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Abstract

The paper provides a simple test for deciding, from a given causal diagram, whether
two sets of variables have the same bias-reducing potential under adjustment. The test
requires that one of the following two conditions holds: either (1) both sets are admis-
sible (i.e., satisfy the back-door criterion) or (2) the Markov boundaries surrounding
the manipulated variable(s) are identical in both sets. We further extend the test to
include treatment-dependent covariates by broadening the back-door criterion and es-
tablishing equivalence of adjustment under selection bias conditions. Applications to
covariate selection and model testing are discussed.

1 INTRODUCTION

The common method of estimating causal effects in observational studies is to adjust for a
set of variables (or “covariates”) judged to be “confounders,” that is, variables capable of
producing spurious associations between treatment and outcome, not attributable to their
causative dependence. While adjustment tends to reduce the bias produced by such spurious
associations, the bias-reducing potential of any set of covariates depends crucially on the
causal relationships among all variables affecting treatment or outcome, hidden as well as
visible. Such relationships can effectively be represented in the form of directed acyclic
graphs (DAG’s) (Pearl, 1995; Lauritzen, 2001; Spirtes et al., 2000; Glymour and Greenland,
2008; Dawid, 2002).

Most studies of covariate selection have aimed to define and identify “admissible” sets
of covariates, also called “sufficient sets,” namely, a set of covariates that, if adjusted for,
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would yield asymptotically unbiased estimates of the causal effect of interest (Stone, 1993;
Greenland et al., 1999; Pearl, 2000). A graphical criterion for selecting an admissible set is
given by the “back-door” test (Pearl, 1993, 2000) which was shown to entail zero bias, or
“no confoundedness,” assuming correctness of the causal assumptions encoded in the DAG.
Related notions are “exchangeability” (Greenland and Robins, 1986), “exogeneity” (Engle
et al., 1983), and “strong ignorability” (Rosenbaum and Rubin, 1983).

This paper addresses a different question: Given two sets of variables in a DAG, decide
if the two are equally valuable for adjustment, namely, whether adjustment for one set is
guaranteed to yield the same asymptotic bias as adjustment for the other.

The reasons for posing this question are several. First, an investigator may wish to as-
sess, prior to taking any measurement, whether two candidate sets of covariates, differing
substantially in dimensionality, measurement error, cost, or sample variability are equally
valuable in their bias-reduction potential. Second, assuming that the structure of the under-
lying DAG is only partially known, one may wish to assess, using c-equivalence tests, whether
a given structure is compatible with the data at hand; structures that predict equality of
post-adjustment associations must be rejected if, after adjustment, such equality is not found
in the data.

In Section 2 we define c-equivalence and review the auxiliary notions of admissibility,
d-separation, and the back-door criterion. Section 3 derives statistical and graphical condi-
tions for c-equivalence, the former being sufficient while the latter necessary and sufficient.
Section 4 presents a simple algorithm for testing c-equivalence, while Section 6 gives a statis-
tical interpretation to the graphical test of Section 3. Finally, Section 7 discusses potential
applications of c-equivalence for effect estimation, model testing, and model selection.

2 PRELIMINARIES: c-EQUIVALENCE AND ADMIS-

SIBILITY

Let X, Y , and Z be three disjoint subsets of discrete variables, and P (x, y, z) their joint
distribution. We are concerned with expressions of the type

A(x, y, Z) =
∑
z

P (y|x, z)P (z) (1)

Such expressions, which we name “adjustment estimands,” are often used to approximate
the causal effect of X on Y , where the set Z is chosen to include variables judged to be
“confounders.” By adjusting for these variables, one hopes to create conditions that eliminate
spurious dependence and thus obtain an unbiased estimate of the causal effect of X and Y ,
written P (y|do(x)) (see Pearl (1993, 2000) for formal definition and methods of estimation).

Definition 1. (c-equivalence)
Define two sets, T and Z as c-equivalent (relative to X and Y ), written T ∼ Z, if the
following equality holds for every x and y:∑

t

P (y|x, t)P (t) =
∑
z

P (y|x, z)P (z) ∀ x, y (2)
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or
A(x, y, T ) = A(x, y, Z) ∀ x, y

This equality guarantees that, if adjusted for, sets T and Z would produce the same asymptotic
bias relative to the target quantity.

Definition 2. (Causal Admissibility)
Let P (y|do(x)) stand for the “causal-effect” of X on Y , i.e., the distribution of Y after
setting variable X to a constant X = x by external intervention. A set Z of covariates is
said to be “causally-admissible” (for adjustment) relative to the causal effect of X on Y , if
the following equality holds for all x ∈ X and all y ∈ Y:∑

z

P (y|x, z)P (z) = P (y|do(x)) (3)

Equivalently, one can define admissibility using the equalities:

P (y|do(x)) = P (Yx = y) (4)

where Yx is the counterfactual or “potential outcome” variable (Neyman, 1923; Rubin, 1974).
The equivalence of the two definitions is shown in (Pearl, 2000).

Whereas bias reduction provides a motivation for seeking a set Z that approximates Eq.
(3), c-equivalence, as defined in Eq. (2), is not a causal concept, for it depends solely on the
properties of the joint probability P , regardless of the causal connections between X, Y, Z,
and T . Our aim however is to give a characterization of c-equivalence, not in terms of a
specific distribution P (x, y, z) but, rather, in terms of qualitative attributes of P that can
be ascertained prior to obtaining any data. Since graphs provide a useful and meaningful
representation of such attributes we will aim to characterize c-equivalence in terms of the
graphical relationships among the variables in X, Y, Z, and T .

To this end, we define the notion of Markov compatibility, between a graph G and a
distribution P .

Definition 3. (Markov compatibility)
Consider a DAG G in which each node corresponds to a variable in a probability distribution
P . We say that G and P are Markov-compatible if each variable X is independent of all its
nondescendants, conditioned on its parents in G. Formally, we write

(X⊥⊥nd(X) | pa(X))P

where nd(X) and pa(X) are, respectively, the sets of nondescendants and parents of X.

The set of distributions P that are compatible with a given DAG G corresponds to those
distributions that can be generated, or simulated by assigning stochastic processors to the
arrows in G, where each processor assigns variable X a value X = x according to the condi-
tional probability P (X = x|pa(X)). Such a process will also be called “parameterization” of
G, since it determines the parameters of the distribution while complying with the structure
of G.
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We will say that sets T and Z are c-equivalent in G, if they are c-equivalent in every
distribution that is Markov compatible with G, that is, in every parametrization of G.
However, since c-equivalence is a probabilistic notion, the causal reading of the arrows in
G can be ignored; what matters is the conditional independencies induced by those arrows,
and those are shared by all members of the Markov compatible class. These conditional
independencies can be read from G using a graphical property called “d-separation.”

Definition 4. (d-separation)
A set S of nodes in a graph G is said to block a path p if either (i) p contains at least one
arrow-emitting node that is in S, or (ii) p contains at least one collision node that is outside
S and has no descendant in S. If S blocks all paths from X to Y , it is said to “d-separate X
and Y,” written (X⊥⊥Y |S)G and then, X and Y are independent given S, written X⊥⊥Y |S,
in every probability distribution that is compatible with G (Pearl, 1988).

If two DAGs, G1 and G2, induce the same set of d-separations on a set V of variables,
they are called “Markov equivalent,” and they share the same set of Markov compatible
distributions. Clearly, if two sets are c-equivalent in graph G1, they are also c-equivalent in
any graph G2 that is Markov equivalent to G1, regardless of the directionality of their arrows.
It is convenient, nevertheless, to invoke the notion of “admissibility” which is causal in nature
(see Definition 2), hence sensitive to causal directionality. Admissibility will play a pivotal
role in our analysis in Sections 3 to 5, and will be replaced with a non-causal substitute in
Section 6. The next definition casts admissibility in graphical terms and connects it with
c-equivalence.

Definition 5. (G-admissibility)
Let pa(X) be the set of X’s parents in a DAG G. A set of nodes Z is said to be G-admissible
if for every P compatible, with G Z is c-equivalent to pa(X), namely,∑

pa(X)

P (y|x, pa(X))P (pa(X)) =
∑
z

P (y|x, z)P (z) ∀ x, y (5)

Definition 5, however, does not provide a graphical test for admissibility since it relies on
the notion of c-equivalence. A weak graphical test is provided by the back-door criterion to
be defined next:

Definition 6. (The back-door criterion)
A set S of nodes in a DAG G is said to satisfy the “back-door criterion” if the following two
conditions hold:

1. No element of S is a descendant of X

2. The elements of S “block” all “back-door” paths from X to Y , namely all paths that
end with an arrow pointing to X.

Alternatively, condition 2 can be stated as a d-separation condition in a modified graph:
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2 ′.
(X⊥⊥Y |S)GX

(6)

where GX is the subgraph created by removing all arrows emanating from X.

Lemma 1. A sufficient condition for a set Z to be G-admissible (Definition 5) is for Z to
satisfy the back-door criterion (Definition 6).

Proof:
Lemma 1 was originally proven in the context of causal graphs (Pearl, 1993) where it was
shown that the back-door condition leads to causal admissibility (Eq. (3)), from which (5)
follows. A direct proof of Lemma 1 is given in (Pearl, 2009, p. 133), and is based on the fact
that the set of parent pa(X) is always causally admissible for adjustment.1

Clearly, if two subsets Z and T are G-admissible, they must be c-equivalent, for their
adjustment estimands coincide with A(x, y, pa(X)). Therefore, a trivial graphical condition
for c-equivalence is for Z and T to satisfy the back-door criterion of Definition 6. This
condition, as we shall see in the next section, is rather weak; c-equivalence extends beyond
admissible sets.

3 CONDITIONS FOR c-EQUIVALENCE

Theorem 1. A sufficient condition for the c-equivalence of T and Z is that Z satisfies:

(X⊥⊥Z|T ) (i)
(Y⊥⊥T |X,Z) (ii)

Proof:
Conditioning on Z, (ii) permits us to rewrite the left-hand side of (2) as

A(x, y, T ) =
∑

t P (t)
∑

z P (y|z, x, t)P (z|t, x)
=

∑
t P (t)

∑
z P (y|z, x)P (z|t, x)

and (i) further yields P (z|t, x) = P (z|t), from which (2) follows:

A(x, y, T ) =
∑

t

∑
z P (y|z, x)P (z, t)

=
∑

z P (y|z, x)P (z)
= A(x, y, Z)

1When G is a causal graph, A(x, y, pa(X)) coincides with the causal effect P (y|do(x)), since adjustment
for the direct cause, pa(X), deconfounds the relationship between X and Y (Pearl, 2009, p. 74, Theorem
3.2.2). For proof and intuition behind the back-door test, especially a relaxation of the requirement of no
descendants, see (Pearl, 2009, p. 339) and Lemma 4 below.

5



2
VV

1

W
1 2

W

X Y

Figure 1: The sets T = {V1,W1} and Z = {V2,W2} satisfy the conditions of Theorem 1.
The sets T = {V1,W2} and Z = {V2,W2} block all back-door paths between X and Y , hence
they are admissible and c-equivalent. Still they do not satisfy the conditions of Theorem 1.

Corollary 1. A sufficient condition for the c-equivalence of T and Z is that either one of
the following two conditions holds:

C∗ : X⊥⊥Z|T and Y⊥⊥T |Z,X
C∗∗ : X⊥⊥T |Z and Y⊥⊥Z|T,X (7)

Proof:
C∗ permits us to derive the right hand side of Eq. (2) from the left hand side, while C∗∗

permits us to go the other way around.

The conditions offered by Theorem 1 and Corollary 1 do not characterize all equivalent
pairs, T and Z. For example, consider the graph in Fig. 1, in which each of T = {V1,W2}
and Z = {V2,W1} is G-admissible they must therefore be c-equivalent. Yet neither C∗ nor
C∗∗ holds in this case.

On the other hand, condition C∗ can detect the c-equivalence of some non-admissible
sets, such as T = {W1} and Z = {W1,W2}. These two sets are non-admissible for they fail
to block the back-door path X ← V1 → V2 → Y , yet they are c-equivalent according to
Theorem 1; (i) is satisfied by d-separation, while (ii) is satisfied by subsumption (T ⊆ Z).

It is interesting to note however that Z = {W1,W2}, while c-equivalent to {W1}, is not
c-equivalent to T = {W2}, though the two sets block the same path in the graph.2 Indeed,
this pair does not meet the test of Theorem 1; choosing T = {W2} and Z = {W1,W2}
violates condition (i) since X is not d-separated from W1, while choosing Z = {W2} and
T = {W1,W2} violates condition (ii) by unblocking the path W1 → X ← V1 → V2 → Y .
Likewise, the sets T = {W1} and Z = {W2} block the same path and, yet, are not c-
equivalent; they fail indeed to satisfy condition (ii) of Theorem 1.

We are now ready to broaden the scope of Theorem 1 and derive a condition (Theorem
2 below) that detects all c-equivalent subsets in a graph, as long as they do not contain
descendants of X.

2The reason is that the strength of the association between X and Y , conditioned on W2, depends on
whether we also condition on W1. Else, P (y|x,w2) would be equal to P (y|x,w1, w2) which would render Y
and W1 independent given X and W2. But this is true only if the path (X,V1, V2, Y ) is blocked. See Pearl
(2010).
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Definition 7. (Markov Blanket)
For any subset S of variables of G, a subset S ′ of S will be called a Markov Blanket (MB) if
it satisfies the condition

(X⊥⊥S|S ′)G (8)

Lemma 2. Every set of variables, S, is c-equivalent to any of its MBs.

Proof:
Choosing Z = S and T = S ′ satisfies the two conditions of Theorem 1; (i) is satisfied by the
definition of S ′ (Eq. (8)), while (ii) is satisfied by subsumption (T ⊆ Z).

Remark.
It is shown in Appendix A where R is set to empty and Q is set to X that the set of MBs
is closed under union and intersection and that it contains a unique minimal set Sm. This
leads to the following definition:

Definition 8. (Markov Boundary)
The unique and minimal MB of a given subset S with regard to X will be called the Markov
Boundary (MBY) of S relative to X or the Markov Boundary for shorts if S and X are
given. Note that the measurement of the MBY renders X independent of all other members
of S and no other subset of the MBY has this property.

Lemma 3. Let Z and T be two subsets of vertices of G. Then Zm = Tm if and only if
(X⊥⊥(Z, T )|SI)G where SI is the intersection of Z and T . In words, Z and T have identical
MBY s iff they are d-separated from X by their intersection.

Proof:
If the condition holds then SI must be a MB of both Z and T . So the unique minimal MB
of both Z and T must be included in SI and is the MBY of both sets. If the MBY of both
Z and T are equal then they must be a subset of Z and of T so the condition must hold.

Theorem 2. Let Z and T be two sets of variables in G containing no descendants of X. A
necessary and sufficient condition for Z and T to be c-equivalent in G is that at least one of
the following two conditions holds:

1. (X⊥⊥(Z, T )|SI)G where SI is the intersection of Z and T

2. Z and T are G-admissible, i.e., they satisfy the back-door criterion.

Proof:
Due to lemma 3 we can replace in our proof condition 1 by the condition Zm = Tm.

1. Proof of sufficiency:
Condition 2 is sufficient since G-admissibility implies admissibility and renders the two
adjustment estimands in (2) equal to the causal effect. Condition 1 is sufficient by
reason of Lemma 2, which yields:

Z ∼ Zm ∼ Tm ∼ T
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Figure 2: W3 and W4 are non-admissible yet c-equivalent; both having ∅ as a Markov
boundary. However, W2 and W3 are not c-equivalent with Markov boundaries W2 and
∅, respectively.

2. Proof of necessity:
We need to show that if conditions (1) and (2) are both violated then there is at
least one parameterization of G (that is, an assignment of conditional probabilities
to the parent-child families in G) that violates Eq. (2). If exactly one of (Z, T ) is
G-admissible then Z and T are surely not c-equivalent, for their adjustment estimands
would differ for some parameterization of the graph. Assume that both Z and T are
not G-admissible or, equivalently, that none of Zm or Tm is G-admissible. Then there is
a back-door path p from X to Y that is not blocked by either Zm or Tm. If, in addition,
condition (1) is violated (i.e., Zm differs from Tm) then Tm and Zm cannot both be
disconnected from X, (for then Zm = Tm = ∅, satisfying condition (1)), there must be
a path p1 from either Zm to X that is not blocked by Tm or a path p2 from Tm to X that
is not blocked by Zm. Assuming the former case, there must be an unblocked path p1
from Zm to X followed by a back door path p from X to Y . The existence of this path
implies that, conditional on T the association between X and Y depends on whether we
also condition on Z (see footnote 2). The fact that the graph permits such dependence
means that there exists a parametrization in which such dependence is realized, thus
violating the c-equivalence between Z and T (Eq. (2)). For example, using a linear
parametrization of the graph, we first weaken the links from Tm to X to make the left
hand side of (2) equal to P (y|x), or A(x, y, Tm) = A(x, y, 0). Next, we construct a linear
model in which the parameters along paths p1 (connecting Zm to X) and the backdoor
path p are non-zero. Wooldridge (2007) has shown (see also (Pearl, 2010, 2013))
that adjustment for Zm under such conditions results in a higher bias relative to the
unadjusted estimand, or A(x, y, Zm) 6= A(x, y, 0). This completes the proof of necessity
because, the parametrization above leads to the inequality A(x, y, Zm) 6= A(x, y, Tm),
which implies Z 6∼ T .

4 ILLUSTRATIONS

Figure 2 illustrates the power of Theorem 2. In this model, no subset of {W1,W2,W3} is
G-admissible (because of the back-door path through V1 and V2) and, therefore, equality of
Markov boundaries is necessary and sufficient for c-equivalence among any two such subsets.
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Accordingly, we can conclude that T = {W1,W2} is c-equivalent to Z = {W1,W3}, since
Tm = W1 and Zm = W1. Note that W1 and W2, though they result (upon conditioning) in
the same set of unblocked paths between X and Y , are not c-equivalent since Tm = W1 6=
Zm = W2. Indeed, each of W1 and W2 is an instrumental variable relative to {X, Y }, with
potentially different strengths, hence potentially different adjustment estimands. Sets W4

and W3 however are c-equivalent, because the Markov boundary of each is the null set, {∅}.
We note that testing for c-equivalence can be accomplished in polynomial time. The

Markov boundary of an arbitrary set S can be identified by iteratively removing from S,
in any order, any node that is d-separated from X given all remaining members of S (see
Appendix A). G-admissibility, likewise, can be tested in polynomial time (Tian et al., 1998).

Theorem 2 also leads to a step-wise process of testing c-equivalence,

T ∼ T1 ∼ T2 ∼ . . . ∼ Z

where each intermediate set is obtained from its predecessor by an addition or deletion of
one variable only. This can be seen by organizing the chain into three sections.

T ∼ . . . ∼ Tm ∼ . . . ∼ Zm ∼ . . . ∼ Z

The transition from T to Tm entails the deletion from T of all nodes that are not in Tm; one
at a time, in any order. Similarly, the transition from Zm to Z builds up the full set Z from
its Markov boundary Zm; again, in any order. Finally, the middle section, from Tm to Zm,
amounts to traversing a chain of G-admissible sets, using both deletion and addition of nodes,
one at a time. A Theorem due to (Tian et al., 1998) ensures that such a step-wise transition
is always possible between any two G-admissible sets. In case T or Z are non-admissible,
the middle section must degenerate into an equality Tm = Zm, or else, c-equivalence does
not hold.

Figure 2 can be used to illustrate this stepwise transition from T = {W1,W2, V1} to
Z = {V2,W3}. Starting with T , we obtain:

T ={W1,W2, V1} ∼ {W1, V1} = Tm ∼ {V1} ∼ {V1, V2}
∼ {V2} = Zm ∼ {V2,W3} = Z

If, however we were to attempt a stepwise transition between T = {W1,W2, V1} and Z =
{W3}, we would obtain:

T = {W1,W2, V1} ∼ {W1, V1} ∼ {V1}

and would be unable to proceed toward Zm = {W3}. The reason lies in the non-admissibility
of Z which necessitates the equality Tm = Zm, contrary to the Markov boundaries shown in
the graph.

Note also that each step in the process T ∼ . . . ∼ Tm (as well as Zm ∼ . . . ∼ Z) is licensed
by condition (i) of Theorem 1, while each step in the intermediate process Tm ∼ . . . ∼ Zm is
licensed by condition (ii). Both conditions are purely statistical and do not invoke the causal
reading of “admissibility.” This means that condition 2 of Theorem 2 may be replaced by
the requirement that Z and T satisfy the back-door test in any diagram compatible with
P (x, y, z, t); the direction of arrows in the diagram need not convey causal information.
Further clarification of the statistical implications of the admissibility condition, is given in
Section 6.
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Figure 3: Demonstrating the extended-back-door criterion (Definition 9), which allows ad-
missible sets to include descendants of X. {V3, V1} and {V1, V2} are admissible, but not
{U1, V1} or {U2, V2}.

5 EXTENDED CONDITIONS FOR c-EQUIVALENCE

The two conditions of Theorem 2 are sufficient and necessary as long as we limit the sets
Z and T to non-descendants of X. Such sets usually represent “pre-treatment” covariates
which are chosen for adjustment in order to reduce confounding bias. In many applica-
tions, however, causal effect estimation is also marred by “selection bias” which occurs when
samples are preferentially selected to the data set, depending on the values taken by some
variables in the model (Bareinboim and Pearl, 2012; Daniel et al., 2011; Geneletti et al., 2009;
Pearl, 2013). Selection bias is represented by variables that are permanently conditional on
(to signify selection) and these are often affected by the causal variable X.

To present a more general condition for c-equivalence, applicable to any sets of variables,
we need to introduce two extensions. First, a graphical criterion for G-admissibility (Def-
inition 5) must be devised that ensures c-equivalence with pa(X) even for sets including
descendant of X. Second, Conditions 1 and 2 in Theorem 2 need to be augmented with a
third option, to accommodate new c-equivalent pairs (Z, T ) that may not meet conditions 1
and 2.

To illustrate, consider the graph of Fig. 3. Clearly, the sets {U1}, {U2} and {U1, U2}
all satisfy the back-door criterion and are therefore G-admissible. The set {V1} however
fails the back-door test on two accounts; it is a descendant of X and it does not block the
back-door path X ← U1 ← U2 → Y . In addition, conditioning on V1 opens a non-causal
path between X and Y which should further disqualify V1 from “admissibility. Consider now
the set {V1, U2}. This set does block all back-door paths and does not open any spurious
(non-causal) path between X and Y . We should therefore qualify {V1, U2} as G-admissible.
Indeed, we shall soon prove that {V1, U2} is c-equivalent to the other admissible sets in the
graphs, {U1}, {U2} and {U1, U2}.

Next consider the set S = {U1, V1} which, while blocking the back-door path X ← U1 ←
U2 → Y , also unblocks the collider path X → V1 ← U2 → Y . Such sets should not be
characterized as G-admissible because they are not c-equivalent to pa(X). Conceptually,
admissibility requires that, in addition to blocking all back door paths, conditioning on a set
S should not open new non-causal paths between X and Y .

The set S = {U1, V2} should be excluded for the same reason, though the spurious path
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in this case is more subtle; it involves a virtual collider X → Y ← εY where εY (not shown
explicitly in the graph) represents all exogenous omitted factors in the equation of Y . (See,
Pearl 2009, pp. 339–340).

The next definition, called extended-back-door, provides a graphical criterion for selecting
genuinely admissible sets and excluding those that are inadmissible for the reasons explained
above. It thus extends the notion of G-admissibility (Definition 8) to include variables that
are descendants of X.

Definition 9. (Extended-back-door)
Let a set S of variables be partitioned into S+∪S−, such that S+ contains all non descendants
of X and S− the descendants of X. S is said to meet the extended-back-door criterion if S+

and S− satisfy the following two conditions.

A. S+ blocks all back door paths from X to Y

B. X and S+ block all paths between S− and Y , namely, (S−⊥⊥Y |X,S+)G.3

Lemma 4. Any set meeting the extended-back-door criterion is G-admissible, i.e., it is c-
equivalent to pa(X).

Proof:
Since S+ satisfies the back door criterion, it is c-equivalent to pa(X) by virtue of Eq. (5).
To show that S+ ∼ {S+ ∪ S−}, we invoke Theorem 1 with T = {S+ ∪ S−} and Z = S+.
Conditions (i) and (ii) then translate into:

(i) X⊥⊥S+|S+ ∪ S−

(ii) Y⊥⊥S+, S−|X,S+

(i) is satisfied by subsumption, while (ii) follows from condition B of Definition 9. This
proves the equivalence S+ ∼ S and, since S+ ∼ pa(X), we conclude S ∼ pa(X). QED.

The extra d-separation required in condition B of Definition 9 offers a succinct graphical
test for the virtual-colliders criterion expressed in Pearl (2009, pp. 339–340) as well as the
“non-causal paths” criterion of Shpitser et al. (2010).4 It forbids any admissible set from
containing “improper” descendants of X, that is, intermediate nodes on the causal path from
X to Y as well as any descendants of such nodes. In Fig. 5, for example, Lemma 4 concludes
that the sets {U2, V3} and {U2, V1} are both G-admissible and therefore c-equivalent. The
G-admissibility of {U2, V3} is established by the condition {V3⊥⊥Y |X,U2)G whereas that
of {U2, V3} by {V1⊥⊥Y |X,U2)G. On the other hand, the sets {U1, V1}{U1, V2} are not G-
admissible. The former because it opens a non-causal path X → V1 ← U2 → Y between X

3In causal analysis, Condition B ensures that S− does not open any spurious (i.e., non-causal) path
between X and Y . For example, it excludes from S− all nodes that intercept causal paths from X to Y
as well as descendants of such nodes. See Pearl (2009, p. 399) and Shpitser et al. (2010) for intuition and
justification.

4This condition can be viewed as a consequence of Theorem 7 of Shpitser et al. (2010), with L = {∅}.
However, here the d-separation is applied to the original graph and the exclusion of “improper” descendants
of X is not imposed a priori. Rather it follows from Theorem 1 and the requirement of G-admissibility as
expressed in Eq. (5).
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and Y and the latter because V2 is a descendant of Y and thus it opens a virtual collider at
Y . Indeed, the set S = {V2, U2} violates condition B of Lemma 4, since X and S+ = {U2}
do not block all paths from Y to S− = {V2}.

We are ready now to characterize sets that violate the two conditions of Theorem 2 and
still, by virtue of containing descendants of X are nevertheless c-equivalent. Consider the
set Z = {U2, V1, V2} and T = {U2, V3, V2} in Fig. 3. Due to the inclusion of V2, Z and T
are clearly inadmissible. Likewise, their Markov boundaries are respectively Zm = Z and
Tm = T , which are not identical. Thus, Z and T violate the two conditions of Theorem
2, even allowing for the extended version of the back-door criterion. They are nevertheless
c-equivalent as can be seen from the fact that both are c-equivalent to their intersection
SI = {U2, V2}, since {SI ∪X} d-separates both Z and T from Y , thus complying with the
requirements of Theorem 1.

The following Lemma generalizes this observation formally.

Lemma 5. Let Z and T be any two sets of variables in a graph G and SI their intersection.
A sufficient condition for Z and T to be c-equivalent is that {Z ∪ T} is d-separated from Y
by {X ∪ SI} that is, (Z, T⊥⊥Y |X,SI)G.

Proof:
We will prove Lemma 5 by showing that T (similarly Z) is c-equivalent to SI . Indeed, sub-
stituting SI for Z in Theorem 1 satisfies conditions (i) and (ii); the former by subsumption,
the latter by the condition (Z, T⊥⊥Y |X,SI)G of Lemma 5. QED.

Remark.
When Z and T contain only non-descendants of X, Lemma 5 implies at least one of the
conditions of Theorem 2.

Theorem 3. Let Z and T be any two sets of variables in a graph G. A sufficient condition
for Z and T to be c-equivalent is that at least one of the following three conditions holds:

1. (X⊥⊥(Z, T )|SI)G where SI is the intersection of Z and T

2. Z and T are G-admissible (Lemma 4)

3. (Y⊥⊥(Z, T )|SI , X)G where SI is the intersection of Z and T

Proof:
That Condition 3 is sufficient for Z ∼ T is established in Lemma 5. The sufficiency of
condition 2 stems from the fact that G-admissibility implies Z ∼ pa(X) ∼ T . It remains to
demonstrate the sufficiency of condition 1, but this is proven in Lemmas 2 and 3 which are
not restricted to non-descendants of X. We conjecture that conditions 1–3 are also necessary.

Theorem 3 reveals non-trivial patterns of c-equivalence that emerge through the presence
of non-descendants of X. It shows for example a marked asymmetry between confounding
bias and selection bias. In the former, illustrated in Fig. 1, it was equality of the Markov
boundaries around X that ensures c-equivalence (e.g., W1 ∼ {W1W2} in Fig. 1). In the
case of selection bias, on the other hand, it is equality of the Markov boundaries around
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Y (augmented by X) that is required to ensure c-equivalence. In Fig. 3, for example, the
c-equivalence {V2, U2} ∼ {V2, U2, U1} is sustained by virtue of the equality of the Markov
boundaries around Y, {V2, U2, X}. The sets {V2, U1} and {V2, U2, U1} on the other hand, are
not equivalent, though they share Markov boundaries around X.

Another implication of Theorem 3 is that, in the absence of confounding bias, selection
bias is invariant to conditioning on instruments. For example, if we remove the arrow U2 → Y
in Fig. 3, U1 and U2 would then represent two instruments of different strengths (relative to
X → Y ). Still, the two have no effect on the selection bias created by conditioning on V2,
since the sets {V2, U1}, {V2, U2}, and {V2} are c-equivalent.

6 FROM CAUSAL TO STATISTICAL CHARACTER-

IZATION

Theorem 2, while providing a necessary and sufficient condition for c-equivalence, raises an
interesting theoretical question. Admissibility is a causal notion, (i.e., resting on causal
assumptions about the direction of the arrows in the diagram, or the identity of pa(X), Defi-
nition 6) while c-equivalence is purely statistical. Why need one resort to causal assumptions
to characterize a property that relies on no such assumption? Evidently, the notion of G-
admissibility as it was used in the proof of Theorem 2 was merely a surrogate carrier of
statistical information; its causal reading, especially the identity of the parent set pa(X)
(Definition 6) was irrelevant. The question then is whether Theorem 2 could be articulated
using purely statistical conditions, avoiding admissibility altogether, as is done in Theorem
1.

We will show that the answer is positive; Theorem 2 can be rephrased using a statistical
test for c-equivalence. It should be noted though, that the quest for statistical characteriza-
tion is of merely theoretical interest; rarely is one in possession of prior information about
conditional independencies, (as required by Theorem 1), that is not resting on causal knowl-
edge (of the kind required by Theorem 2). The utility of statistical characterization surfaces
when we wish to confirm or reject the structure of the diagram. We will see that the statis-
tical reading of Theorem 2 has testable implication that, if failed to fit the data, may help
one select among competing graph structures.

Our plan is, first, to obtain a statistical c-equivalence test for the special case where T is
a subset of Z, then extend it to arbitrary sets, T and Z.

Theorem 4. (Set-subset equivalence)
Let T and S be two disjoint sets. A sufficient condition for the c-equivalence of T and
Z = T ∪ S is that S can be partitioned into two subsets, S1 and S2, such that:

(i′) S1⊥⊥X|T

and

(ii′) S2⊥⊥Y |S1, X, T
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Proof:
Starting with

A(x, y, T ∪ S) =
∑
t

∑
s1

∑
s2

P (y|x, t, s1, s2)P (s1, s2, t)

(ii′) permits us to remove s2 from the first factor and write

A(x, y, T ∪ S) =
∑

t

∑
s1

∑
s2
P (y|x, t, s1)P (s1, s2, t)

=
∑

t

∑
s1
P (y|x, t, s1)P (s1, t)

while (i′) permits us to reach the same expression from A(x, y, T ):

A(x, y, T ) =
∑

t

∑
s1
P (y|x, t, s1)P (s1|x, t)P (t)

=
∑

t

∑
s1
P (y|x, t, s1)P (s1, t)

which proves the theorem.
Theorem 4 can also be proven by double application of Theorem 1; first showing the

c-equivalence of T and {T ∪ S1} using (i) (with (ii) satisfied by subsumption), then showing
the c-equivalence of {T ∪S1} and {T ∪S1∪S2} using (ii) (with (i) satisfied by subsumption).

The advantage of Theorem 4 over Theorem 1 is that it allows certain cases of c-equivalence
to be verified in a single step. In Figure 1, for example, both (i′) and (i′′) are satisfied for
T = {V1,W2}, S1 = {V2}, and S2 = {W1}), Therefore, T = {V1,W2} is c-equivalent to
{T ∪ S} = {V1, V2,W1,W2}. While this equivalence can be established using Theorem 1, it
would have taken us two steps, first T = {V1,W2} ∼ {V1,W2,W1}, and then {V1,W2,W1} ∼
{V1,W2,W1, V2} = {T ∪ S}.

Theorem 4 in itself does not provide an effective way of testing the existence of a partition
S = S1 + S2. However, Appendix A shows that a partition satisfying the conditions of
Theorem 4 exists if and only if S2 is the (unique) maximal subset of S that satisfies

{Y⊥⊥S2|(S − S2), X, T}

In other words, S2 can be constructed incrementally by selecting each and only elements si
satisfying

{Y⊥⊥si|(S − si), X, T}.
This provides a linear algorithm for testing the existence of a desired partition and, hence,
the c-equivalence of T and S + T .

Theorem 4 generalizes closely related theorems by Stone (1993) and Robins (1997), in
which T ∪S is assumed to be admissible (see also Greenland et al. (1999)). The importance
of this generalization was demonstrated by several examples in Section 3. Theorem 4 on the
other hand invokes only the distribution P (x, y, z, t) and makes no reference to P (y|do(x))
or to admissibility.

The weakness of Theorem 4 is that it is applicable to set-subset relations only. A natural
attempt to generalize the theorem would be to posit the requirement that T and Z each be
c-equivalent to T ∪ Z, and use Theorem 4 to establish the required set-subset equivalence.
While perfectly valid, this condition is still not complete; there are cases where T and Z are
c-equivalent, yet none is c-equivalent to their union. For example, consider the path

X → T ← L→ Z ← Y
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Each of T and Z leaves the path between X and Y blocked, which renders them c-equivalent,
yet {T ∪ Z} unblocks that path. Hence, T ∼ Z and T 6∼ T ∪ Z. This implies that sets T
and Z would fail the proposed test, even though they are c-equivalent.

The remedy can be obtained by re-invoking the notion of Markov boundary (Definition
8) and Lemma 2.

Theorem 5. Let T and Z be two sets of covariates, containing no descendant of X and
let Tm and Zm be their Markov boundaries. A necessary and sufficient condition for the
c-equivalence of T and Z is that each of Tm and Zm be c-equivalent to Tm ∪Zm according to
the set-subset criterion of Theorem 4.

Proof:

1. Proof of sufficiency:
If Tm and Zm are each c-equivalent to Tm ∪ Zm then, obviously, they are c-equivalent
themselves and, since each is c-equivalent to its parent set (by Lemma 2) T and Z are
c-equivalent as well.

2. Proof of necessity:
We need to show that if either Tm or Zm is not c-equivalent to their union (by the test
of Theorem 4), then they are not c-equivalent to each other. We will show that using
“G-admissibility” as an auxiliary tool. We will show that failure of Zm ∼ Tm ∪ Zm

implies non-admissibility, and this, by the necessary part of Theorem 2, negates the
possibility of c-equivalence between Z and T . The proof relies on the monotonicity of
d-separation over minimal subsets (Appendix B), which states that, for any graph G,
and any two subsets of nodes T and Z, we have:

(X⊥⊥Y |Zm)G & (X⊥⊥Y |Tm)G ⇒ (X⊥⊥Y |Zm ∪ Tm)G

Applying this to the subgraph consisting of all back-door paths from X to Y , we
conclude that G-admissibility is preserved under union of minimal sets. Therefore,
the admissibility of Zm and Tm (hence of Z and T ) entails admissibility of Zm ∪ Tm.
Applying Theorem 2, this implies the necessity part of Theorem 4.

Theorem 5 reveals the statistical implications of the G-admissibility requirement in The-
orem 2. G-admissibility ensures the two c-equivalence conditions:

Tm ∼ {Tm ∪ Zm} (9)

Zm ∼ {Tm ∪ Zm} (10)

In other words, given any DAGG compatible with the conditional independencies of P (x, y, t, z),
whenever Z and T are G-admissible in G, the two statistical conditions of Theorem 4 should
hold in the distribution, and satisfy the equivalence relationships in (9) and (10). Explicating
these two conditions using the proper choices of S1 and S2, yields

{Tm ∪ Zm}m\Zm⊥⊥Y |X,Zm, Tm\{Tm ∪ Zm}m (11)

{Tm ∪ Zm}m\Tm⊥⊥Y |X,Tm, Zm\{Tm ∪ Zm}m (12)
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which constitute the statistical implications of admissibility. These implications should be
confirmed in any graph G′ that is Markov equivalent to G, regardless of whether T and S
are G-admissible in G′, and regardless of the identity of pa(X) in G′.

We illustrate these implications using Fig. 2. Taking T = {W2, V2} and Z = {V1,W3},
we have:

Tm = {W2, V2}, Zm = {V1},
{Tm ∪ Zm}m = {V1, V2,W2}m = {V1,W2}

We find that the tests of (11) and (12) are satisfied because

{W2}⊥⊥Y |X, V1, V2 and V1⊥⊥Y |X,W2, V2

Thus, implying Z ∼ T . That test would fail had we taken T = {W2} and Z = {W3}, because
then we would have:

Tm = {W2}, Zm = {∅}.
{Tm ∪ Zm}m = W2

and the requirement

{Tm ∪ Zm}m\Zm⊥⊥Y |X,Zm, Tm\{Tm ∪ Zm}m

would not be satisfied because
W2 6⊥⊥Y |X

(b)(a)

X Y

Z1 2Z Z1 2Z

T1 2TT1 2T

X Y

Figure 4: Two observationally indistinguishable models that differ in their admissible sets.
Both confirm the c-equivalence {T1} ∼ {T1, T2} and {Z1} ∼ {Z1, Z2} but for different
reasons.

Fig. 4 present two models that are observationally indistinguishable, yet they differ in
admissibility claims. Model 4(a) deems {T1} and {T1, T2} to be admissible while Model 4(b)
counters (a) and deems {Z1} and {Z1, Z2} to be admissible. Indistinguishability requires that
c-equivalence be preserved and, indeed, the relations {T1} ≈ {T1, T2} and {Z1} ≈ {Z1, Z2}
are held in both (a) and (b).
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(a) (b) (c)

T Z

YX YX YX

T Z T Z

Figure 5: Failing the T ∼ {T ∪Z} test should reject Model (a) in favor of (b) or (c). Failing
Z ∼ {T ∪ Z} should reject Models (a) and (b) in favor of (c).

7 EMPIRICAL RAMIFICATIONS OF c-EQUIVALENCE

TESTS

Having explicated the statistical implications of admissibility vis a vis c-equivalence, we may
ask the inverse question: What can c-equivalence tests tell us about admissibility? It is well
known that no statistical test can ever confirm or refute the admissibility of a given set Z
(Pearl, 2000, Chapter 6; Pearl, 1998). The discussion of Section 6 shows however that the
admissibility of two sets, T and Z, does have testable implications. In particular, if they
fail the c-equivalence test, they cannot both be admissible. This might sound obvious, given
that admissibility entails zero bias for each of T and Z (Eq. (7)). Still, Eq. (10) implies
that it is enough for Zm (or Tm) to fail the c-equivalence test vis a vis {Zm ∪ Tm} for us to
conclude that, in addition to having different Markov boundaries, Z and T cannot both be
admissible.

This finding can be useful when measurements need be chosen (for adjustment) with only
partial knowledge of the causal graph underlying the problem. Assume that two candidate
graphs recommend two different measurements for confounding control, one graph predicts
the admissibility of T and Z, and the second does not. Failure of the c-equivalence test

Tm ∼ {Tm ∪ Zm} ∼ Zm

can then be used to rule out the former.
Figure 5 illustrates this possibility. Model 5(a) deems measurements T and Z as equally

effective for bias removal, while models 5(b) and 5(c) deem T to be insufficient for adjustment.
Submitting the data to the c-equivalence tests of Eq. (9) and Eq. (10) may reveal which of the
three models should be ruled out. If both tests fail, we must rule out Models 5(a) and 5(b),
while if only Eq. (10) fails, we can rule out only Model 2(a) (Eq. (9) may still be satisfied in
Model 5(c) by incidental cancellation). This is an elaboration of the “Change-in-Estimate”
procedure used in epidemiology for confounder identification and selection (Weng et al.,
2009). Evans et al. (2012) used similar considerations to select and reject DAGs by comparing
differences among effect estimates of several adjustment sets against the differences implied
by the DAGs.

Of course, the same model exclusion can be deduced from conditional independence tests.
For example, Models 5(a) and 5(b) both predict T⊥⊥Y |X,Z which, if violated in the data,
would leave Model 5(c) as our choice and behoove us to adjust for both T and Z. However,
when the dimensionality of the conditioning sets increases, conditional independence tests are
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both unreliable and computationally expensive. Although both c-equivalent and conditional-
independence tests can reap the benefits of propensity scores methods (see Appendix C)
which reduce the dimensionality of the conditioning set to a single scalar, it is not clear
where the benefit can best be realized, since the cardinalities of the sets involved in these
two types of tests may be substantially different.

(a) (b)

Z1

W1

2Z

2W

X Y

V

Z1 2Z
2WW1

X Y

V

Figure 6: A model that is almost indistinguishable from that of Fig. 6(a), save for adver-
tising one additional independency: {Z1, V }⊥⊥Y |X,W1,W2, Z2. It deems three sets to be
admissible (hence c-equivalent): {V,W1,W2}, {Z1,W1,W2}, and {W1,W2, Z2}, and would be
rejected therefore if any pair of them fails the c-equivalence test.

Figure 6 illustrates this potential more acutely. It is not easy to tell whether models (a)
and (b) are observationally distinguishable, since they embody the same set of missing edges.
Yet whereas Model 6(a) has no admissible set (among the observables), its contender, Model
6(b) has three (irreducible) such sets: {Z1,W1,W2}, {W1,W2, Z2} are {V,W1,W2}. This
difference in itself does not make the two models distinguishable (see Fig. 4); for example,
X → Z → Y is indistinguishable from X ← Z → Y , yet Z is admissible in the latter, not in
the former. However, noting that the three admissible subsets of 6(b) are not c-equivalent
in 6(a) – their Markov boundaries differ – tells us immediately that the two models differ in
their statistical implications. Indeed, Model 6(b) should be rejected if any pair of the three
sets fails the c-equivalence test.

Visually, the statistical property that distinguishes between the two models is not easy
to identify. If we list systematically all their conditional independence claims, we find that
both models share the following:

V ⊥⊥ {W1,W2} X ⊥⊥ {V, Z2}|{Z1,W2,W1}
Z1 ⊥⊥ {W2, Z2}|{V,W2} V ⊥⊥ Y |{X,Z2,W2, Z1,W1}
Z2 ⊥⊥ {W1, Z1, X}|{V,W2} V ⊥⊥ Y |{Z2,W2, Z1,W1}

They disagree however on one additional (and obscured) independence relation, Z1⊥⊥Y |X,
W1,W2, Z2, V , that is embodied in Model 6(b) and not in 6(a). The pair (Z1, Y ), though
non-adjacent, has no separating set in the diagram of Fig. 6(a). While a search for such
distinguishing independency can be tedious, c-equivalence comparisons tell us immediately
where models differ and how their distinguishing characteristic can be put to a test.
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This raises the interesting question of whether the discrimination power of c-equivalence
equals that of conditional independence tests. We know from Theorem 5 that all c-equivalence
conditions can be derived from conditional independence relations. The converse, however,
is an open question if we allow (X, Y ) to vary over all variable pairs.

8 CONCLUSIONS

Theorem 2 provides a simple graphical test for deciding whether one set of pre-treatment
covariates has the same bias-reducing potential as another. The test requires either that
both sets satisfy the back-door criterion or X is independent of both Z and T given S1

where S1 is the intersection of Z and T . Both conditions can be tested by fast, polynomial
time algorithms, and could be used to guide researchers in deciding what measurement
sets are worth performing. Theorem 3 extends this result to include any sets of variables,
including those affected by X. This extends the detection of c-equivalent sets to cases
where confounding co-exists with selection bias. We have further shown that the conditions
above are valid in causal as well as associational graphs; the latter can be inferred from
nonexperimental data. Finally, we postulate that c-equivalence tests could serve as valuable
tools in a systematic search for graph structures that are compatible with the data.
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APPENDIX A

In this appendix we prove a theorem that provides a linear-time test for the conditions
of Theorem 4. The proof is based on the 5 graphoid axioms (Dawid, 1979; Pearl, 1988)
and is valid therefore for all strictly positive distribution and, in particular it is valid for
dependencies represented in DAGs represented PDs.

Theorem 6. Let Q,R, S be disjoint subsets of variables and let P = {(Si, S
′
i) : SiS

′
i = S}

be the set of all partitions of S that satisfy the relation below

(Q⊥⊥Si|S ′iR). (A(1))

Then

a. The left sets Si and the right sets S ′i of the partitions in P are closed under union and
intersection

b. The left sets Si of the partitions in P are also closed under subsets, i.e If (Si, S
′
i)

satisfies A(1), then any other partition (Sj, S
′
j) such that Sj is a subset of Si, also

satisfies (A(1)).
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Proof: Assume that (Si, S
′
i) and (Sj, S

′
j) are in P . Split S into 4 disjoint subsets S =

S1S2S3S4 such that Si = S1S2, S
′
i = S3S4, Sj = S1S3, S

′
j = S2S4. It follows from the

assumption that
(Q⊥⊥S1S2|S3S4R) and (Q⊥⊥S1S3|S2S4R) (A(2))

By decomposition we get from A(2)

(Q⊥⊥S2|S3S4R) and (Q⊥⊥S3|S2S4R) (A(3))

From A(3) we get by intersection
(Q⊥⊥S2S3|S4R) (A(4))

From A(2) we get by weak union

(Q⊥⊥S1|S2S3S4R) (A(5))

Finally we get from A(4) and A(5) by contraction

(Q⊥⊥S1S2S3|S4R) (A(6))

Property a now follows from A(5) and A(6), since S1 is the intersection of Si and Sj and
S2S3S4 is the union of S ′i and S ′j. Similarly S1S2S3 is the union of Si and Sj and S4 is the
intersection of S ′i and S ′j. Property b follows, by weak union from A(2) since (Q⊥⊥Si|S ′i, R)
implies (Q⊥⊥Sj|S ′jR) when Sj is a subset of Si.

Corollary 2. There is a unique partition in P, (Smin, S ′max) and a unique partition in P ,
(Smax, S ′min).

This follows from property a.

Corollary 3.

Smax = {si in S : si satisfies (Q⊥⊥si|(S − si)R)}, S ′min = S − Smax (A(7))

Proof: All nodes in A(7) satisfy A(1) and therefore, by property a, their union satisfies
A(1). On the other hand, any node in Smax must satisfy A(7) by property b. QED.

Remark.
If and only if the set P is not empty then Smax is not empty. This follows from property b.

An Algorithm for verifying the conditions of Theorem 4

A simple linear algorithm based on the above Appendix A where Q is reset to Y and R is
reset to XT , for verifying the conditions of Theorem 4 is given below.

1. Let S2 be the set of all variables si in S satisfying the relation

(Y⊥⊥si|(S − si), X, T ) and set S1 = S − S2.

Then S2 = Smax and S1 = Smin.
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2. There exists a partition (S ′, S ′′) satisfying the conditions of Theorem 4 if and only if
S2 as defined above is not empty and S1 as defined above satisfies the condition (i′) of
the Theorem 4.

Proof:
IF: Smax satisfies the (ii′) condition by it’s definition. Therefore if Smin satisfies (i′) then
(Smin, Smax) is a partition as required given that Smax is not empty.
ONLY IF. If a partition as required (S ′, S ′′) exists then necessarily Smin is a subset of of S ′.
Therefore, given that S ′ satisfies (i′), Smnn satisfies this condition too, by decomposition.
QED.

Notice that if S2 is empty then the set of partitions that satisfy the condition (ii′) of the
theorem is empty by the observation at the end of the Appendix.

APPENDIX B

We prove that, for any graph G, and any two subsets of nodes T and Z, we have:

(X⊥⊥Y |Zm)G & (X⊥⊥Y |Tm)G ⇒ (X⊥⊥Y |Zm ∪ Tm)G

Where Zm and Tm are any minimal subsets of Z and T , that satisfy (X⊥⊥Y |Zm)G and
(X⊥⊥Y |Tm)G respectively.

The following notation will be used in the proof: A TRAIL will be a sequence of nodes
v1, . . . , vk such that vi is connected by an arc to vi+1. A collider Z is EMBEDDED in a trail
if two of his parents belong to the trail. A PATH is a trail that has no embedded collider.
We will use the “moralized graph” test of Lauritzen et al. (1990) to test for d-separation
(“L-test,” for short).

Theorem 7. Given a DAG and two vertices x and y in the DAG and a set {Z1, . . . , Zk} of
minimal separators between x and y. The union of the separators in the set, denoted by Z!,
is a separator.

Proof:
We mention first two observations:

(a) Given a minimal separator Z between x and y. If Z contains a collider w then there
must be a path between x and y which is intercepted by w, implying that w is an
ancestor of either x or y or both. This follows from the minimality of Z. If the
condition does not hold then w is not required in Z.

(b) It follows from (a) above that w as defined in (a) and its ancestors must belong to the
ancestral subgraph of x and y.

Let us apply the L-test to the triplet (x, y|Z1). As Z1 is a separator, the L-test must show
this. In the first stage of the L-test, the ancestral graph of the above triplet is constructed.
By observation (b) it must include all the colliders that are included in any Zi. In the next
stage of the L-test, the parents of all colliders in the ancestral graph are moralized and the
directions removed. The result will be an undirected graph including all the colliders in the
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separators Zi and their moralized parents and their ancestors. In this resulting graph, Z1

still separates between x and y. Therefore adding to Z1 all the colliders in Zi, i = 1 to k
, will result in a larger separator. Adding the noncolliders from all the Zi to Z1 will still
keep the separator property of the enlarged set of vertices (trivial). It follows that Z! is a
separator. End of proof.

Appendix C

Let the propensity score L(z) stand for P (X = 1|z). It is well known (Rosenbaum and
Rubin, 1983) that, viewed as a random variable, L(z) satisfies X⊥⊥L(z)|Z. This implies
that A(x, y, L(z)) = A(x, y, Z) and, therefore, testing for the c-equivalence of Z and T can
be reduced to testing the c-equivalence of L(z) and L(t). The latter offers the advantage of
dimensionality reduction, since L(z) and L(t) are scalars, between zero and one. (See Pearl
(2009, pp. 348–352)).

The same advantage can be utilized in testing conditional independence. To test whether
(X⊥⊥Y |Z) holds in a distribution P , it is necessary that (X⊥⊥Y |L(z)) holds in P . This
follows from the Contraction axiom of conditional independence, together with the fact that
Z subsumes L. Indeed, the latter implies

X⊥⊥Y |Z ⇔ X⊥⊥Y |L(z), Z

which together with X⊥⊥L(z)|Z gives

X⊥⊥Z|L(z) & X⊥⊥Y |L(z), Z ⇒ X⊥⊥Y |L(z)

The converse requires an assumption of faithfulness.
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