properties of
{x} and {y} (see footnote 18).

We will further see (Section 4) that the SEM language in its nonpara-
metric form offers a mathematically equivalent and conceptually superior
alternative to the potential-outcome framework that Holland and Sobel ad-
vocate for causal inference. It provides in fact the formal mathematical basis
for the potential-outcome framework and a friendly mathematical machinery
for a general cause-effect analysis.

3 Structural Models, Diagrams, Causal Ef-

fects, and Counterfactuals

This section provides a gentle introduction to the structural framework and
uses it to present the main advances in causal inference that have emerged
in the past two decades. We start with recursive linear models,6 in the style
of Wright (1923), Blalock (1964), and Duncan (1975) and, after explicating
carefully the meaning of each symbol and the causal assumptions embedded
in each equation, we advance to nonlinear and nonparametric models with
latent variables, and we show how these models facilitate a general analysis
of causal effects and counterfactuals.

3.1 Introduction to Structural Equation Models

How can we express mathematically the common understanding that symp-
toms do not cause diseases? The earliest attempt to formulate such relation-
ship mathematically was made in the 1920s by the geneticist Sewall Wright
(1921). Wright used a combination of equations and graphs to communicate
causal relationships. For example, if X stands for a disease variable and Y

6By “recursive” we mean systems free of feedback loops. We allow however correlated
errors, or latent variables that create such correlations. Most of our results, with the
exception of Sections 3.2.3 and 3.3 are valid for nonrecursive systems, allowing reciprocal
causation.
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stands for a certain symptom of the disease, Wright would write a linear
equation:

y = βx + uY , (1)

where x stands for the level (or severity) of the disease, y stands for the level
(or severity) of the symptom, and uY stands for all factors, other than the
disease in question, that could possibly affect Y when X is held constant.7

In interpreting this equation we should think of a physical process whereby
nature examines the values of x and u and, accordingly, assigns to variable
Y the value y = βx + uY . Similarly, to “explain” the occurrence of disease
X, we could write x = uX, where UX stands for all factors affecting X.

Equation (1) still does not properly express the causal relationship im-
plied by this assignment process, because algebraic equations are symmetrical
objects; if we rewrite (1) as

x = (y − uY )/β, (2)

it might be misinterpreted to mean that the symptom influences the disease.
To express the directionality of the underlying process, Wright augmented
the equation with a diagram, later called “path diagram,” in which arrows
are drawn from (perceived) causes to their (perceived) effects, and more im-
portantly, the absence of an arrow makes the empirical claim that Nature
assigns values to one variable irrespective of another. In Figure 1, for exam-
ple, the absence of arrow from Y to X represents the claim that symptom Y
is not among the factors UX that affect disease X. Thus, in our example, the
complete model of a symptom and a disease would be written as in Figure
1: The diagram encodes the possible existence of (direct) causal influence of
X on Y , and the absence of causal influence of Y on X, while the equations
encode the quantitative relationships among the variables involved, to be de-
termined from the data. The parameter β in the equation is called a “path
coefficient,” and it quantifies the (direct) causal effect of X on Y . Once we
commit to a particular numerical value of β, the equation claims that a unit
increase for X would result in β units increase of Y regardless of the values
taken by other variables in the model, and regardless of whether the increase
in X originates from external or internal influences.

7Linear relations are used here for illustration purposes only; they do not represent typ-
ical disease-symptom relations but illustrate the historical development of path analysis.
Additionally, we will use standardized variables—that is, zero mean and unit variance.
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The variables UX and UY are called “exogenous”; they represent ob-
served or unobserved background factors that the modeler decides to keep
unexplained—that is, factors that influence but are not influenced by the
other variables (called “endogenous”) in the model. Unobserved exogenous
variables are sometimes called “disturbances” or “errors”; they represent fac-
tors omitted from the model but judged to be relevant for explaining the be-
havior of variables in the model. Variable UX , for example, represents factors
that contribute to the disease X, which may or may not be correlated with
UY (the factors that influence the symptom Y ). Thus, background factors
in structural equations differ fundamentally from residual terms in regres-
sion equations. The latters, usually denoted by letters εX, εY , are artifacts
of analysis which, by definition, are uncorrelated with the regressors. The
formers are part of physical reality (e.g., genetic factors, socioeconomic con-
ditions), which are responsible for variations observed in the data; they are
treated as any other variable, though we often cannot measure their values
precisely and must resign ourselves to merely acknowledging their existence
and assessing qualitatively how they relate to other variables in the system.

If correlation is presumed possible, it is customary to connect the two
variables, UY and UX, by a dashed double arrow, as shown in Figure 1(b).
By allowing correlations among omitted factors, we allow in effect for the
presence of latent variables affecting both X and Y , as shown explicitly in
Figure 1(c), which is the standard representation in the SEM literature (e.g.,
Bollen, 1989). In contrast to traditional latent variable models, however, our
attention will not be focused on the connections among such latent variables
but, rather, on the causal effects that those variables induce among the ob-
served variables. In particular, we will not be interested in the causal effect
of one latent variable on another and, therefore, there will be no reason to
distinguish between correlated errors and causally related latent variables;
it is only the distinction between correlated and uncorrelated errors (e.g.,
between Figure 1(a) and (b)) that need to be made. Moreover, when the
error terms are uncorrelated, it is often more convenient to eliminate them
altogether from the diagram (as in Figure 3, Section 3.2.3), with the under-
standing that every variable, X, is subject to the influence of an independent
disturbance UX .

In reading path diagrams, it is common to use kinship relations such as
parent, child, ancestor, and descendent, the interpretation of which is usually
self-evident. For example, the arrow in X → Y designates X as a parent of
Y and Y as a child of X. A “path” is any consecutive sequence of edges, solid
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x = u

βy =   x + u

βX Y

U U

(a)

U U

Y

(b)

βX

U U

YX

(c)

β

Figure 1: A simple structural equation model, and its associated dia-
grams, showing (a) independent unobserved exogenous variables (connected
by dashed arrows), (b) dependent exogenous variables, and (c) an equivalent,
more traditional notation, in which latent variables are enclosed in ovals.

or dashed. For example, there are two paths between X and Y in Figure
1(b), one consisting of the direct arrow X → Y while the other tracing the
nodes X, UX , UY , and Y .

Wright’s major contribution to causal analysis, aside from introducing
the language of path diagrams, has been the development of graphical rules
for writing down the covariance of any pair of observed variables in terms
of path coefficients and of covariances among the error terms. In our simple
example, we can immediately write the relations

Cov(X, Y ) = β (3)

for Figure 1(a), and

Cov(X, Y ) = β + Cov(UY , UX) (4)

for Figure 1(b)–(c). (These can be derived of course from the equations, but,
for large models, algebraic methods tend to obscure the origin of the derived
quantities). Under certain conditions, (e.g., if Cov(UY , UX) = 0),such rela-
tionships may allow us to solve for the path coefficients in terms of observed
covariance terms only, and this amounts to inferring the magnitude of (di-
rect) causal effects from observed, nonexperimental associations, assuming
of course that we are prepared to defend the causal assumptions encoded in
the diagram.

It is important to note that, in path diagrams, causal assumptions are
encoded not in the links but, rather, in the missing links. An arrow merely
indicates the possibility of causal connection, the strength of which remains
to be determined (from data); a missing arrow represents a claim of zero
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influence, while a missing double arrow represents a claim of zero covariance.
In Figure 1(a), for example, the assumptions that permit us to identify the
direct effect β are encoded by the missing double arrow between UX and
UY , indicating Cov(UY , UX)=0, together with the missing arrow from Y to
X. Had any of these two links been added to the diagram, we would not
have been able to identify the direct effect β. Such additions would amount
to relaxing the assumption Cov(UY , UX) = 0, or the assumption that Y
does not effect X, respectively. Note also that both assumptions are causal,
not statistical, since none can be determined from the joint density of the
observed variables, X and Y ; the association between the unobserved terms,
UY and UX , can only be uncovered in an experimental setting; or (in more
intricate models, as in Figure 5) from other causal assumptions.

Although each causal assumption in isolation cannot be tested, the sum
total of all causal assumptions in a model often has testable implications. The
chain model of Figure 2(a), for example, encodes seven causal assumptions,
each corresponding to a missing arrow or a missing double-arrow between a
pair of variables. None of those assumptions is testable in isolation, yet the
totality of all those assumptions implies that Z is unassociated with Y in
every stratum of X. Such testable implications can be read off the diagrams
using a graphical criterion known as d-separation (Pearl, 1988).

Definition 1 (d-separation) A set S of nodes is said to block a path p if
either (1) p contains at least one arrow-emitting node that is in S, or (2) p
contains at least one collision node that is outside S and has no descendant
in S. If S blocks all paths from X to Y , it is said to “d-separate X and Y,”
and then, X and Y are independent given S, written X⊥⊥Y |S.

To illustrate, the path UZ → Z → X → Y is blocked by S = {Z}
and by S = {X}, since each emits an arrow along that path. Consequently
we can infer that the conditional independencies UZ⊥⊥Y |Z and UZ⊥⊥Y |X
will be satisfied in any probability function that this model can generate,
regardless of how we parametrize the arrows. Likewise, the path UZ →
Z → X ← UX is blocked by the null set {∅}, but it is not blocked by
S = {Y } since Y is a descendant of the collision node X. Consequently, the
marginal independence UZ⊥⊥UX will hold in the distribution, but UZ⊥⊥UX |Y
may or may not hold. This special handling of collision nodes (or colliders,
e.g., Z → X ← UX) reflects a general phenomenon known as Berkson’s
paradox (Berkson, 1946), whereby observations on a common consequence
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of two independent causes render those causes dependent. For example, the
outcomes of two independent coins are rendered dependent by the testimony
that at least one of them is a tail.

The conditional independencies entailed by d-separation constitute the
main opening through which the assumptions embodied in structural equa-
tion models can confront the scrutiny of nonexperimental data. In other
words, almost all statistical tests capable of invalidating the model are en-
tailed by those implications.8 In addition, d-separation further defines con-

Z X YZ X Y
U U U

Z X

0
x

(b)

Y

U U U

(a)

X YZ

Figure 2: The diagrams associated with (a) the structural model of equation
(5) and (b) the modified model of equation (6), representing the intervention
do(X = x0).

ditions for model equivalence (Verma and Pearl, 1990; Ali et al., 2009) that
are mathematically proven and should therefore supercede the heuristic (and
occasionally false) rules prevailing in social science research (Lee and Hersh-
berger, 1990).

3.2 From Linear to Nonparametric Models and Graphs

Structural equation modeling (SEM) has been the main vehicle for effect
analysis in economics and the behavioral and social sciences (Goldberger,
1972; Duncan, 1975; Bollen, 1989). However, the bulk of SEM methodology
was developed for linear analysis, with only a few attempts (e.g., Muthén,
1984; Winship and Mare, 1983; Bollen, 1989, ch. 9) to extend its capabilities
to models involving discrete variables, nonlinear dependencies, and hetero-
geneous effect modifications.9 A central requirement for any such extension

8Additional implications called “dormant independence” (Shpitser and Pearl, 2008)
may be deduced from some semi-Markovian models, i.e., graphs with correlated errors
(Verma and Pearl, 1990).

9These attempts were limited to ML estimation of regression coefficients in specific non-
linear functions but failed to relate those coefficients to causal effects among the observed
variables (see Section 6.5).
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is to detach the notion of “effect” from its algebraic representation as a coef-
ficient in an equation, and redefine “effect” as a general capacity to transmit
changes among variables. Such an extension, based on simulating hypotheti-
cal interventions in the model, was proposed in Haavelmo (1943); Strotz and
Wold (1960); Spirtes et al. (1993); Pearl (1993a, 2000a); and Lindley (2002),
and it has led to new ways of defining and estimating causal effects in nonlin-
ear and nonparametric models (that is, models in which the functional form
of the equations is unknown).

The central idea is to exploit the invariant characteristics of structural
equations without committing to a specific functional form. For example, the
nonparametric interpretation of the diagram in Figure 2(a) corresponds to a
set of three functions, each corresponding to one of the observed variables:

z = fZ(uZ)

x = fX(z, uX) (5)

y = fY (x, uY ),

where in this particular example UZ , UX and UY are assumed to be jointly
independent but otherwise arbitrarily distributed. Each of these functions
represents a causal process (or mechanism) that determines the value of the
left variable (output) from the values on the right variables (inputs). The
absence of a variable from the right-hand side of an equation encodes the
assumption that nature ignores that variable in the process of determining
the value of the dependent variable. For example, the absence of variable Z
from the arguments of fY conveys the empirical claim that variations in Z
will leave Y unchanged, as long as variables UY and X remain constant. A
system of such functions are said to be structural if they are assumed to be
autonomous—that is, each function is invariant to possible changes in the
form of the other functions (Simon, 1953; Koopmans, 1953).

3.2.1 Representing Interventions

This feature of invariance permits us to use structural equations as a ba-
sis for modeling causal effects and counterfactuals. This is done through a
mathematical operator called do(x), which simulates physical interventions
by deleting certain functions from the model, replacing them with a constant
X = x, while keeping the rest of the model unchanged. For example, to
emulate an intervention do(x0) that holds X constant (at X = x0) in model
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M of Figure 2(a), we replace the equation for x in equation (5) with x = x0,
and obtain a new model, Mx0

,

z = fZ(uZ)

x = x0 (6)

y = fY (x, uY ),

the graphical description of which is shown in Figure 2(b).
The joint distribution associated with the modified model, denoted P (z, y|do(x0))

describes the postintervention distribution of variables Y and Z (also called
“controlled” or “experimental” distribution), to be distinguished from the
preintervention distribution, P (x, y, z), associated with the original model of
equation (5). For example, if X represents a treatment variable, Y a response
variable, and Z some covariate that affects the amount of treatment received,
then the distribution P (z, y|do(x0)) gives the proportion of individuals that
would attain response level Y = y and covariate level Z = z under the hy-
pothetical situation in which treatment X = x0 is administered uniformly to
the population.

In general, we can formally define the postintervention distribution by
the equation

PM (y|do(x))
Δ
= PMx(y) (7)

In words: In the framework of model M , the postintervention distribution
of outcome Y is defined as the probability that model Mx assigns to each
outcome level Y = y.

From this distribution, we are able to assess treatment efficacy by compar-
ing aspects of this distribution at different levels of x0. A common measure
of treatment efficacy is the average difference

E(Y |do(x′
0
))− E(Y |do(x0)), (8)

where x′
0
and x0 are two levels (or types) of treatment selected for comparison.

Another measure is the experimental risk ratio

E(Y |do(x′
0))/E(Y |do(x0)). (9)

The variance V ar(Y |do(x0)), or any other distributional parameter, may also
enter the comparison; all these measures can be obtained from the controlled
distribution function P (Y = y|do(x)) =

∑
z P (z, y|do(x)) which was called
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“causal effect” in Pearl (2000a, 1995) (see footnote 3). The central question
in the analysis of causal effects is the question of identification: Can the con-
trolled (postintervention) distribution, P (Y = y|do(x)), be estimated from
data governed by the preintervention distribution, P (z, x, y)?

The problem of identification has received considerable attention in econo-
metrics (Hurwicz, 1950; Marschak, 1950; Koopmans, 1953) and social science
(Duncan, 1975; Bollen, 1989), usually in linear parametric settings, where it
reduces to asking whether some model parameter, β, has a unique solution
in terms of the parameters of P (the distribution of the observed variables).
In the nonparametric formulation, identification is more involved, since the
notion of “has a unique solution” does not directly apply to causal quantities
such as Q(M) = P (y|do(x)), which have no distinct parametric signature and
are defined procedurally by simulating an intervention in a causal model M ,
as in eauation (6). The following definition provides the needed extension:

Definition 2 (identifiability (Pearl, 2000a, p. 77)) A quantity Q(M) is iden-
tifiable, given a set of assumptions A, if for any two models M1 and M2 that
satisfy A, we have

P (M1) = P (M2) ⇒ Q(M1) = Q(M2) (10)

In words, the details of M1 and M2 do not matter; what matters is that
the assumptions in A (e.g., those encoded in the diagram) would constrain
the variability of those details in such a way that equality of P ’s would
entail equality of Q’s. When this happens, Q depends on P only and should
therefore be expressible in terms of the parameters of P . The next subsections
exemplify and operationalize this notion.

3.2.2 Estimating the Effect of Interventions

To understand how hypothetical quantities such as P (y|do(x)) or E(Y |do(x0))
can be estimated from actual data and a partially specified model, let us be-
gin with a simple demonstration on the model of Figure 2(a). We will see
that, despite our ignorance of fX, fY , fZ and P (u), E(Y |do(x0)) is neverthe-
less identifiable and is given by the conditional expectation E(Y |X = x0).
We do this by deriving and comparing the expressions for these two quanti-
ties, as defined by equations (5) and (6), respectively. The mutilated model
in equation (6) dictates

E(Y |do(x0)) = E(fY (x0, uY )), (11)
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whereas the preintervention model of equation (5) gives

E(Y |X = x0)) = E(fY (x, uY )|X = x0)

= E(fY (x0, uY )|X = x0) (12)

= E(fY (x0, uY ))

which is identical to (11). Therefore,

E(Y |do(x0)) = E(Y |X = x0)) (13)

Using a similar though somewhat more involved derivation, we can show that
P (y|do(x)) is identifiable and given by the conditional probability P (y|x).

We see that the derivation of (13) was enabled by two assumptions: (1)
that Y is a function of X and UY only, and (2) that UY is independent
of {UZ , UX}, hence of X. The latter assumption parallels the celebrated
“orthogonality” condition in linear models, Cov(X, UY ) = 0, which has been
used routinely, often thoughtlessly, to justify the estimation of structural
coefficients by regression techniques.

Naturally, if we were to apply this derivation to the linear models of
Figure 1(a) or (b), we would get the expected dependence between Y and
the intervention do(x0):

E(Y |do(x0)) = E(fY (x0, uY ))

= E(βx0 + uY )

= βx0

(14)

This equality endows β with its causal meaning as “effect coefficient.” It is
extremely important to keep in mind that in structural (as opposed to regres-
sional) models, β is not “interpreted” as an effect coefficient but is “proven”
to be one by the derivation above. β will retain this causal interpretation
regardless of how X is actually selected (through the function fX in Fig-
ure 2(a)) and regardless of whether UX and UY are correlated (as in Figure
1(b)) or uncorrelated (as in Figure 1(a)). Correlations may only impede our
ability to estimate β from nonexperimental data, but it will not change its
definition as given in (14). Accordingly, and contrary to endless confusions in
the literature (see footnote 18), structural equations say absolutely nothing
about the conditional expectation E(Y |X = x). Such connection may exist
under special circumstances—for example, if cov(X, UY ) = 0, as in equation
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(13)—but, it is otherwise irrelevant to the definition or interpretation of β
as effect coefficient, or to the empirical claims of equation (1).

Section 3.2.3 will circumvent these derivations altogether by reducing the
identification problem to a graphical procedure. Indeed, since graphs encode
all the information that nonparametric structural equations represent, they
should permit us to solve the identification problem without resorting to
algebraic analysis.

3.2.3 Causal Effects from Data and Graphs

Causal analysis in graphical models begins with the realization that all causal
effects are identifiable whenever the model is Markovian—that is, the graph
is acyclic (i.e., containing no directed cycles) and all the error terms are
jointly independent. Non-Markovian models, such as those involving corre-
lated errors (resulting from unmeasured confounders), permit identification
only under certain conditions, and these conditions too can be determined
from the graph structure (Section 3.3). The key to these results rests with
the following basic theorem.

Theorem 1 (the causal Markov condition) Any distribution generated by a
Markovian model M can be factorized as:

P (v1, v2, . . . , vn) =
∏

i

P (vi|pai) (15)

where V1, V2, . . . , Vn are the endogenous variables in M , and pai are (values
of) the endogenous “parents” of Vi in the causal diagram associated with M .

For example, the distribution associated with the model in Figure 2(a)
can be factorized as

P (z, y, x) = P (z)P (x|z)P (y|x), (16)

since X is the (endogenous) parent of Y, Z is the parent of X, and Z has no
parents.

Corollary 1 (truncated factorization) For any Markovian model, the dis-
tribution generated by an intervention do(X = x0) on a set X of endogenous
variables is given by the truncated factorization

P (v1, v2, . . . , vk|do(x0)) =
∏

i|Vi �∈X

P (vi|pai) |x=x0
(17)
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where P (vi|pai) are the preintervention conditional probabilities.10

Corollary 1 instructs us to remove from the product of equation (15) those
factors that quantify how the intervened variables (members of set X) are
influenced by their preintervention parents. This removal follows from the
fact that the postintervention model is Markovian as well, hence, following
Theorem 1, it must generate a distribution that is factorized according to
the modified graph, yielding the truncated product of Corollary 1. In our
example of Figure 2(b), the distribution P (z, y|do(x0)) associated with the
modified model is given by

P (z, y|do(x0)) = P (z)P (y|x0),

where P (z) and P (y|x0) are identical to those associated with the preinter-
vention distribution of equation (16). As expected, the distribution of Z is
not affected by the intervention, since11

P (z|do(x0)) =
∑

y

P (z, y|do(x0)) =
∑

y

P (z)P (y|x0) = P (z),

while that of Y is sensitive to x0 and is given by

P (y|do(x0)) =
∑

z

P (z, y|do(x0)) =
∑

z

P (z)P (y|x0) = P (y|x0)

This example demonstrates how the (causal) assumptions embedded in the
model M permit us to predict the postintervention distribution from the
preintervention distribution, which further permits us to estimate the causal
effect of X on Y from nonexperimental data, since P (y|x0) is estimable from
such data. Note that we have made no assumption whatsoever on the form
of the equations or the distribution of the error terms; it is the structure of
the graph alone (specifically, the identity of X’s parents) that permits the
derivation to go through.

The truncated factorization formula enables us to derive causal quanti-
ties directly, without dealing with equations or equation modification as in
equations (11)–(13). Consider, for example, the model shown in Figure 3, in

10A simple proof of the causal Markov theorem is given in Pearl (2000a, p. 30). This
theorem was first presented in Pearl and Verma (1991), but it is implicit in the works
of Kiiveri et al. (1984) and others. Corollary 1 was named “Manipulation Theorem” in
Spirtes et al. (1993), and it is also implicit in the G-computation formula of Robins (1987);
see also Lauritzen (2001).

11Throughout this paper, summation signs should be understood to represent integrals
whenever the summed variables are continuous.
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Z1

Z3

Z2

Y

X

Figure 3: A Markovian model illustrating the derivation of the causal effect
of X on Y , as shown in equation (20). Error terms are not shown explicitly.

which the error variables are kept implicit. Instead of writing down the cor-
responding five nonparametric equations, we can write the joint distribution
directly as

P (x, z1, z2, z3, y) = P (z1)P (z2)P (z3|z1, z2)P (x|z1, z3)P (y|z2, z3, x), (18)

where each marginal or conditional probability on the right-hand side is di-
rectly estimable from the data. Now suppose we intervene and set variable
X to x0. The postintervention distribution can readily be written (using the
truncated factorization formula (17)) as

P (z1, z2, z3, y|do(x0)) = P (z1)P (z2)P (z3|z1, z2)P (y|z2, z3, x0), (19)

and the causal effect of X on Y can be obtained immediately by marginalizing
over the Z variables, giving

P (y|do(x0)) =
∑

z1,z2,z3

P (z1)P (z2)P (z3|z1, z2)P (y|z2, z3, x0) (20)

Note that this formula corresponds precisely with what is commonly called
“adjusting for Z1, Z2, and Z3,” and moreover we can write down this formula
by inspection, without thinking on whether Z1, Z2, and Z3 are confounders,
whether they lie on the causal pathways, and so on. Though such questions
can be answered explicitly from the topology of the graph, they are dealt
with automatically when we write down the truncated factorization formula
and marginalize.

Note also that the truncated factorization formula is not restricted to in-
terventions on a single variable; it is applicable to simultaneous or sequential
interventions such as those invoked in the analysis of time-varying treatment
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with time-varying confounders (Pearl and Robins, 1995; Arjas and Parner,
2004). For example, if X and Z2 are both treatment variables, and Z1 and
Z3 are measured covariates, then the postintervention distribution would be

P (z1, z3, y|do(x), do(z2)) = P (z1)P (z3|z1, z2)P (y|z2, z3, x), (21)

and the causal effect of the treatment sequence do(X = x), do(Z2 = z2)
12

would be

P (y|do(x), do(z2)) =
∑

z1,z3

P (z1)P (z3|z1, z2)P (y|z2, z3, x) (22)

This expression coincides with the G-computation formula in Robins
(1987), which was derived from a more complicated set of (counterfactual)
assumptions. As noted by Robins, the formula dictates an adjustment for
covariates (e.g., Z3) that might be affected by previous treatments (e.g., Z2).

3.3 Coping with Latent Confounders

Things are more complicated when we face latent confounders—that is, un-
measured factors that affect two or more observed variables. For example,
it is not immediately clear whether the formula in equation (20) can be es-
timated if any of Z1, Z2, and Z3 is not measured. A few but challenging
algebraic steps would reveal that we can perform the summation over Z2 to
obtain

P (y|do(x0)) =
∑

z1,z3

P (z1)P (z3|z1)P (y|z1, z3, x0), (23)

which means that we need only adjust for Z1 and Z3 without ever measuring
Z2. In general, it can be shown (Pearl, 2000a, p. 73) that whenever the
graph is Markovian the postinterventional distribution P (Y = y|do(X = x))
is given by the expression

P (Y = y|do(X = x)) =
∑

t

P (y|t, x)P (t), (24)

where T is the set of direct causes of X (also called “parents”) in the graph.13

This allows us to write (23) directly from the graph, thus skipping the algebra

12For clarity, we drop the (superfluous) subscript 0 from x0 and z20
.

13The operation described in equation (24) is known as “adjusting for T” or “controlling
for T .” In linear analysis, the problem amounts to finding an appropriate set of regressors.
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that led to (23). It further implies that, no matter how complicated the
model, the parents of X are the only variables that need to be measured to
estimate the causal effects of X.

It is not immediately clear however whether other sets of variables beside
X’s parents suffice for estimating the effect of X, whether some algebraic
manipulation can further reduce equation (23), or that measurement of Z3

(unlike Z1 or Z2) is necessary in any estimation of P (y|do(x0)). Such con-
siderations become transparent from a graphical criterion to be discussed
next.

3.3.1 Covariate Selection—the Back-Door Criterion

Consider an observational study where we wish to find the effect of X on Y —
for example, treatment on response—and assume that the factors deemed
relevant to the problem are structured as in Figure 4; some are affecting

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Figure 4: A Markovian model illustrating the back-door criterion. Error
terms are not shown explicitly.

the response, some are affecting the treatment, and some are affecting both
treatment and response. Some of these factors may be unmeasurable, such
as genetic trait or life style; others are measurable, such as gender, age, and
salary level. Our problem is to select a subset of these factors for measure-
ment and adjustment—namely, that if we compare treated versus untreated
subjects having the same values of the selected factors, we get the correct
treatment effect in that subpopulation of subjects. Such a set of factors is
called a “sufficient set” or “admissible set” for adjustment. The problem of
defining an admissible set, let alone finding one, has baffled epidemiologists
and social scientists for decades (see Greenland et al. (1999) and Pearl (1998)
for a review).
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The following criterion, named “back-door” in Pearl (1993a), settles this
problem by providing a graphical method of selecting admissible sets of fac-
tors for adjustment.

Definition 3 (admissible sets—the back-door criterion) A set S is admis-
sible (or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X.

2. The elements of S “block” all “back-door” paths from X to Y —namely,
all paths that end with an arrow pointing to X.

In this criterion, “blocking” is interpreted as in Definition 1. For example,
the set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y , because the
arrow-emitting node Z3 is in S. However, the set S = {Z3} does not block
the path X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y because none of the
arrow-emitting nodes, Z1 and Z2, are in S, and the collision node Z3 is not
outside S.

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3}, {Z1, Z3},
{W1, Z3}, and {W2, Z3} are each sufficient for adjustment, because each
blocks all back-door paths between X and Y . The set {Z3}, however, is
not sufficient for adjustment because, as explained above, it does not block
the path X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door
paths in the diagram carry spurious associations from X to Y , while the
paths directed along the arrows from X to Y carry causative associations.
Blocking the former paths (by conditioning on S) ensures that the measured
association between X and Y is purely causatinamely, it correctly represents
the target quantity: the causal effect of X on Y . The reason for excluding
descendants of X (e.g., W3 or any of its descendants) is given in (Pearl,
2009a, p. 338–41).

Formally, the implication of finding an admissible set S is that, stratifying
on S is guaranteed to remove all confounding bias relative the causal effect
of X on Y . In other words, the risk difference in each stratum of S gives the
correct causal effect in that stratum. In the binary case, for example, the
risk difference in stratum s of S is given by

P (Y = 1|X = 1, S = s)− P (Y = 1|X = 0, S = s)
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while the causal effect (of X on Y ) at that stratum is given by

P (Y = 1|do(X = 1), S = s)− P (Y = 1|do(X = 0), S = s).

These two expressions are guaranteed to be equal whenever S is a sufficient
set, such as {Z1, Z3} or {Z2, Z3} in Figure 4. Likewise, the average stratified
risk difference, taken over all strata,

∑

s

[P (Y = 1|X = 1, S = s)− P (Y = 1|X = 0, S = s)]P (S = s),

gives the correct causal effect of X on Y in the entire population

P (Y = 1|do(X = 1))− P (Y = 1|do(X = 0)).

In general, for multivalued variables X and Y , finding a sufficient set S
permits us to write

P (Y = y|do(X = x), S = s) = P (Y = y|X = x, S = s)

and

P (Y = y|do(X = x)) =
∑

s

P (Y = y|X = x, S = s)P (S = s) (25)

Since all factors on the right-hand side of the equation are estimable (e.g.,
by regression) from the preinterventional data, the causal effect can likewise
be estimated from such data without bias.

An equivalent expression for the causal effect (25) can be obtained by
multiplying and dividing by the conditional probability P (X = x|S = s),
giving

P (Y = y|do(X = x)) =
∑

s

P (Y = y, X = x, S = s)

P (X = x|S = s)
(26)

from which the name “Inverse Probability Weighting” has evolved (Pearl,
2000a, pp. 73, 95).

Interestingly, it can be shown that any irreducible sufficient set, S, taken
as a unit, satisfies the associational criterion that epidemiologists have been
using to define “confounders.” In other words, S must be associated with X
and, simultaneously, associated with Y , given X.
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In linear analysis, finding a sufficient set S is tantamount to finding a set
S of regressors such that the total effect of X on Y is given by the potential
regression coeffcient of Y on X, given S. A similar criterion applies to the
identification of path coeffcients (Pearl, 2009a, p. 150).

The back-door criterion allows us to write equation (25) directly, by se-
lecting a sufficient set S directly from the diagram, without manipulating
the truncated factorization formula. The selection criterion can be applied
systematically to diagrams of any size and shape, thus freeing analysts from
judging whether “X is conditionally ignorable given S,” a formidable mental
task required in the potential-response framework (Rosenbaum and Rubin,
1983). The criterion also enables the analyst to search for an optimal set of
covariates—namely, a set S that minimizes measurement cost or sampling
variability (Tian et al., 1998).

All in all, one can safely state that, armed with the back-door criterion,
causality has removed “confounding” from its store of enigmatic and contro-
versial concepts.

3.3.2 Confounding Equivalence—A Graphical Test

Another problem that has been given graphical solution recently is that of
determining whether adjustment for two sets of covariates would result in
the same confounding bias (Pearl and Paz, 2010). The reasons for posing
this question are several. First, an investigator may wish to assess, prior to
taking any measurement, whether two candidate sets of covariates, differing
substantially in dimensionality, measurement error, cost, or sample variabil-
ity, are equally valuable in their bias-reduction potential. Second, assuming
that the structure of the underlying DAG is only partially known, we may
wish to test, using adjustment, which of two hypothesized structures is com-
patible with the data. Structures that predict equal response to adjustment
for two sets of variables must be rejected if, after adjustment, such equality
is not found in the data.

Definition 4 (c-equivalence) Define two sets of covariates, T and Z, as c-
equivalent, (c connotes “confounding”) if the following equality holds:

∑

t

P (y|x, t)P (t) =
∑

z

P (y|x, z)P (z) ∀x, y (27)
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Definition 5 (Markov boundary) For any set of variables S in a DAG G,
and any variable X 	∈ S, the Markov boundary Sm of S (relative to X) is
the minimal subset of S that d-separates X from all other members of S.

In Figure 4, for example, the Markov boundary of S = {W1, Z1, Z2, Z3} is
Sm = {W1, Z3}, while the Markov boundary of X = {W3, Z3, Y } is Sm = S.

Theorem 2 (Pearl and Paz, 2010)
Let Z and T be two sets of variables in G, containing no descendant of X.
A necessary and sufficient condition for Z and T to be c-equivalent is that at
least one of the following conditions holds:

1. Zm = Tm, (i.e., the Markov boundary of Z coincides with that of T ).

2. Z and T are admissible (i.e., satisfy the back-door condition).

For example, the sets T = {W1, Z3} and Z = {Z3, W2} in Figure 4 are
c-equivalent, because each blocks all back-door paths from X to Y . Similarly,
the nonadmissible sets T = {Z2} and Z = {W2, Z2} are c-equivalent, since
their Markov boundaries are the same (Tm = Zm = {Z2}). In contrast, the
sets {W1} and {Z1}, although they block the same set of paths in the graph,
are not c-equivalent; they fail both conditions of Theorem 2.

Tests for c-equivalence (27) are fairly easy to perform, and they can also
be assisted by propensity score methods. The information that such tests
provide can be as powerful as conditional independence tests. The statistical
ramification of such tests is explicated in Pearl and Paz (2010).

3.3.3 General Control of Confounding

Adjusting for covariates is only one of many methods that permits us to es-
timate causal effects in nonexperimental studies. Pearl (1995) has presented
examples in which there exists no set of variables that is sufficient for adjust-
ment and where the causal effect can nevertheless be estimated consistently.
The estimation, in such cases, employs multistage adjustments. For example,
if W3 is the only observed covariate in the model of Figure 4, then there exists
no sufficient set for adjustment (because no set of observed covariates can
block the paths from X to Y through Z3), yet P (y|do(x)) can be estimated
in two steps: first, we estimate P (w3|do(x)) = P (w3|x) (by virtue of the fact
that there exists no unblocked back-door path from X to W3); second, we
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estimate P (y|do(w3)) (since X constitutes a sufficient set for the effect of W3

on Y ), and, finally, we combine the two effects together and obtain

P (y|do(x)) =
∑

w3

P (w3|do(x))P (y|do(w3)). (28)

In this example, the variable W3 acts as a “mediating instrumental variable”
(Pearl, 1993b; Chalak and White, 2006; Morgan and Winship, 2007).

The analysis used in the derivation and validation of such results in-
vokes mathematical rules of transforming causal quantities, represented by
expressions such as P (Y = y|do(x)), into do-free expressions derivable from
P (z, x, y), since only do-free expressions are estimable from nonexperimental
data. When such a transformation is feasible, we can be sure that the causal
quantity is identifiable.

Applications of this calculus to problems involving multiple interventions
(e.g., time-varying treatments), conditional policies, and surrogate experi-
ments were developed in Pearl and Robins (1995), Kuroki and Miyakawa
(1999), and Pearl (2000a, chs. 3–4).

A more recent analysis (Tian and Pearl, 2002) shows that the key to
identifiability lies not in blocking paths between X and Y but rather in
blocking paths between X and its immediate successors on the pathways to
Y . All existing criteria for identification are special cases of the one defined
in the following theorem.

Theorem 3 (Tian and Pearl, 2002) A sufficient condition for identifying the
causal effect P (y|do(x)) is that every path between X and any of its children
traces at least one arrow emanating from a measured variable.14

For example, if W3 is the only observed covariate in the model of Figure 4,
P (y|do(x)) can be estimated since every path from X to W3 (the only child of
X) traces either the arrow X → W3, or the arrow W3 → Y , both emanating
from a measured variable (W3).

Shpitser and Pearl (2006) have further extended this theorem by (1) pre-
senting a necessary and sufficient condition for identification, and (2) extend-
ing the condition from causal effects to any counterfactual expression. The
corresponding unbiased estimands for these causal quantities are readable
directly from the diagram.

14Before applying this criterion, one may delete from the causal graph all nodes that
are not ancestors of Y .

28



Graph-based methods for effect identification under measurement errors
are discussed in (Pearl, 2010c; Hernán and Cole, 2009; Cai and Kuroki, 2008).

3.4 Counterfactual Analysis in Structural Models

Not all questions of causal character can be encoded in P (y|do(x)) type ex-
pressions, thus implying that not all causal questions can be answered from
experimental studies. For example, questions of attribution or susceptibil-
ity (e.g., what fraction of test failure cases are due to a specific educational
program?) cannot be answered from experimental studies, and naturally
this kind of question cannot be expressed in P (y|do(x)) notation.15 To an-
swer such questions, a probabilistic analysis of counterfactuals is required,
one dedicated to the relation “Y would be y had X been x in situation
U = u,” denoted Yx(u) = y. Remarkably, unknown to most economists and
philosophers, structural equation models provide the formal interpretation
and symbolic machinery for analyzing such counterfactual relationships.16

The key idea is to interpret the phrase “had X been x” as an instruction to
make a minimal modification in the current model, which may have assigned
X a different value, say X = x′, so as to ensure the specified condition
X = x. Such a minimal modification amounts to replacing the equation
for X by a constant x, as we have done in equation (6). This replacement
permits the constant x to differ from the actual value of X (namely fX(z, uX))
without rendering the system of equations inconsistent, thus yielding a formal
interpretation of counterfactuals in multistage models, where the dependent
variable in one equation may be an independent variable in another.

Definition 6 (unit-level counterfactuals—the “surgical” definition (Pearl, 2000a, p. 98))
Let M be a structural model and Mx a modified version of M , with the equa-

15The reason for this fundamental limitation is that no death case can be tested twice,
with and without treatment. For example, if we measure equal proportions of deaths
in the treatment and control groups, we cannot tell how many death cases are actually
attributable to the treatment itself; it is quite possible that many of those who died under
treatment would be alive if untreated and, simultaneously, many of those who survived
with treatment would have died if not treated.

16Connections between structural equations and a restricted class of counterfactuals
were first recognized by Simon and Rescher (1966). These were later generalized by Balke
and Pearl (1995), using surgeries (equation 29), thus permitting endogenous variables to
serve as counterfactual antecedents. The “surgery definition” was used in Pearl (2000a,
p. 417) and criticized by Cartwright (2007) and Heckman (2005); see Pearl (2009a, pp.
362–63, 374–79) for rebuttals.
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tion(s) of X replaced by X = x. Denote the solution for Y in the equations
of Mx by the symbol YMx(u). The counterfactual Yx(u) (Read: “The value of
Y in unit u, had X been x”) is given by

Yx(u)
Δ
= YMx(u). (29)

In words: The counterfactual Yx(u) in model M is defined as the solution for
Y in the “surgically modified” submodel Mx.

We see that the unit-level counterfactual Yx(u), which in the Neyman-
Rubin approach is treated as a primitive, undefined quantity, is actually a
derived quantity in the structural framework. We use the same subscripted
notation for both, because they represent the same physical entity: the re-
sponse Y of experimental unit u under the hypothetical condition X = x.
The fact that we equate the experimental unit u with a vector of background
conditions, U = u, in M , reflects the understanding that the name of a unit
or its identity do not matter; it is only the vector U = u of attributes char-
acterizing a unit that determines its behavior or response. As we go from
one unit to another, the laws of nature, as they are reflected in the functions
fX , fY , etc., remain invariant; only the attributes U = u vary from individual
to individual.

To illustrate, consider the solution of Y in the modified model Mx0
of

equation (6), which Definition 6 endows with the symbol Yx0
(uX, uY , uZ).

This entity has a clear counterfactual interpretation, for it stands for the
way an individual with characteristics (uX , uY , uZ) would respond, had the
treatment been x0, rather than the treatment x = fX(z, uX) actually received
by that individual. In our example, since Y does not depend on uX and uZ ,
we can write

Yx0
(u) = Yx0

(uY , uX, uZ) = fY (x0, uY ). (30)

In a similar fashion, we can derive

Yz0
(u) = fY (fX(z0, uX), uY ),

Xz0,y0
(u) = fX(z0, uX),

and so on. These examples reveal the counterfactual reading of each in-
dividual structural equation in the model of equation (5). The equation
x = fX(z, uX), for example, advertises the empirical claim that, regardless
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of the values taken by other variables in the system, had Z been z0, X would
take on no other value but x = fX(z0, uX).

Clearly, the distribution P (uY , uX , uZ) induces a well-defined probability
on the counterfactual event Yx0

= y, as well as on joint counterfactual events,
such as “Yx0

= y AND Yx1
= y′,” which are, in principle, unobservable if

x0 	= x1. Thus, to answer attributional questions such as whether Y would
be y1 if X were x1, given that in fact Y is y0 and X is x0, we need to
compute the conditional probability P (Yx1

= y1|Y = y0, X = x0), which
is well defined once we know the forms of the structural equations and the
distribution of the exogenous variables in the model. For example, assuming
linear equations (as in Figure 1),

x = uX y = βx + uX,

the conditioning events Y = y0 and X = x0 yield UX = x0 and UY = y0−βx0,
and we can conclude that, with probability one, Yx1

must take on the value
Yx1

= βx1 +UY = β(x1−x0)+y0. In other words, if X were x1 instead of x0,
Y would increase by β times the difference (x1 − x0). In nonlinear systems,
the result would also depend on the distribution of {UX , UY } and, for that
reason, attributional queries are generally not identifiable in nonparametric
models (see Pearl (2000a, ch. 9)).

In general, if x and x′ are incompatible, then Yx and Yx′ cannot be mea-
sured simultaneously, and it may seem meaningless to attribute probability
to the joint statement “Y would be y if X = x and Y would be y′ if X = x′.”17

Such concerns have been a source of objections to treating counterfactuals as
jointly distributed random variables (Dawid, 2000). The definition of Yx and
Yx′ in terms of two distinct submodels neutralizes these objections (Pearl,
2000b), since the contradictory joint statement is mapped into an ordinary
event, one where the background variables satisfy both statements simul-
taneously, each in its own distinct submodel; such events have well-defined
probabilities.

The surgical definition of counterfactuals given by (29), provides the con-
ceptual and formal basis for the Neyman-Rubin potential-outcome frame-
work, an approach to causation that takes a controlled randomized trial
(CRT) as its ruling paradigm, assuming that nothing is known to the experi-
menter about the science behind the data. This “black-box” approach, which

17For example, “The probability is 80% that Joe belongs to the class of patients who
will be cured if they take the drug and die otherwise.”
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has thus far been denied the benefits of graphical or structural analyses, was
developed by statisticians who found it difficult to cross the two mental bar-
riers discussed in Section 2.2. Section 5 establishes the precise relationship
between the structural and potential-outcome paradigms, and outlines how
the latter can benefit from the richer representational power of the former.

3.5 Remarks on Heterogeneity

The distinction between general, or population-level causes (e.g., “Drink-
ing hemlock causes death”) and singular or unit-level causes (e.g., “Socrates’
drinking hemlock caused his death”), which many philosophers have regarded
as irreconcilable (Eells, 1991), introduces no tension at all in the structural
theory. The two types of sentences differ merely in the level of situation-
specific information that is brought to bear on a problem—that is, in the
specificity of the evidence e that enters the quantity P (Yx = y|e). When e
includes all factors u, we have a deterministic, unit-level causation on our
hand; when e contains only a few known attributes (e.g., age, income, oc-
cupation) while others are assigned probabilities, a population-level analysis
ensues.

The inherently nonlinear nature of nonparametric structural equations
permits us to go beyond constant-coefficient models and encode the way
causal effects may vary across individuals having differing characteristics,
a pervasive condition known as “effect heterogeneity (Xie, 2007; Elwert and
Winship, 2010). This does not mean of course that we are able to quantify the
degree of heterogeneity due to totally unknown (hence unobserved) individual
variations. No analysis can recover individual-level effects from a one-time
population-level study, be it observational or experimental. In a population
where some individuals respond positively and some negatively, it is quite
possible to find an average causal effect of zero (Pearl, 2009a, p. 36) without
knowing which subpopulation a given individual belongs to, or whether such
subpopulations exist.

What structural modeling enables us to do is, first, account for individ-
ual variations whenever they are due to observed characteristics (say income,
occupation, age, etc.), second, estimate average causal effects despite varia-
tion in unobserved characteristics, whenever they are known not to influence
certain variables in the analysis (as in Section 3.4), and, finally, assess, by
simulation, the extent to which regression type estimators would yield bi-
ased results when the parametric form used misspecifies the nonlinearities
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involved (VanderWeele and Robins, 2007; Elwert and Winship, 2010).

4 Methodological Principles of Causal Infer-

ence

The structural theory described in the previous sections dictates a principled
methodology that eliminates much of the confusion concerning the interpre-
tations of study results as well as the ethical dilemmas that this confusion
tends to spawn. The methodology dictates that every investigation involving
causal relationships (and this entails the vast majority of empirical studies
in the health, social, and behavioral sciences) should be structured along the
following five-step process:

1. Define: Express the target quantity Q as a function Q(M) that can
be computed from any model M .

2. Assume: Formulate causal assumptions using ordinary scientific lan-
guage and represent their structural part in graphical form.

3. Identify: Determine if the target quantity is identifiable (i.e., express-
ible in terms of estimable parameters).

4. Test: Identify the testable implications of M (if any) and test those
that are necessary for the identifiability of Q.

5. Estimate: Estimate the target quantity if it is identifiable, or approx-
imate it, if it is not.

4.1 Defining the Target Quantity

The definitional phase is the most neglected step in current practice of quanti-
tative analysis. The structural modeling approach insists on defining the tar-
get quantity, be it “causal effect,” “mediated effect,” “effect on the treated,”
or “probability of causation” before specifying any aspect of the model, with-
out making functional or distributional assumptions and prior to choosing a
method of estimation.

The investigator should view this definition as an algorithm that receives
a model M as an input and delivers the desired quantity Q(M) as the output.
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Surely, such algorithm should not be tailored to any aspect of the input M
nor to the interpretation of the variables in V ; it should be general, and
ready to accommodate any conceivable model M whatsoever. Moreover, the
investigator should imagine that the input M is a completely specified model,
with all the functions fX, fY , . . . and all the U variables (or their associated
probabilities) given precisely. This is the hardest step for statistically trained
investigators to make; knowing in advance that such details will never be
estimable from the data, the definition of Q(M) appears like a futile exercise
in fantasyland—but it is not.

For example, the formal definition of the interventional distribution P (y|do(x)),
as given in equation (7), is universally applicable to all models, parametric
as well as nonparametric, through the formation of a submodel Mx. This
definition remains the same regardless of whether X stands for treatment,
gender, or the gravitational constant; manipulation restrictions do not enter
the definitional phase of the study (Pearl, 2009a, pp. 361, 375). By defining
causal effect procedurally, thus divorcing it from its traditional parametric
representation, the structural theory avoids the many pitfalls and confusions
that have plagued the interpretation of structural and regressional parame-
ters for the past half century.18

4.2 Explicating Causal Assumptions

This is the second most neglected step in causal analysis. In the past, the
difficulty has been the lack of a language suitable for articulating causal
assumptions which, aside from impeding investigators from explicating as-
sumptions, also inhibited them from giving causal interpretations to their
findings.

Structural equation models, in their counterfactual reading, have removed
this lingering difficulty by providing the needed language for causal analy-
sis. Figures 3 and 4 illustrate the graphical component of this language,

18Note that β in equation (1), the incremental causal effect of X on Y , is defined
procedurally by

β
Δ
= E(Y |do(x0 + 1))− E(Y |do(x0)) =

∂

∂x
E(Y |do(x)) =

∂

∂x
E(Yx).

Naturally, all attempts to give β statistical interpretation have ended in frustrations (Hol-
land, 1988; Whittaker, 1990; Wermuth, 1992; Wermuth and Cox, 1993), some persisting
well into the twenty-first century (Sobel, 2008).

34



where assumptions are conveyed through the missing arrows in the diagram.
If numerical or functional knowledge is available, for example, linearity or
monotonicity of the functions fX , fY , . . ., those are stated separately, and
applied in the identification and estimation phases of the study. Today we
understand that the longevity and natural appeal of structural equations
stem from the fact that they permit investigators to communicate causal
assumptions formally and in the very same vocabulary in which scientific
knowledge is stored.

Unfortunately, however, this understanding is not shared by all causal an-
alysts; some analysts vehemently oppose the re-emergence of structure-based
causation and insist, instead, on articulating causal assumptions exclusively
in the unnatural (though formally equivalent) language of “potential out-
comes,” “ignorability,” “missing data,” “treatment assignment,” and other
metaphors borrowed from clinical trials. This modern assault on structural
models is perhaps more dangerous than the regressional invasion that sup-
pressed the causal readings of these models in the late 1970s (Richard, 1980).
While sanctioning causal inference in one narrow style of analysis, the mod-
ern assault denies validity to any other style, including structural equations,
thus discouraging investigators from subjecting models to the scrutiny of
scientific knowledge.

This exclusivist attitude is manifested in passages such as: “The crucial
idea is to set up the causal inference problem as one of missing data” or “If
a problem of causal inference cannot be formulated in this manner (as the
comparison of potential outcomes under different treatment assignments), it
is not a problem of inference for causal effects, and the use of ‘causal’ should
be avoided,” or, even more bluntly, “the underlying assumptions needed to
justify any causal conclusions should be carefully and explicitly argued, not in
terms of technical properties like “uncorrelated error terms,” but in terms of
real world properties, such as how the units received the different treatments”
(Wilkinson et al., 1999).

The methodology expounded in this paper testifies against such restric-
tions. It demonstrates the viability and scientific soundness of the tradi-
tional structural equation paradigm, which stands diametrically opposed to
the “missing data” paradigm. It renders the vocabulary of “treatment as-
signment” stifling and irrelevant (e.g., there is no “treatment assignment” in
sex discrimination cases). Most importantly, it strongly prefers the use of
“uncorrelated error terms,” (or “omitted factors”) over its “strong ignorabil-
ity” alternative as the proper way of articulating causal assumptions. Even
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the most devout advocates of the “strong ignorability” language use “omitted
factors” when the need arises to defend assumptions (e.g., Sobel, 2008).

4.3 Identification, Tests, Estimation, and Approxima-
tion

Having unburdened itself from parametric representations, the identification
process in the structural framework proceeds either in the space of assump-
tions (i.e., the diagram) or in the space of mathematical expressions, af-
ter translating the graphical assumptions into a counterfactual language, as
demonstrated in Section 5.3. Graphical criteria such as those of Definition
3 and Theorem 3 permit the identification of causal effects to be decided
entirely within the graphical domain, where it can benefit from the guidance
of scientific understanding. Identification of counterfactual queries, on the
other hand, often require a symbiosis of both algebraic and graphical tech-
niques. The nonparametric nature of the identification task (Definition 1)
makes it clear that contrary to traditional folklore in linear analysis, it is
not the model that need be identified but the query Q—the target of in-
vestigation. It also provides a simple way of proving nonidentifiability: the
construction of two parameterization of M , agreeing in P and disagreeing in
Q, is sufficient to rule out identifiability.

4.3.1 Testing the Relevant Assumptions

When Q is identifiable, the structural framework also delivers an algebraic
expression for the estimand EST (Q) of the target quantity Q, examples
of which are given in equations (24) and (25), and estimation techniques
are then unleashed as discussed in Section 4.3.2. A prerequisite part of
this estimation phase is a test for the testable implications, if any, of those
assumptions in M that render Q identifiable—there is no point in estimating
EST (Q) if the data proves those assumptions false and EST (Q) turns out
to be a misrepresentation of Q. The testable implications of any given model
are vividly advertised by its associated graph G. Each d-separation condition
in G corresponds to a conditional independence test that can be tested in
the data to support the validity of M . These can easily be enumerated by
attending to each missing edge in the graph. For example, in Figure 3, the
missing edges are Z1 − Z2, Z1 − Y , and Z2 − X. Accordingly, the testable
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implications of M are

Z1 ⊥⊥ Z2

Z1 ⊥⊥ Y |{X1, Z2, Z3}

Z2 ⊥⊥ X|{Z1, Z3}.

In linear systems, these conditional independence constraints translate
into zero coefficients in the proper regression equations. For example, the
three implications above translate into a = 0, b1 = 0, and c1 = 0 in the
following regressions:

Z1 = aZ2 + ε

Z1 = b1Y + b2X + b3Z2 + b4Z3 + ε′

Z2 = c1X + c3Z1 + c4Z3 + ε′′.

Such tests are easily conducted by routine regression techniques, and they
provide valuable diagnostic information for model modification, in case any of
them fail (see Pearl, 2009a, pp. 143–45). Software for automatic detection of
all such tests, as well as other implications of graphical models, are reported
in Kyono (2010).

If the model is Markovian (i.e., acyclic with no unobserved confounders),
then the d-separation conditions are the ONLY testable implications of the
model. If the model contains unobserved confounders, then additional con-
straints can be tested, beyond the d-separation conditions (see footnote 8).

Investigators should be reminded, however, that only a fraction, called
“kernel,” of the assumptions embodied in M are needed for identifying Q
(Pearl, 2004), the rest may be violated in the data with no effect on Q.
In Figure 2, for example, the assumption {UZ⊥⊥UX} is not necessary for
identifying Q = P (y|do(x)); the kernel {UY⊥⊥UZ , UY⊥⊥UX} (together with
the missing arrows) is sufficient. Therefore, the testable implication of this
kernel, Z⊥⊥Y |X, is all we need to test when our target quantity is Q; the
assumption {UZ⊥⊥UX} need not concern us.

More importantly, investigators must keep in mind that only a tiny frac-
tion of any kernel lends itself to statistical tests; the bulk of it must remain
untestable, at the mercy of scientific judgment. In Figure 2, for example,
the assumption set {UX⊥⊥UZ , UY⊥⊥UX} constitutes a sufficient kernel for
Q = P (y|do(x)) (see equation 28) yet it has no testable implications what-
soever. The prevailing practice of submitting an entire structural equation
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model to a “goodness of fit” test (Bollen, 1989) in support of causal claims is
at odds with the logic of structural modeling (see Pearl, 2000a, pp. 144–45.
Statistical tests can be used for rejecting certain kernels in the rare cases
where such kernels have testable implications, but passing these tests does
not prove the validity of any causal claim; one can always find alternative
causal models that make a contradictory claim and, yet, possess identical
statistical implications.19 The lion’s share of supporting causal claims falls
on the shoulders of untested causal assumptions.20

Some researchers consider this burden to be a weakness of structural
models and would naturally prefer a methodology in which claims are less
sensitive to judgmental assumptions; unfortunately, no such methodology
exists. The relationship between assumptions and claims is a universal one—
namely, for every set A of assumptions (knowledge) there is a unique set of
conclusions C that one can deduce from A, given the data, regardless of
the method used. The completeness results of Shpitser and Pearl (2006)
imply that structural modeling operates at the boundary of this universal
relationship; no method can do better.

4.3.2 Estimation and Propensity Score Matching

The mathematical derivation of causal effect estimands, like equations (25)
and (28) is merely a first step toward computing quantitative estimates of
those effects from finite samples, using the rich traditions of statistical esti-
mation and machine learning, Bayesian as well as non-Bayesian. Although
the estimands derived in (25) and (28) are nonparametric, this does not mean
that we should refrain from using parametric forms in the estimation phase of
the study. Parameterization is in fact necessary when the dimensionality of a
problem is high. For example, if the assumptions of Gaussian, zero-mean dis-
turbances and additive interactions are deemed reasonable, then the estimand
given in (28) can be converted to the product E(Y |do(x)) = rW3XrY W3·Xx,

19This follows logically from the demarcation line of Section 2.1. The fact that some
social scientists were surprised by the discovery of contradictory equivalent models (see
(Pearl, 2009a, p. 148) suggests that these scientists did not take very seriously the ram-
ifications of the causal-statistical distinction, or that they misunderstood the conditional
nature of all causal claims drawn from observational studies (see Pearl, 2009a, pp. 369–73.

20The methodology of “causal discovery” (Spirtes et al. 2000; Pearl 2000a, ch. 2)
is likewise based on the causal assumption of “faithfulness” or “stability”—a problem-
independent assumption that constrains the relationship between the structure of a model
and the data it may generate. We will not assume stability in this paper.
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where rY Z·X is the (standardized) coefficient of Z in the regression of Y
on Z and X. More sophisticated estimation techniques are the “marginal
structural models” of Robins (1999), and the “propensity score” method of
Rosenbaum and Rubin (1983), which were found to be particularly useful
when dimensionality is high and data are sparse (see Pearl (2009a, pp. 348–
52)).

The method of propensity score (Rosenbaum and Rubin, 1983), or propen-
sity score matching (PSM), is the most developed and popular strategy
for causal analysis in observational studies (Morgan and Winship, 2007;
D’Agostino, Jr., 1998); it deserves therefore a separate discussion. PSM
is based on a simple, yet ingenious, idea of purely statistical character. As-
suming a binary action (or treatment) X, and an arbitrary set S of measured
covariates, the propensity score L(s) is the probability that action X = 1
will be chosen by a participant with characteristics S = s, or

L(s) = P (X = 1|S = s). (31)

Rosenbaum and Rubin showed us that, viewing L(s) as a function of
S (hence, as a random variable) X and S are independent given L(s)—
or X⊥⊥S|L(s). In words, all units that map into the same value of L(s)
are comparable, or “balanced,” in the sense that, within each stratum of L,
treated and untreated units have the same distribution of characteristics S.21

Let us assume, for simplicity, that L(s) can be estimated separately
from the data and approximated by discrete strata L = {l1, l2, . . . , lk}. The
conditional independence X⊥⊥S|L(s), together with the functional mapping
S → L, renders S and L c-equivalent in the sense defined in Section 3.3.2,
equation (27)—namely, for any Y ,

∑

s

P (y|s, x)P (s) =
∑

l

P (y|l, x)P (l). (32)

This follows immediately by writing

∑
l P (y|l, x)P (l) =

∑
s

∑
l P (y|l, s, x)P (l)P (s|l, x)

=
∑

s

∑
l
P (y|s, x)P (l)P (s|l)

=
∑

s
P (y|s, x)P (s).

21This independence emanates from the special nature of the function L(s) and is not
represented in the graph; i.e., if we depict L as a child of S, L would not in general
d-separate S from X.
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The c-equivalence of S and L implies that, if for any reason we wish to
estimate the “adjustment estimand”

∑
s
P (y|s, x)P (s), with S and Y two

arbitrary sets of variables, then, instead of summing over a high-dimensional
set S, we might as well sum over a one-dimensional vector L(s). The asymp-
totic estimate, in the limit of a very large sample, would be the same in either
method.

This c-equivalence further implies that if we choose to approximate the in-
terventional distribution P (y|do(x)) by the adjustment estimand EsP (y|s, x),
then, asymptotically, the same approximation can be achieved using the es-
timand ElP (y|l, x), where the adjustment is performed over the strata of L.
The latter has the advantage that, for finite samples, each of the strata is less
likely to be empty and each is likely to contain both treated and untreated
units for comparison.

The method of propensity score can thus be seen as an efficient estimator
of the adjustment estimand, formed by an arbitrary set of covariates S; it
makes no statement regarding the appropriateness of S, nor does it promise
to correct for any confounding bias, or to refrain from creating new bias
where none exists.

In the special case where S is admissible, that is,

P (y|do(x)) = EsP (y|s, x), (33)

L would be admissible as well, and we would then have an unbiased estimand
of the causal effect,22

P (y|do(x)) = ElP (y|l, x),

accompanied by an efficient method of estimating the right-hand side. Con-
versely, if S in inadmissible, L would be inadmissible as well, and all we can
guarantee is that the bias produced by the former would be faithfully and
efficiently reproduced by the latter.

The simplicity of PSM methods and the strong endorsement they re-
ceived from prominent statisticians (Rubin, 2007), social scientists (Morgan
and Winship, 2007; Berk and de Leeuw, 1999), health scientists (Austin,
2008), and economists (Heckman, 1992) has increased the popularity of the

22Rosenbaum and Rubin (1983) proved the c-equivalence of S and L only for admissible
S, which is unfortunate; it gave users the impression that propensity score matching
somehow contributes to bias reduction vis-à-vis ordinary adjustment.
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method to the point where some federal agencies now expect program eval-
uators to use this approach as a substitute for experimental designs (Peikes
et al., 2008). This move reflects a general tendency among investigators to
play down the cautionary note concerning the required admissibility of S, and
to interpret the mathematical proof of Rosenbaum and Rubin as a guarantee
that, in each strata of L, matching treated and untreated subjects somehow
eliminates confounding from the data and contributes therefore to overall bias
reduction. This tendency was further reinforced by empirical studies (Heck-
man et al., 1998; Dehejia and Wahba, 1999) in which agreement was found
between propensity score analysis and randomized trials, and in which the
agreement was attributed to the ability of the former to “balance” treatment
and control groups on important characteristics. Rubin (2007) has encour-
aged such interpretations by stating: “This application uses propensity score
methods to create subgroups of treated units and control units...as if they
had been randomized. The collection of these subgroups then ‘approximate’
a randomized block experiment with respect to the observed covariates.”

Subsequent empirical studies, however, have taken a more critical view
of propensity scores, noting with disappointment that a substantial bias is
sometimes measured when careful comparisons are made to results of clinical
studies (Smith and Todd, 2005; Luellen et al., 2005; Peikes et al., 2008).

The reason for these disappointments lie in a popular belief that adding
more covariates can cause no harm (Rosenbaum, 2002, p. 76), which seems
to absolve one from thinking about the causal relationships among those co-
variates, the treatment, the outcome and, most importantly, the confounders
left unmeasured (Rubin, 2009).

This belief stands contrary to the conclusions of the structural theory of
causation. The admissibility of S can be established only by appealing to
causal knowledge, and such knowledge, as we know from d-separation and the
back-door criterion, makes bias reduction a nonmonotonic operation—that
is, eliminating bias (or imbalance) due to one confounder may awaken and
unleash bias due to dormant, unmeasured confounders. Examples abound
where adding a variable to the analysis not only is not needed but would
introduce irreparable bias (Pearl, 2009a; Shrier, 2009; Sjölander, 2009). In
Figure 3, for example, if the arrows emanating from Z3 are weak, then no
adjustment is necessary; adjusting for Z3 or matching with the propensity
score L(z3) = P (X = 1|Z = z3) would introduce bias by opening the back-
door path

X ← Z1 → Z3 ← Z2 → Y.
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Another general belief that stands contrary to the structural theory is that
the bias-reducing potential of propensity score methods can be assessed ex-
perimentally by running case studies and comparing effect estimates obtained
by propensity scores to those obtained by controlled randomized experiments
(Shadish and Cook, 2009). Such comparisons would be informative for prob-
lems governed by the same graph structures and the same choice of S. In
general, however, such comparison tells us very little about the performance
of PSM methods in problems that differ from the one in the randomized trial.
Measuring significant bias reduction in one problem instance (say, an edu-
cational program in Oklahoma) does not preclude a bias increase in another
(say, crime control in Arkansas), even under identical statistical distributions
P (x, s, y).

It should be emphasized, though, that contrary to conventional wisdom
(e.g., Rubin, 2007, 2009), propensity score methods are merely efficient esti-
mators of the right-hand side of (25); they entail the same asymptotic bias
and cannot be expected to reduce bias in the event that the set S does not
satisfy the back-door criterion (Pearl, 2000a, 2009c,d). Consequently, the pre-
vailing practice of conditioning on as many pretreatment measurements as
possible is dangerously misguided; some covariates (e.g., Z3 in Figure 3) may
actually increase bias if included in the analysis (see footnote 28). Using sim-
ulation and parametric analysis, Heckman and Navarro-Lozano (2004) and
Bhattacharya and Vogt (2007) indeed confirmed the bias-raising potential of
certain covariates in propensity score methods. In particular, such covariates
include: (1) colliders, (2) variables on the pathways from X to Y , or descen-
dants thereof (Pearl, 2009a, pp. 339–40), and (3) instrumental variables and
variables that affect X more strongly than they affect Y (Bhattacharya and
Vogt, 2007; Pearl, 2010d).23 The graphical tools presented in this section
unveil the character of these covariates and show precisely what covariates
should and should not be included in the conditioning set for propensity score
matching.

23Contrary to prevailing practice (documented in Bhattacharya and Vogt (2007)),
adding an instrumental variable as a predictor in the propensity score tends to amplify
bias (if such exists) despite the improvement in prediction of the so called “treatment
assisgnment.” This is one of several bad practices that graph-based analysis may help
rectify.
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4.3.3 Bounds and Approximations

When conditions for identification are not met, the best we can do is derive
bounds for the quantities of interest—namely, a range of possible values of
Q that represents our ignorance about the details of the data-generating
process M and that cannot be improved with increasing sample size. A
classical example of a nonidentifiable model that has been approximated by
bounds, is the problem of estimating causal effect in experimental studies
marred by noncompliance, the structure of which is given in Figure 5.

X YZ U UU

YZ X

Figure 5: Causal diagram representing the assignment (Z), treatment (X),
and outcome (Y ) in a clinical trial with imperfect compliance.

Our task in this example is to find the highest and lowest values of Q

Q
Δ
= P (Y = y|do(x)) =

∑

u
X

P (Y = y|X = x, UX = uX)P (UX = uX) (34)

subject to the equality constraints imposed by the observed probabilities
P (x, y, |z), where the maximization ranges over all possible functions P (uY , uX),
P (y|x, uX), and P (x|z, uY ) that satisfy those constraints.

Realizing that units in this example fall into 16 equivalence classes, each
representing a binary function X = f(z) paired with a binary function y =
g(x), Balke and Pearl (1997) were able to derive closed-form solutions for
these bounds.24 They showed that, in certain cases, the derived bounds can
yield significant information on the treatment efficacy. Chickering and Pearl
(1997) further used Bayesian techniques (with Gibbs sampling) to investigate
the sharpness of these bounds as a function of sample size. Kaufman and
colleagues (2009) used this technique to bound direct and indirect effects (see
Section 6).

24These equivalence classes were later called “principal stratification” by Frangakis and
Rubin (2002). Looser bounds were derived earlier by Robins (1989) and Manski (1990).
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5 The Potential-Outcome Framework

This section compares the structural theory presented in Sections 1–3 to
the potential-outcome framework, usually associated with the names of Ney-
man (1923) and Rubin (1974), which takes the randomized experiment as
its ruling paradigm and has appealed therefore to researchers who do not
find that paradigm overly constraining. This framework is not a contender
for a comprehensive theory of causation for it is subsumed by the structural
theory and excludes ordinary cause-effect relationships from its assumption
vocabulary. We here explicate the logical foundation of the Neyman-Rubin
framework, its formal subsumption by the structural causal model, and how
it can benefit from the insights provided by the broader perspective of the
structural theory.

The primitive object of analysis in the potential-outcome framework is
the unit-based response variable, denoted Yx(u), which stands for “the value
that outcome Y would obtain in experimental unit u, had treatment X been
x.” Here, unit may stand for an individual patient, an experimental sub-
ject, or an agricultural plot. In Section 3.4 (equation (29)) we saw that this
counterfactual entity has a natural interpretation in structural model; it is
the solution for Y in a modified system of equations, where unit is inter-
preted as a vector u of background factors that characterize an experimental
unit. Each structural equation model thus carries a collection of assumptions
about the behavior of hypothetical units, and these assumptions permit us
to derive the counterfactual quantities of interest. In the potential-outcome
framework, however, no equations are available for guidance and Yx(u) is
taken as primitive, that is, an undefined quantity in terms of which other
quantities are defined; not a quantity that can be derived from the model. In
this sense the structural interpretation of Yx(u) given in (29) provides the for-
mal basis for the potential-outcome approach; the formation of the submodel
Mx explicates mathematically how the hypothetical condition “had X been
x” is realized, and what the logical consequences are of such a condition.

5.1 The “Black-Box” Missing-Data Paradigm

The distinct characteristic of the potential-outcome approach is that, al-
though investigators must think and communicate in terms of undefined,
hypothetical quantities such as Yx(u), the analysis itself is conducted al-
most entirely within the axiomatic framework of probability theory. This is
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accomplished by postulating a “super” probability function on both hypo-
thetical and real events. If U is treated as a random variable, then the value
of the counterfactual Yx(u) becomes a random variable as well, denoted as
Yx. The potential-outcome analysis proceeds by treating the observed dis-
tribution P (x1, . . . , xn) as the marginal distribution of an augmented prob-
ability function P ∗ defined over both observed and counterfactual variables.
Queries about causal effects (written P (y|do(x)) in the structural analysis)
are phrased as queries about the marginal distribution of the counterfactual
variable of interest, written P ∗(Yx = y). The new hypothetical entities Yx

are treated as ordinary random variables; for example, they are assumed to
obey the axioms of probability calculus, the laws of conditioning, and the
axioms of conditional independence.

Naturally, these hypothetical entities are not entirely whimsy. They are
assumed to be connected to observed variables via consistency constraints
(Robins, 1986) such as

X = x =⇒ Yx = Y, (35)

which states that, for every u, if the actual value of X turns out to be x, then
the value that Y would take on if “X were x” is equal to the actual value
of Y (Pearl, 2010e).25 For example, a person who chose treatment x and
recovered, would also have recovered if given treatment x by design. When
X is binary, it is sometimes more convenient to write (35) as

Y = xY1 + (1− x)Y0

Whether additional constraints should tie the observables to the unobserv-
ables is not a question that can be answered in the potential-outcome frame-
work, for it lacks an underlying model to define such constraints.

The main conceptual difference between the two approaches is that, whereas
the structural approach views the intervention do(x) as an operation that
changes a distribution but keeps the variables the same, the potential-outcome
approach views the variable Y under do(x) to be a different variable, Yx,
loosely connected to Y through relations such as (35) but remaining unob-
served whenever X 	= x. The problem of inferring probabilistic properties of
Yx then becomes one of “missing-data” for which estimation techniques have
been developed in the statistical literature.

25Note that we are using the same subscript notation Yx for counterfactuals in both the
“missing data” and the “structural” paradigms to emphasize their formal equivalence and
the fact that the “surgery” definition of equation (29) is the mathematical basis for both.
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Pearl (2000a, ch. 7) uses the structural interpretation of Yx(u) to show
that it is indeed legitimate to treat counterfactuals as jointly distributed
random variables in all respects, that consistency constraints like (35) are
automatically satisfied in the structural interpretation, and moreover, that
in recursive models investigators need not be concerned about any additional
constraints except the following two:

Yyz = y for all y, subsets Z, and values z for Z (36)

Xz = x ⇒ Yxz = Yz for all x, subsets Z, and values z for Z (37)

Equation (36) ensures that the interventions do(Y = y) result in the condition
Y = y, regardless of concurrent interventions, say do(Z = z), that may be
applied to variables other than Y . Equation (37) generalizes (35) to cases
where Z is held fixed, at z. (See Halpern (1998) for proof of completeness.)

5.2 Problem Formulation and the Demystification of
“Ignorability”

The main drawback of this black-box approach surfaces in problem formulation—
namely, the phase where a researcher begins to articulate the “science” or
“causal assumptions” behind the problem of interest. Such knowledge, as
we have seen in Section 1, must be articulated at the onset of every prob-
lem in causal analysis— causal conclusions are only as valid as the causal
assumptions upon which they rest.

To communicate scientific knowledge, the potential-outcome analyst must
express assumptions as constraints on P ∗, usually in the form of conditional
independence assertions involving counterfactual variables. For instance, in
the example shown in Figure 5, the potential-outcome analyst would use the
independence constraint Z⊥⊥{Yz1

, Yz2
, . . . , Yzk

} to communicate the under-
standing that Z is randomized (hence independent of UX and UY ).26 To
further formulate the understanding that Z does not affect Y directly, ex-
cept through X, the analyst would write a so called “exclusion restriction”:
Yxz = Yx.

A collection of constraints of this type might sometimes be sufficient to
permit a unique solution to the query of interest. For example, if we can

26The notation Y ⊥⊥X|Z stands for the conditional independence relationship P (Y =
y, X = x|Z = z) = P (Y = y|Z = z)P (X = x|Z = z) (Dawid, 1979).
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plausibly assume that in Figure 4 a set Z of covariates satisfies the conditional
independence

Yx⊥⊥X|Z (38)

(an assumption termed “conditional ignorability” by Rosenbaum and Rubin
(1983),) then the causal effect P (y|do(x)) = P ∗(Yx = y) can readily be
evaluated to yield

P ∗(Yx = y) =
∑

z

P ∗(Yx = y|z)P (z)

=
∑

z

P ∗(Yx = y|x, z)P (z) (using (38))

=
∑

z

P ∗(Y = y|x, z)P (z) (using (35))

=
∑

z

P (y|x, z)P (z). (39)

The last expression contains no counterfactual quantities (thus permitting
us to drop the asterisk from P ∗) and coincides precisely with the standard
covariate-adjustment formula of equation (25).

We see that the assumption of conditional ignorability (38) qualifies Z as
an admissible covariate for adjustment; it mirrors therefore the “back-door”
criterion of Definition 3, which bases the admissibility of Z on an explicit
causal structure encoded in the diagram.

The derivation above may explain why the potential-outcome approach
appeals to mathematical statisticians; instead of constructing new vocabulary
(e.g., arrows), new operators (do(x)) and new logic for causal analysis, almost
all mathematical operations in this framework are conducted within the safe
confines of probability calculus. Save for an occasional application of rule (37)
or (35), the analyst may forget that Yx stands for a counterfactual quantity—
it is treated as any other random variable, and the entire derivation follows
the course of routine probability exercises.

This orthodoxy exacts a high cost: Instead of bringing the theory to the
problem, the problem must be reformulated to fit the theory; all background
knowledge pertaining to a given problem must first be translated into the
language of counterfactuals (e.g., ignorability conditions) before analysis can
commence. This translation may in fact be the hardest part of the problem.
The reader may appreciate this aspect by attempting to judge whether the
assumption of conditional ignorability (38), the key to the derivation of (39),
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holds in any familiar situation, say in the experimental setup of Figure 2(a).
This assumption reads: “the value that Y would obtain had X been x, is
independent of X, given Z.” Even the most experienced potential-outcome
expert would be unable to discern whether any subset Z of covariates in
Figure 4 would satisfy this conditional independence condition.27 Likewise, to
derive equation (28) in the language of potential-outcome (see Pearl, 2000a,
p. 223), we would need to convey the structure of the chain X → W3 → Y
using the cryptic expression W3x⊥⊥{Yw3

, X}, read: “the value that W3 would
obtain had X been x is independent of the value that Y would obtain had W3

been w3 jointly with the value of X.” Such assumptions are cast in a language
so far removed from ordinary understanding of scientific theories that, for all
practical purposes, they cannot be comprehended or ascertained by ordinary
mortals. As a result, researchers in the graphless potential-outcome camp
rarely use “conditional ignorability” (38) to guide the choice of covariates;
they view this condition as a hoped-for miracle of nature rather than a target
to be achieved by reasoned design.28

Replacing “ignorability” with a conceptually meaningful condition (i.e.,
back-door) in a graphical model permits researchers to understand what
conditions covariates must fulfill before they eliminate bias, what to watch for
and what to think about when covariates are selected, and what experiments
we can do to test, at least partially, if we have the knowledge needed for
covariate selection.

Aside from offering no guidance in covariate selection, formulating a prob-
lem in the potential-outcome language encounters three additional hurdles
when counterfactual variables are not viewed as byproducts of a deeper,
process-based model: it is hard to ascertain (1)whether all relevant judg-
ments have been articulated, (2) whether the judgments articulated are re-
dundant, and (3) whether those judgments are self-consistent. The need to

27Inquisitive readers are invited to guess whether Xz⊥⊥Z|Y holds in Figure 2(a), then
reflect on why causality is so slow in penetrating statistical education.

28The opaqueness of counterfactual independencies explains why many researchers
within the potential-outcome camp are unaware of the fact that adding a covariate to
the analysis (e.g., Z3 in Figure 4, Z in Figure 5) may actually increase confounding bias in
propensity score matching. According to Rosenbaum (2002, p. 76) for example, “there is
little or no reason to avoid adjustment for a true covariate, a variable describing subjects
before treatment.” Rubin (2009) goes as far as stating that refraining from conditioning
on an available measurement is “nonscientific ad hockery” for it goes against the tenets of
Bayesian philosophy (see Pearl (2009c,d) and Heckman and Navarro-Lozano (2004) for a
discussion of this fallacy).
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express, defend, and manage formidable counterfactual relationships of this
type explain the slow acceptance of causal analysis among health scientists
and statisticians, and why most economists and social scientists continue to
use structural equation models (Wooldridge, 2002; Stock and Watson, 2003;
Heckman, 2008) instead of the potential-outcome alternatives advocated in
Angrist et al. (1996); Holland (1988); Sobel (1998); and Sobel (2008).

On the other hand, the algebraic machinery offered by the counterfactual
notation, Yx(u), once a problem is properly formalized, can be extremely
powerful in refining assumptions (Angrist et al., 1996; Heckman and Vytlacil,
2005), deriving consistent estimands (Robins, 1986), bounding probabilities
of necessary and sufficient causation (Tian and Pearl, 2000), and combining
data from experimental and nonexperimental studies (Pearl, 2000a, p. 302).
The next subsection (5.3) presents a way of combining the best features of the
two approaches. It is based on encoding causal assumptions in the language
of diagrams; translating these assumptions into counterfactual notation; per-
forming the mathematics in the algebraic language of counterfactuals, using
(35), (36), and (37); and, finally, interpreting the result in graphical terms
or plain causal language. The mediation problem of Section 6 illustrates
how such symbiosis clarifies the definition and identification of direct and
indirect effects, a task deemed insurmountable, “deceptive” and “ill-defined”
by advocates of the structureless potential-outcome approach (Rubin, 2004,
2005).

5.3 Combining Graphs and Potential Outcomes

The formulation of causal assumptions using graphs was discussed in Section
3. In this subsection we will systematize the translation of these assumptions
from graphs to counterfactual notation.

Structural equation models embody causal information in both the equa-
tions and the probability function P (u) assigned to the exogenous variables;
the former is encoded as missing arrows in the diagrams the latter as miss-
ing (double arrows) dashed arcs. Each parent-child family (PAi, Xi) in a
causal diagram G corresponds to an equation in the model M . Hence, miss-
ing arrows encode exclusion assumptions; that is, claims that manipulating
variables that are excluded from an equation will not change the outcome
of the hypothetical experiment described by that equation. Missing dashed
arcs encode independencies among error terms in two or more equations. For
example, the absence of dashed arcs between a node Y and a set of nodes
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{Z1, . . . , Zk} implies that the corresponding background variables, UY and
{UZ1

, . . . , UZk
}, are independent in P (u).

These assumptions can be translated into the potential-outcome notation
using two simple rules (Pearl, 2000a, p. 232); the first interprets the missing
arrows in the graph, the second, the missing dashed arcs.

1. Exclusion restrictions: For every variable Y having parents PA
Y

and
for every set of endogenous variables S disjoint of PA

Y
, we have

Ypa
Y

= Ypa
Y

,s. (40)

2. Independence restrictions: If Z1, . . . , Zk is any set of nodes not con-
nected to Y via dashed arcs, and PA1, . . . , PAk their respective sets of
parents, we have

Ypa
Y
⊥⊥{Z1 pa1

, . . . , Zk pak
}. (41)

The exclusion restrictions expresses the fact that each parent set includes
all direct causes of the child variable; hence, fixing the parents of Y de-
termines the value of Y uniquely, and intervention on any other set S of
(endogenous) variables can no longer affect Y . The independence restric-
tion translates the independence between UY and {UZ1

, . . . , UZk
} into in-

dependence between the corresponding potential-outcome variables. This
follows from the observation that, once we set their parents, the variables
in {Y, Z1, . . . , Zk} stand in functional relationships to the U terms in their
corresponding equations.

As an example, consider the model shown in Figure 5, which serves as the
canonical representation for the analysis of instrumental variables (Angrist
et al., 1996; Balke and Pearl, 1997). This model displays the following parent
sets:

PA
Z

= {∅}, PA
X

= {Z}, PA
Y

= {X}. (42)

Consequently, the exclusion restrictions translate into

Xz = Xyz

Zy = Zxy = Zx = Z (43)

Yx = Yxz,

and the absence of any dashed arc between Z and {Y, X} translates into the
independence restriction

Z⊥⊥{Yx, Xz}. (44)
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This is precisely the condition of randomization; Z is independent of all its
nondescendants—namely, independent of UX and UY , which are the exoge-
nous parents of Y and X, respectively. (Recall that the exogenous parents
of any variable, say Y , may be replaced by the counterfactual variable Ypa

Y
,

because holding PAY constant renders Y a deterministic function of its ex-
ogenous parent UY .)

The role of graphs is not ended with the formulation of causal assump-
tions. Throughout an algebraic derivation, such as the one shown in equation
(39), the analyst may need to employ additional assumptions that are en-
tailed by the original exclusion and independence assumptions yet are not
shown explicitly in their respective algebraic expressions. For example, it is
hardly straightforward to show that the assumptions of equations (43)–(44)
imply the conditional independence (Yx⊥⊥Z|{Xz, X}) but do not imply the
conditional independence (Yx⊥⊥Z|X). These are not easily derived by alge-
braic means alone. Such implications can, however, easily be tested in the
graph of Figure 5 using the graphical reading for conditional independence
(Definition 1). (See Pearl, 2000a, pp. 16–17, 213–15.) Thus, when the need
arises to employ independencies in the course of a derivation, the graph may
assist the procedure by vividly displaying the independencies that logically
follow from our assumptions.

6 Mediation: Direct and Indirect Effects

6.1 Direct Versus Total Effects

The causal effect we have analyzed so far, P (y|do(x)), measures the total
effect of a variable (or a set of variables) X on a response variable Y . In
many cases, this quantity does not adequately represent the target of in-
vestigation and attention is focused instead on the direct effect of X on Y .
The term “direct effect” is meant to quantify an effect that is not mediated
by other variables in the model or, more accurately, the sensitivity of Y to
changes in X while all other factors in the analysis are held fixed. Naturally,
holding those factors fixed would sever all causal paths from X to Y with
the exception of the direct link X → Y , which is not intercepted by any
intermediaries.

A classical example of the ubiquity of direct effects involves legal disputes
over race or sex discrimination in hiring. Here, neither the effect of sex or
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race on applicants’ qualification nor the effect of qualification on hiring are
targets of litigation. Rather, defendants must prove that sex and race do not
directly influence hiring decisions, whatever indirect effects they might have
on hiring by way of applicant qualification.

From a policymaking viewpoint, an investigator may be interested in de-
composing effects to quantify the extent to which racial salary disparity is
due to educational disparity, or, more generally, the extent to which sen-
sitivity to a given variable can be reduced by eliminating sensitivity to an
intermediate factor, standing between that variable and the outcome. Often,
the decomposition of effects into their direct and indirect components car-
ries theoretical scientific importance, for it tells us “how nature works” and,
therefore, enables us to predict behavior under a rich variety of conditions
and interventions.

Structural equation models provide a natural language for analyzing path-
specific effects and, indeed, considerable literature on direct, indirect, and to-
tal effects has been authored by SEM researchers (Alwin and Hauser, 1975;
Graff and Schmidt, 1981; Sobel, 1987; Bollen, 1989)), for both recursive and
nonrecursive models. This analysis usually involves sums of powers of coeffi-
cient matrices, where each matrix represents the path coefficients associated
with the structural equations.

Yet despite its ubiquity, the analysis of mediation has long been a thorny
issue in the social and behavioral sciences (Judd and Kenny, 1981; Baron
and Kenny, 1986; Muller et al., 2005; Shrout and Bolger, 2002; MacKin-
non et al., 2007a) primarily because structural equation modeling in those
sciences were deeply entrenched in linear analysis, where the distinction be-
tween causal parameters and their regressional interpretations can easily be
conflated. The difficulties were further amplified in nonlinear models, where
sums and products are no longer applicable. As demands grew to tackle prob-
lems involving categorical variables and nonlinear interactions, researchers
could no longer define direct and indirect effects in terms of structural or
regressional coefficients, and all attempts to extend the linear paradigms of
effect decomposition to nonlinear systems produced distorted results (MacK-
innon et al., 2007b). These difficulties have accentuated the need to redefine
and derive causal effects from first principles, uncommitted to distributional
assumptions or a particular parametric form of the equations. The struc-
tural methodology presented in this paper adheres to this philosophy and it
has produced indeed a principled solution to the mediation problem, based
on the counterfactual reading of structural equations (29). The subsections,
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that follow summarize the method and its solution.

6.2 Controlled Direct Effects

A major impediment to progress in mediation analysis has been the lack of
notational facility for expressing the key notion of “holding the mediating
variables fixed” in the definition of direct effect. Clearly, this notion must be
interpreted as (hypothetically) setting the intermediate variables to constants
by physical intervention, not by analytical means such as selection, regression
conditioning, matching, or adjustment. For example, consider the simple
mediation models of Figure 6(a), which reads

x = uX

z = fZ(x, uZ) (45)

y = fY (x, z, uY )

and where the error terms (not shown explicitly) are assumed to be mutually

YXYX

W1 W2

(b)(a)

Z Z

Figure 6: A generic model depicting mediation through Z (a) with no con-
founders and (b) with two confounders, W1 and W2.

independent. To measure the direct effect of X on Y it is sufficient to measure
their association conditioned on the mediator Z. In Figure 6(b), however,
where the error terms are dependent, it will not be sufficient to measure the
association between X and Y for a given level of Z because, by conditioning
on the mediator Z, which is a collision node (Definition 1), we create spurious
associations between X and Y through W2, even when there is no direct effect
of X on Y (Pearl, 1998; Cole and Hernán, 2002).29

29The need to control for mediator-outcome confounders (e.g., W2 in Figure 6(b)) was
evidently overlooked in the classical paper of Baron and Kenny (1986), and has subse-
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Using the do(x) notation, enables us to correctly express the notion of
“holding Z fixed” and to obtain a simple definition of the controlled direct
effect of the transition from X = x to X = x′:

CDE
Δ
= E(Y |do(x′), do(z)) −E(Y |do(x), do(z)).

Or, equivalently, we can use counterfactual notation

CDE
Δ
= E(Yx′z)− E(Yxz),

where Z is the set of all mediating variables. Readers can easily verify that,
in linear systems, the controlled direct effect reduces to the path coefficient
of the link X → Y (see footnote 18) regardless of whether confounders are
present (as in Figure 6(b)) and regardless of whether the error terms are
correlated or not.

This separates the task of definition from that of identification, as de-
manded by Section 4.1. The identification of CDE would depend, of course,
on whether confounders are present and whether they can be neutralized
by adjustment, but these do not alter its definition. Nor should trepidation
about infeasibility of the action do(gender = male) enter the definitional
phase of the study. Definitions apply to symbolic models, not to human
biology.30

Graphical identification conditions for multi-action expressions of the
type E(Y |do(x), do(z1), do(z2), . . . , do(zk)) in the presence of unmeasured
confounders were derived by Pearl and Robins (1995) (see Pearl, 2000a, ch.
4) using sequential application of the back-door conditions discussed in Sec-
tion 3.2.

6.3 Natural Direct Effects

In linear systems, the direct effect is fully specified by the path coefficient
attached to the link from X to Y ; therefore, the direct effect is independent
of the values at which we hold Z. In nonlinear systems, those values would,
in general, modify the effect of X on Y and thus should be chosen carefully to

quently been ignored by most social science researchers.
30In reality, it is the employer’s perception of applicant’s gender and his or her assessment

of gender-job compatibility that renders gender a “cause” of hiring; manipulation of gender
is not needed.
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represent the target policy under analysis. For example, it is not uncommon
to find employers who prefer males for the high-paying jobs (i.e., high z) and
females for low-paying jobs (low z).

When the direct effect is sensitive to the levels at which we hold Z, it is
often more meaningful to define the direct effect relative to some “natural”
base-line level that may vary from individual to individual, and represents
the level of Z just before the change in X. Conceptually, we can define
the natural direct effect DEx,x′(Y )31 as the expected change in Y induced
by changing X from x to x′ while keeping all mediating factors constant
at whatever value they would have obtained under do(x). This hypothetical
change, which Robins and Greenland (1992) conceived and called “pure” and
Pearl (2001) formalized and analyzed under the rubric “natural,” mirrors
what lawmakers instruct us to consider in race or sex discrimination cases:
“The central question in any employment-discrimination case is whether the
employer would have taken the same action had the employee been of a
different race (age, sex, religion, national origin etc.) and everything else
had been the same.” (In Carson versus Bethlehem Steel Corp., 70 FEP Cases
921, 7th Cir. (1996)). Thus, whereas the controlled direct effect measures the
effect of X on Y while holding Z fixed at a uniform level (z) for all units,32

the natural direct effect allows z to vary from individual to individual to be
held fixed at whatever level each individual obtains naturally, just before the
change in X.

Extending the subscript notation to express nested counterfactuals, Pearl
(2001) gave the following definition for the “natural direct effect”:

DEx,x′(Y ) = E(Yx′,Zx)− E(Yx). (46)

Here, Yx′,Zx represents the value that Y would attain under the operation of
setting X to x′ and, simultaneously, setting Z to whatever value it would
have obtained under the setting X = x. We see that DEx,x′(Y ), the natural
direct effect of the transition from x to x′, involves probabilities of nested
counterfactuals and cannot be written in terms of the do(x) operator. There-
fore, the natural direct effect cannot in general be identified or estimated,

31Pearl (2001) used the acronym NDE to denote the natural direct effect. We will
delete the letter “N” from the acronyms of both the direct and indirect effect, and use
DE and IE, respectively.

32In the hiring discrimination example, this would amount, for example, to testing
gender bias by marking all application forms with the same level of schooling and other
skill-defining attributes.
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even with the help of ideal, controlled experiments (see footnote 15 for in-
tuitive explanation). However, aided by the surgical definition of equation
(29) and the notational power of nested counterfactuals, Pearl (2001) was
nevertheless able to show that, if certain assumptions of “no confounding”
are deemed valid, the natural direct effect can be reduced to

DEx,x′(Y ) =
∑

z

[E(Y |do(x′, z))− E(Y |do(x, z))]P (z|do(x)). (47)

The intuition is simple; the natural direct effect is the weighted average of
the controlled direct effect, using the causal effect P (z|do(x)) as a weighing
function.

One condition for the validity of (47) is that Zx⊥⊥Yx′,z|W holds for some
set W of measured covariates. This technical condition in itself, like the ig-
norability condition of (38), is close to meaningless for most investigators, as
it is not phrased in terms of realized variables. The surgical interpretation
of counterfactuals (29) can be invoked at this point to unveil the graphical
interpretation of this condition (41). It states that W should be admissi-
ble (i.e., satisfy the back-door condition) relative to the path(s) from Z to
Y . This condition, satisfied by W2 in Figure 6(b), is readily comprehended
by empirical researchers, and the task of selecting such measurements, W ,
can then be guided by available scientific knowledge. Additional graphical
and counterfactual conditions for identification are derived in Pearl (2001),
Petersen et al. (2006), and Imai et al. (2010).

In particular, it can be shown (Pearl, 2001) that expression (47) is both
valid and identifiable in Markovian models (i.e., no unobserved confounders)
where each term on the right can be reduced to a “do-free” expression using
equation (24) or (25) and then estimated by regression.

For example, for the model in Figure 6(b), equation (47) reads

DEx,x′(Y ) =
∑

z

∑

w2

P (w2)[E(Y |x′, z, w2))−E(Y |x, z, w2))]
∑

w1

P (z|x, w1)P (w1).

(48)
while for the confounding-free model of Figure 6(a) we have

DEx,x′(Y ) =
∑

z

[E(Y |x′, z)− E(Y |x, z)]P (z|x). (49)

Both (48) and (49) can easily be estimated by a two-step regression.
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6.4 Natural Indirect Effects

Remarkably, the definition of the natural direct effect (46) can be turned
around and provide an operational definition for the indirect effect—a concept
shrouded in mystery and controversy, because it is impossible, using any
physical intervention, to disable the direct link from X to Y so as to let X
influence Y solely via indirect paths (Pearl, 2009a, p. 355).

The natural indirect effect, IE, of the transition from x to x′ is defined
as the expected change in Y affected by holding X constant, at X = x,
and changing Z to whatever value it would have attained had X been set to
X = x′. Formally, this reads

IEx,x′(Y )
Δ
= E[(Yx,Zx′

)− E(Yx)], (50)

which is almost identical to the direct effect (equation 46) save for exchanging
x and x′ in the first term (Pearl, 2001).

Indeed, it can be shown that, in general, the total effect TE of a transition
is equal to the difference between the direct effect of that transition and the
indirect effect of the reverse transition. Formally,

TEx,x′(Y )
Δ
= E(Yx′ − Yx) = DEx,x′(Y )− IEx′,x(Y ). (51)

In linear systems, where reversal of transitions amounts to negating the signs
of their effects, we have the standard additive formula

TEx,x′(Y ) = DEx,x′(Y ) + IEx,x′(Y ). (52)

Since each term above is based on an independent operational definition,
this equality constitutes a formal justification for the additive formula used
routinely in linear systems.33

Note that, although it cannot be expressed in do-notation, the indirect
effect has clear policymaking implications. For example, in the hiring dis-
crimination context, a policymaker may be interested in predicting the gender
mix in the workforce if gender bias is eliminated and all applicants are treated
equally—say, the same way that males are currently treated. This quantity

33Some authors (e.g., VanderWeele, 2009), define the natural indirect effect as the dif-
ference TE−DE. This renders the additive formula a tautology of definition, rather then
a theorem predicted upon the anti-symmetry IEx,x′(Y ) = −IEx′,x(Y ). Violation of (52)
will be demonstrated in the next section.
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will be given by the indirect effect of gender on hiring, mediated by factors
such as education and aptitude, which may be gender-dependent.

More generally, a policymaker may be interested in the effect of issuing a
directive to a select set of subordinate employees, or in carefully controlling
the routing of messages in a network of interacting agents. Such applications
motivate the analysis of path-specific effects—that is, the effect of X on Y
through a selected set of paths (Avin et al., 2005).

In all these cases, the policy intervention invokes the selection of signals
to be sensed rather than variables to be fixed. Pearl (2001) has therefore
suggested that signal sensing is more fundamental to the notion of causation
than manipulation; the latter being but a crude way of stimulating the former
in an experimental setup. The mantra “No causation without manipulation”
must be rejected (see Pearl, 2009a, sec. 11.4.5).

It is remarkable that counterfactual quantities like DE and IE, which
could not be expressed in terms of do(x) operators and therefore appear
void of empirical content, can under certain conditions be estimated from
empirical studies, and serve to guide policies. Awareness of this potential
should embolden researchers to go through the definitional step of the study
and freely articulate the target quantity Q(M) in the language of science—
that is, structure-based counterfactuals—despite the seemingly speculative
nature of each assumption in the model (Pearl, 2000b).

6.5 The Mediation Formula: A Simple Solution to a

Thorny Problem

This subsection demonstrates how the solution provided in equations (49)
and (52) can be applied in assessing mediation effects in nonlinear models.
We will use the simple mediation model of Figure 6(a), where all error terms
(not shown explicitly) are assumed to be mutually independent, with the
understanding that adjustment for appropriate sets of covariates W may be
necessary to achieve this independence (as in equation 48) and that integrals
should replace summations when dealing with continuous variables (Imai
et al., 2010).

Combining (47) and (52), the expression for the indirect effect, IE, be-
comes

IEx,x′(Y ) =
∑

z

E(Y |x, z)[P (z|x′)− P (z|x)] (53)
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which provides a general formula for mediation effects, applicable to any
nonlinear system, any distribution (of U), and any type of variables. More-
over, the formula is readily estimable by regression. Owing to its generality
and ubiquity, I have referred to this expression as the “Mediation Formula”
(Pearl, 2009b, 2010a).

The Mediation Formula represents the average increase in the outcome
Y that the transition from X = x to X = x′ is expected to produce absent
any direct effect of X on Y . Though based on solid causal principles, it
embodies no causal assumption other than the generic mediation structure
of Figure 6(a). When the outcome Y is binary (e.g., recovery, or hiring) the
ratio (1− IE/TE) represents the fraction of responding individuals who owe
their response to direct paths, while (1 − DE/TE) represents the fraction
who owe their response to Z-mediated paths.

The Mediation Formula tells us that IE depends only on the expectation
of the counterfactual Yxz, not on its functional form fY (x, z, uY ) or its dis-
tribution P (Yxz = y). It calls therefore for a two-step regression which, in
principle, can be performed nonparametrically. In the first step we regress
Y on X and Z, and obtain the estimate

g(x, z) = E(Y |x, z)

for every (x, z) cell. In the second step we estimate the conditional ex-
pectation of g(x, z) with respect to z, conditional on X = x′ and X = x,
respectively, and take the difference

IEx,x′(Y ) = Ez[g(x′, z)− g(x, z)].

Nonparametric estimation is not always practical. When Z consists of
a vector of several mediators, the dimensionality of the problem might pro-
hibit the estimation of E(Y |x, z) for every (x, z) cell, and the need arises to
use parametric approximation. We can then choose any convenient paramet-
ric form for E(Y |x, z) (e.g., linear, logit, probit), estimate the parameters
separately (e.g., by regression or maximum likelihood methods), insert the
parametric approximation into (53) and estimate its two conditional expec-
tations (over z) to get the mediated effect (VanderWeele, 2009; Pearl, 2010a).

Let us examine what the Mediation Formula yields when applied to the
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linear version of Figure 6(a) (equation 45), which reads

x = uX

z = b0 + bxx + uZ (54)

y = c0 + cxx + czz + uY

with uX, uY , and uZ uncorrelated, zero-mean error terms. Computing the
conditional expectation in (53) gives

E(Y |x, z) = E(c0 + cxx + czz + uY ) = c0 + cxx + czz

and yields

IEx,x′(Y ) =
∑

z

(cxx + czz)[P (z|x′)− P (z|x)].

= cz[E(Z|x′)− E(Z|x)] (55)

= (x′ − x)(czbx) (56)

= (x′ − x)(b− cx) (57)

where b is the total effect coefficient,

b = (E(Y |x′)− E(Y |x))/(x′ − x) = cx + czbx.

We thus obtained the standard expressions for indirect effects in linear
systems, which can be estimated either as a difference in two regression
coefficients (equation 57) or a product of two regression coefficients (equation
56), with Y regressed on both X and Z (see MacKinnon et al., 2007b).
These two strategies do not generalize to nonlinear systems as shown in
Pearl (2010a); direct application of (53) is necessary.

To understand the difficulty, consider adding an interaction term cxzxz
to the model in equation (54), yielding

y = c0 + cxx + czz + cxzxz + uY

Now assume that, through elaborate regression analysis, we obtain accurate
estimates of all parameters in the model. It is still not clear what combina-
tions of parameters measure the direct and indirect effects of X on Y , or,
more specifically, how to assess the fraction of the total effect that is ex-
plained by mediation and the fraction that is owed to mediation. In linear
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analysis, the former fraction is captured by the product czbx/b (equation 56),
the latter by the difference (b − cx)/b (equation 57) and the two quantities
coincide. In the presence of interaction, however, each fraction demands a
separate analysis, as dictated by the Mediation Formula.

To witness, substituting the nonlinear equation in (49), (52) and (53) and
assuming x = 0 and x′ = 1, yields the following decomposition:

DE = cx + b0cxz

IE = bxcz

TE = cx + b0cxz + bx(cz + cxz)

= DE + IE + bxcxz

We therefore conclude that the fraction of output change for which mediation
would be sufficient is

IE/TE = bxcz/(cx + b0cxz + bx(cz + cxz))

while the fraction for which mediation would be necessary is

1−DE/TE = bx(cz + cxz)/(cx + b0cxz + bx(cz + cxz))

We note that, due to interaction, a direct effect can be sustained even
when the parameter cx vanishes and, moreover, a total effect can be sustained
even when both the direct and indirect effects vanish. This illustrates that
estimating parameters in isolation tells us little about the effect of mediation
and, more generally, mediation and moderation are intertwined and cannot
be assessed separately.

If the policy evaluated aims to prevent the outcome Y by weakening the
mediating pathways, the target of analysis should be the difference TE−DE,
which measures the highest prevention effect of any such policy. If, on the
other hand, the policy aims to prevent the outcome by weakening the direct
pathway, the target of analysis should shift to IE, for TE − IE measures
the highest preventive impact of this type of policies.

The main power of the Mediation Formula shines in studies involving
categorical variables, especially when we have no parametric model of the
data generating process. To illustrate, consider the case where all variables
are binary, still allowing for arbitrary interactions and arbitrary distributions
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of all processes. The low dimensionality of the binary case permits both a
nonparametric solution and an explicit demonstration of how mediation can
be estimated directly from the data. Generalizations to multivalued outcomes
are straightforward.

Assume that the model of Figure 6(a) is valid and that the observed
data is given by Figure 7. The factors E(Y |x, z) and P (Z|x) can be readily

Number
X Z Y E(Y |x, z) = gxz E(Z|x) = hxof Samples

n1 0 0 0 n2

n1+n2

= g00
n3+n4

n1+n2+n3+n4
= h0

n2 0 0 1
n3 0 1 0 n4

n3+n4
= g01n4 0 1 1

n5 1 0 0 n6

n5+n6

= g10
n7+n8

n5+n6+n7+n8

= h1
n6 1 0 1
n7 1 1 0 n8

n7+n8
= g11n8 1 1 1

Figure 7: Computing the Mediation Formula for the model in Figure 6(a),
with X, Y, Z binary.

estimated as shown in the two right-most columns of Figure 7 and, when
substituted in (49), (52), (53), yield

DE = (g10 − g00)(1− h0) + (g11 − g01)h0 (58)

IE = (h1 − h0)(g01 − g00) (59)

TE = g11h1 + g10(1− h1)− [g01h0 + g00(1− h0)] (60)

We see that logistic or probit regression is not necessary; simple arithmetic
operations suffice to provide a general solution for any conceivable data set,
regardless of the data-generating process.

In comparing these results to those produced by conventional mediation
analyses we should note that conventional methods do not define direct and
indirect effects in a setting where the underlying process is unknown. MacK-
innon (2008, ch. 11), for example, analyzes categorical data using logistic and
probit regressions and constructs effect measures using products and differ-
ences of the parameters in those regressional forms. This strategy is not
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compatible with the causal interpretation of effect measures, even when the
parameters are precisely known; IE and DE may be extremely complicated
functions of those regression coefficients (Pearl, 2010b). Fortunately, those
coefficients need not be estimated at all; effect measures can be estimated
directly from the data, circumventing the parametric analysis altogether, as
shown in equations (58) and (59).

In addition to providing causally sound estimates for mediation effects,
the Mediation Formula also enables researchers to evaluate analytically the
effectiveness of various parametric specifications relative to any assumed
model (Imai et al., 2010; Pearl, 2010a). This type of analytical “sensitiv-
ity analysis” has been used extensively in statistics for parameter estimation
but could not be applied to mediation analysis, owing to the absence of an
objective target quantity that captures the notion of indirect effect in both
linear and nonlinear systems, free of parametric assumptions. The Mediation
Formula of equation (53) explicates this target quantity formally, and casts
it in terms of estimable quantities.

The derivation of the Mediation Formula was facilitated by taking seri-
ously the five steps of the structural methodology (Section 4) together with
the graphical-counterfactual-structural symbiosis spawned by the surgical in-
terpretation of counterfactuals (equation 29).

In contrast, when the mediation problem is approached from an exclu-
sivist potential-outcome viewpoint, void of the structural guidance of equa-
tion (29), counterintuitive definitions ensue, carrying the label “principal
stratification” (Rubin, 2004, 2005), which are at variance with common un-
derstanding of direct and indirect effects. For example, the direct effect is
definable only in units absent of indirect effects. This means that a grandfa-
ther would be deemed to have no direct effect on his grandson’s behavior in
families where he has had some effect on the father. This precludes from the
analysis all typical families, in which a father and a grandfather have simulta-
neous, complementary influences on children’s upbringing. In linear systems,
to take an even sharper example, the direct effect would be undefined when-
ever indirect paths exist from the cause to its effect. The emergence of such
paradoxical conclusions underscores the wisdom, if not necessity of a symbi-
otic analysis, in which the counterfactual notation Yx(u) is governed by its
structural definition, equation (29).34

34Such symbiosis is now standard in epidemiology research (Robins, 2001; Petersen et al.,
2006; VanderWeele and Robins, 2007; Hafeman and Schwartz, 2009; VanderWeele, 2009)
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7 Conclusions

Traditional statistics is strong in devising ways of describing data and in-
ferring distributional parameters from samples. Causal inference requires
two additional ingredients: a science-friendly language for articulating causal
knowledge and a mathematical machinery for processing that knowledge,
combining it with data and drawing new causal conclusions about a phe-
nomenon. This paper surveys recent advances in causal analysis from the
unifying perspective of the structural theory of causation and shows how
statistical methods can be supplemented with the needed ingredients. The
theory invokes nonparametric structural equation models as a formal and
meaningful language for defining causal quantities, formulating causal as-
sumptions, testing identifiability, and explicating many concepts used in
causal discourse. These include randomization, intervention, direct and in-
direct effects, confounding, counterfactuals, and attribution. The algebraic
component of the structural language coincides with the potential-outcome
framework, and its graphical component embraces Wright’s method of path
diagrams. When unified and synthesized, the two components offer statis-
tical investigators a powerful and comprehensive methodology for empirical
research.
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