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Abstract

The construction of causal graphs from non-experimental
data rests on a set of constraints that the graph structure
imposes on all probability distributions compatible wittet
graph. These constraints are of two types: conditional-inde
pendencies and algebraic constraints, first noted by Verma.
While conditional independencies are well studied and fre-
quently used in causal induction algorithms, Verma con-
straints are still poorly understood, and rarely applied. |
this paper we examine a special subset of Verma constraints
which are easy to understand, easy to identify and easy to ap-
ply; they arise from “dormant independencies,” namely,-con
ditional independencies that hold in interventional dist
tions. We give a complete algorithm for determining if a dor-
mant independence between two sets of variables is entailed
by the causal graph, such that this independence is identifi-
able, in other words if it resides in an interventional disir

tion that can be predicted without resorting to intervemgio

We further show the usefulness of dormant independencies
in model testing and induction by giving an algorithm that
uses constraints entailed by dormant independencies e pru
extraneous edges from a given causal graph.

Introduction
Graphical causal model®earl, 200Dembody both causal
and probabilistic assumptions. The vertices ¢ausal
graphs the carriers of these assumptions, correspond to vari-

IC [Verma & Pearl, 1990 [Pearl, 2000 andFCI [Spirtes,
Glymour, & Scheines, 1993 A better understanding of
Verma constraints may lead to improvements of these algo-
rithms.

In this paper, we examine a special subset of Verma con-
straints with two nice properties. Firstly, these constisi
have a natural interpretation as being due to conditioral in
dependencies in distributions resulting from intervemgio
[Pearl, 200D (we call such independencidsrman). Sec-
ondly, these constraints have the potential to imply festur
of the causal graph, specifically the absence of certainsedge

Dormant independencies may imply constraints on the
observable distribution, if the interventional distrilaut in
which they reside iglentifiable[Pearl, 200{) in other words
if it can be predicted from observational studies. Our dentr
bution is twofold. We develop a polynomial time algorithm
which, given two arbitrary disjoint sets of observable vari
ables, returns an identifiable witness for the dormant inde-
pendence, in other words an identifiable interventional dis
tribution in which these sets are conditionally indeperiden
Moreover, we show that our algorithm is complete for de-
termining all identifiable dormant independencies endaile
by the causal graph, in a sense that if the algorithm fails,
then any identifiable dormant independence is “coinciden-
tal,” and not due to the structure of the graph. Our algo-
rithm is an improvement over a previous algorithn{ Tian

ables, while the absence of an edge between two variables& Pearl, 2002, which enumerated only unconditional dor-

implies that those two variables are conditionally indepen
dent given some other set of variables. Probabilistic inde-

pendence between sets of variables in a causal model is im-

plied by the well-known criterion of path blocking called d-
separatiorfPearl, 1988 Conversely, independence implies
corresponding path blocking in the graph in a special class
of models termedaithful [Spirtes, Glymour, & Scheines,
1993 or stable[Pearl & Verma, 1991 [Pearl, 2000

Graphs constrain observable distributions in two ways,
either by requiring that certain conditional independesci
hold, or imposing other restrictions, termed Verma con-
straints [Verma & Pearl, 199)) [Tian & Pearl, 2002h
which are more difficult to characterize. The constraints in
duced on the graph by conditional independencies are al-
ready being utilized by causal induction algorithms such as
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mant independence.

We illustrate the applicability of identifiable dormant in-
dependencies for model testing and induction by giving an-
other algorithm which, given a causal graph where every
edge is either correct or extraneous (we call such graphs
valid), uses constraints induced by dormant independencies
to systematically rule out extraneous edges.

Our paper is organized as follows. The next section gives
an example of a Verma constraint, and shows how this con-
straint arises due to conditional independence in idehtdia
interventional distributions. Section 3 goes over the math
ematical preliminaries necessary for causal inference: Se
tions 4 and 5 develop the algorithm for finding witnesses
for dormant independence for pairs of singletons, and pairs
of arbitrary sets, respectively. Section 6 introduces the-a
rithm which uses dormant independencies for testing edges.
For space reasons, some of the longer proofs are given in
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Figure 1: (a) The “P” graph. (b) The graph of the submodel
M, derived from the “P” graph.

outline form. Full proofs can be found in the technical re-
port posted orhtt p:// bayes. cs. ucl a. edu/ csl _
papers. htm .

Verma Constraints as Dormant
Independencies

Consider the causal graph in Fig. 1 (a). Any model compati-
ble with this graph imposes certain constraints on its abser
able distributionP (z, w, z, y). Some of these constraints are
in the form of conditional independencies. For instance, in
any such modelX is independent ofZ given W, which
meansP(z|w) = P(z|w,z). However, there is an addi-
tional constraint implied by this graph which cannot be ex-
pressed in terms of conditional independence in the observ-
able distribution. This constraint, noted [Werma & Pearl,
199d, states that the expressidn,, P(y|z, w, x) P(w|x) is

a function ofy andz only, not ofz. The key insight that mo-
tivates this paper is that this constraint does emanate from
conditional independencies, albeit not the original obser
able distribution, but in a distribution resulting from amn i
tervention.

An intervention, writtendo(x) [Pearl, 2000 is an opera-
tion which forces variableX to attain valuex regardless of
their usual behavior in a causal model. The result of apply-
ing an interventioro(x) on a model/ with a set of observ-
able variable¥ is asubmodel/y, with stochastic behavior
of variables other thaK described by amterventional dis-
tribution written asPx(v) or P(v|do(x)). The graph induced
by My is almost the same as the graph induced\byex-
cept it is missing all arrows incoming %, to represent the
fact that an intervention sets the valuesxoindependently

of its usual causal influences, represented by such arrows.

We will denote such a graph @%. Following[Pearl, 2000
we call the set of all possible interventional distributd?.
In other words P, = {Px(v \ X)|x C v}.

A key idea in causal inference is that in certain causal
models, some interventional distributions can be predicte
or identifiedfrom the observational distribution. What we
will show is that it is ability to identify interventional di
tributions from observational distributions that giveserio
Verma constraints, including the constraint in the P graph.

Consider a modeM inducing the graph in Fig. 1 (a). If
we intervene or¥ in M, we obtain the submod@l, induc-
ing the graphin Fig. 1 (b). The distribution of the unfixed ob-
servables in this submodé®, (z, w, y), is identifiable from
P(x,w, z,y) and equals td®(y|z, w, z) P(w|z) P(z) [Tian
& Pearl, 20024 Moreover, by d-separatioiPearl, 1988
the graph in Fig. 1 (b) implies thaX is independent of

Y in P.(z,w,y), or P,(ylx) = P.(y). But it's not hard
to show thatP; (y|z) is equal to) | P(y|z,w,z)P(w|z),
which means this expression depends onlg andy. Thus,
the identifiability of P, (x, w, y) leads to a constraint on ob-
servational distributions in the original, unmutilated aebd
M.

Enumerating constraints of this type can be used to infer
features of the causal graphs, just as conditional indepen-
dencies are used for this purpose by causal induction algo-
rithms. For example, establishing th&tis independent of
Y in P,(x,w, y) allows us to conclude that the causal graph
lacks an edge betweenhandY’, assuming that the submodel
M, is stablelPearl & Verma, 1991 [Pearl, 2000 or faith-
ful [Spirtes, Glymour, & Scheines, 1993Moreover, since
P,(xz,w,y) is identifiable fromP(v) in the graph in ques-
tion, we can rule out the edge without relying on interven-
tions.

In the remainder of this paper, we will show how to
achieve a full enumeration of conditional independencies i
identifiable interventional distributions entailed by #tauc-
ture of the graph, and how to use these independencies to
infer features of the graph.

Preliminaries

The fundamental object of causal inference is the prolsabili
tic causal model.

Definition 1 A probabilistic causal model (PCM) is a tuple
M = (U,V,F, P(u)), where

U is a set of background or exogenous variables, which
cannot be observed or experimented on, but which can
influence the rest of the model.

Vis aset{V1,...,V,} of observable or endogenous vari-
ables. These variables are considered to be functionally
dependent on some subsetlaf V.

F is a set of functiong f1, ..., .} such that eacly; is a
mapping from a subset &f U V \ {V;} to V;, and such
that| J F is a function fromU to V.

P(u) is a joint probability distribution over the variables
inU.

PCMs represent causal relationships between observable
variables invV by means of the functioris; a given variable
V; is causally determined bj; using the values of the vari-
ables in the domain of;. Causal relationships entailed by
a given PCM have an intuitive visual representation using a
graph called a causal diagram. As mentioned in the introduc-
tion, causal diagrams contain two kinds of edges. Directed
edges are drawn from a variahlé to a variableV; if X
appears in the domain of;. Bidirected edges are always
drawn between observable variables, and only when their
corresponding functions both make use of the same back-
ground variable. In this paper, we consider models which
induce acyclic graphs whetB(u) = [], P(u;), and each
U, has at most two observable children. A graph obtained in
this way from a model is said to be induced by said model.

The importance of causal diagrams stems from the fact
that conditional independencies between observable vari-
ables correspond to graphical features in the diagrameSinc



the rest of the paper will rely heavily on this correspon-
dence, we introduce probabilistic and graphical notions we
will need to make use of it. The key probabilistic notion we
will use is the standard definition of condition independenc
A set X is independent off conditional onZ (written as

X 1L Y|2Z)if P(xly,z) = P(x|z). We will use the following
graph-theoretic notatiomn(.)s, De(.)a, Pa(.)¢ stand for

the set of ancestors, descendants and parents of a given vari

able setinG. The setsAn(.)¢ andDe(.)¢ will be inclusive,

in other words, for everyin(X)q, De(X)a, X € An(X)a
and X € De(X)q. A graph Gy stands for the subgraph
of G containing only nodes iX and edges between these
nodes. We denote a maximal set of nodeS ipairwise con-
nected by bidirected paths a C-compondiin, 2002. We
denote the C-component containing a given nodén G

by C(X). We will drop the graph subscript if the graph is
assumed or obvious.

It's possible to show that whenever edges in a causal
diagram are drawn according to the above rules, the dis-
tribution P(u,v) induced by P(u) and F factorizes as
[Ix,evou P(zi|Pa(x;)). This factorization implies that
conditional independencies iff(u,v) are mirrored by a
graphical notion of “path blocking” known as d-separation
[Pearl, 1988

Definition 2 (d-separation) A pathp in G is said to be d-

separated by a set if and only if either

1 p contains one of the following three patterns of edges:
I —-M—J,I <M — J,orl «— M — J, such that
MeZ or

2 p contains one of the following three patterns of edges
(called colliders): Il — M «— J, I & M «— J, I <
M « J, such thatDe(M)g NZ = .

Two setsX, Y are said to be d-separated giv@rgwritten
X L Y|Z)in Gifall paths fromX to Y in G are d-separated

by Z. Paths or sets which are not d-separated are said to
be d-connected. The relationship between d-separation and

conditional independence is provided by the following well
known theorem.

Theorem 1 Let G be a causal diagram. Then in any model
M inducingG, if X L Y|Z, thenX 1L Y|Z.

Using d-separation as a guide, we can look for a condi-
tioning setZ which renders given se¥ andY independent
by only examining the causal diagram, without having to in-
spect the probability distributioR (v).

In this paper, we examine probabilistic independencies
in distributions resulting from not only conditioning but a
second, powerful operation of intervention, defined in the
previous section. An intervention is a more powerful op-
eration than conditioning, for the purposes of determining
probabilistic independence. This is because conditioaimg

a variable can d-separate certain paths, but also d-connec

certain paths (due to the presence of colliders). On the othe
hand, interventions can only block paths, since incoming
arrows are cut by interventions, destroying all colliders i
volving the intervened variable. Moreover, if we restriat-o
selves to interventions identifiable from the observationa
distribution, we don’t pay the price for this power, in a sens

that we don'’t use any information other than the observa-
tional distribution, and the causal graph.
Identifiability can be defined formally as follows.

Definition 3 (identifiability) Consider a class of modelé
with a descriptionT’, and two objectg) and # computable
from each model. | say that is #-identified inT if ¢ is
uniquely computable frohin any M € M. In other words
all models inM which agree o will also agree onp.

If ¢ is 6-identifiable inT", we writeT', 6 +;; ¢. Otherwise,
we write T, 0 /;4 ¢. In our case, the model clagscorre-
sponds to a causal graphis the observational distribution
P(v), and¢ is the causal effecP(y|do(x)) of interest. For
example, in Fig. 1 (@)P(v), G Fiqg P.(x, w,y).

We call conditional independencies in interventional dis-
tributionsdormant to emphasize the fact that such indepen-
dencies are not apparentin a given observational diskpitout
without causal assumptions that make interventions a mean-
ingful operation.

Definition 4 (dormant independence) A dormant (condi-
tional) independence exists between variable et in
P(v) obtained from the causal grapfi if there exist vari-
able set<Z, W such thatP(y|x, z, do(w)) = P(y|z do(w)).
Furthermore, ifP(v),G F,q P(Y,X|z,do(w)), the dormant
independence is identifiable and we denote thiasl,,

Y|Z. If an identifiable dormant independence does not exist
betweerX,Y we writeX /., Y.

We can extend the definition of d-separation in a straight-
forward way to mirror identifiable dormant independencies.

Definition 5 (d*-separation) Let G be a causal diagram.
Variable set, Y are d*-separated ir; givenZ, W (written
X Lw Y|Z), if we can find setg, W, such thatX L Y|Z in
Gw, and P(v), G t;q P(Y,X|z,do(w)). If X, Y are not d*-
separable, we writX /., Y.

Note that despite the presence of probability notation in
the definition, this is a purely graphical notion, since iden
tification can be determined using only the graph. We can
prove a theorem analogous to Theorem 1 for dormant inde-
pendencies, which allows us to reason about dormant inde-
pendencies graphically.

Theorem 2 LetG be a causal diagram. Then in any model
M inducingG, if X L, Y|Z, thenX 1Ly Y|Z.

Proof: This follows from the fact thatiw is the graph in-
duced by the submodélf,,, and any submodel is just an
ordinary causal model where Theorem 1 holds. o

In this paper we seek to characterize cases when arbitrary
disjoint sets can be d*-separated, and therefore to claaract
ize identifiable dormant independencies among sets which
are entailed by causal graphs. The next section will conside

tthe simpler version of the problem wheXeandY are sin-

gleton sets.

D*-separation Among Singletons

To characterize identifiable dormant independence between
X andY, it makes sense to consider the “difficult” neigh-
borhoods ofX, Y, in a sense that no intervention on those



functionFind-MACS (G, Y)
INPUT: G, a causal diagrany, a node inG.
OUTPUT.: Ty, the MACS forY in G.

11f(3X € An(Y)o),
returnFind-MACS (G 45, (v), Y)-

2If(3X €CY)g),
returnFind-MACS (G ¢y ), Y).

3 Else, returr.

Figure 2: An algorithm for computing the MACS &f.

neighborhoods is identifiable. We call such neighborhoods
ancestral confounding sets.

Definition 6 LetY be a variable inG. A setS is ancestral
confounded (ACS) fdr if S = An(Y)gs = C(Y)gs-

Ancestral confounded sets are a “difficult” neighborhood
due to the following result.

Theorem 3 Let S be ancestral confounded faf. Then for
anys' C S\ {Y}, P(V),G tia P(yldo(s")).

Proof: It's trivial to construct a Y-rooted C-tre€ [Shpitser
& Pearl, 2006b from S. But it is known that for any set
S’ of nodes inT that does not contaity’, P(v),G /4
P(y|do(s")) [Shpitser & Pearl, 2006b =

In our search for suitable variables to intervene on, in
order to separat& andY, we can exclude ancestral con-
founded sets foX andY. But there can be potentially many
such sets. It would be preferable to exclude all such sets at
once. Fortunately, the following results allows us to aceom
plish just that.

Theorem 4 For any variableY in G, there exists a unique
maximum ancestral confounded set (MACR)

Proof outline: The key step is to note that if two maximal
ancestral confounded sets fior exist, then their union is
also ancestral confounded. o

T, contains all ancestral confounded sets Yarwhich
means if we can find an efficient procedure for computing
T,, we could rule out all “difficult” sets from consideration
at once. Such an algorithm exists, and is given in Fig. 2.

Theorem 5 Find-MACS(G, Y)) outputs the MACS of in
polynomial time in the size of the graph.

Proof outline:lt's easy to see that the outputleihd-MACS
is an ACS if given a singleton input. To see that it is maxi-
mum, we note thaEind-MACS can never remove elements
from T}, at any stage. The algorithm is polynomial since de-
termining An(.) andC(.) sets can be done in polynomial
time in the size of the graph, and each recursive call elimi-
nates at least one node from the graph. o
One problem with a MACST, is that interventions in
T, are not identifiable, and conditioning i, does not d-
separate paths frofi out of T, which consist entirely of
colliders, although all paths with a non-collider T are
blocked. In order to block some all-collider paths out of
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Figure 3: (a) A graph wher& 1. Y|W,K,L,N. (b) A
graphwhereX 1, Y, X 1, L,butX t,{Y,L}.

T,,T, we attempt to intervene on the sBu (T, U T}) \

(T, U T,). It turns out these interventions are sufficient to
create identifiable dormant independence among singletons
if one exists.

Theorem 6 LetT,, T, be the MACSs ok, Y. Letl,, =
Pa(T,UTy)\ (T, UTy). Thenif eithetX is a parent ofl},,
Y is a parent ofT, or there is a bidirected arc betweéh,
anT,, thenX,Y are not d*-separable. Otherwisgl' L
YT, UT, \{X,Y}.

Proof outline:If X is a parent off, (or vice versa), or there
is a bidirected arc betweéhi, andT,, then there exists an
inducing path betweeX andY’, which means conditioning
cannot separat&¥ andY. However, we know from results in
[Shpitser & Pearl, 2004and[Shpitser & Pearl, 200§ hat
conditional effectsP(y|z) are equivalent to unconditional
effects of the formP (y'), and such effects are not identifi-
able ifY € y’, andx’ C T,,. This means interventions also
don't help.

To show the other direction, note that a d-connected path
cannot start with outgoing arrows from bakhandY (else
such a path must run into a collider, or an intervened node).
Without loss of generality, say the path crosggs\ {X}.

A directed arrow leaving’, is blocked either ai’, or I, ,,
while a bidirected arrow cannot connectp directly, and
otherwise must be blocked &t . o

To illustrate this theorem, consider the graph in Fig. 3.
Here,T, = {K,L,N,Y}, andT, = {W, X }. By Theorem
6,X L.Y|W,K,L, N.

Thus, the MACSs turn out to be key structures for de-
termining identifiable dormant independence between two
variables. In the next section, we generalize our results to
handle dormant independence among sets of variables.

ia:,y

D*-separation Among Sets

To determine identifiable dormant independencies between
setsX,Y, we want to find a multi-node generalization of
MACSs. Unfortunately, we are presented with the following
problem. Assum& = {K, L} such thatX’ L, L|Z. In this
case, there really isn't a difficult neighborhood adjacent t
both K and .. An appropriate generalization of MACSs to

a setY, then, must partitioly such that a difficult neighbor-
hood can be defined for each subset in the partition.

Definition 7 LetY be a variable set irfy. A setS is ances-
tral confounded folY if for everyY € Y, S = An(Y)g, =
C(Y)GS'



Note that ancestral confounded sets are not guaranteed tofunctionFind-AC-Partition (G, Y) _
exist for sets of nodes. However, if they do exist for some set INPUT: G., a causal diagrany, a set of nodes id-.
finiteness of graphs we consider guarantees the existence of©UTPUT:p, the unique partition of into AC-components,

a maximal ancestral confounded set. We want to define an
appropriate partition of an arbitrary set, where each efgme
of the partition has an ACS. We will show the following def-
inition will work for this purpose.

Definition 8 (AC-component) A setY of nodes inG is an
ancestral confounded component (AC-component) if

e Y ={Y}, eq.Yisasingleton set, or
e Y is a union of two distinct AC-components, Y, which

have ancestral confounded sefg, S», respectively, and
S1, 52 are connected by a bidirected arc

Lemma 1 Every AC-component has an ancestral con-
founded set.

Proof: If an AC-component is a singleton, this is obvious.

Otherwise)Y is a union of AC-components;, Y, with an-

cestral confounded sefs, Ss. LetS = S;U.Ss. Since there

is a bidirected arc fron§; to Sy, forevery nodeX € S, S =

C(X)¢,. Moreover, by constructio = An(Y)g,. Thus,

S is an ancestral confounded set for o
AC-components behave just as singleton sets do with re-

spect to ACS. In fact, there is a unique MACS for every

AC-component, and the algorithm to find it is the familiar

Find-MACS with set inputs.

Theorem 7 LetY be an AC-component. Then there exists a
unique MACSIy for Y, and Find-MACS-on-set (shown in
Fig. 4) finds it in polynomial time in the size of the graph.

Proof: The proof is a straightforward generalization of the
proof of Theorems 4 and 5. o

What we have shown is that certain special sets of nodes
have a MACS, just as singletons do. While we cannot show
the same for arbitrary sets (consider a set of two nodes not
in the same C-component), we can show the next best thing,
namely that there exists a unique partition of any set into
AC-components.

Lemma 2 LetY be a variable sety” € Y. Then there is a
unigue maximum AC-component which both cont&irzsd
is a subset of.

Proof: Some such AC-component exists, sincatself is a
trivial AC-component. Since is finite there is a maximal
such AC-component. Assume there are two distinct maxi-
mal AC-components containing which are subsets of,
sayYq,Ys. Let Sy, So be the corresponding MACSs. Since
these AC-components have the nddén common,S; and

S> have a node in common, and so are connected by a bidi-
rected arc. This implie¥; UY is an AC-component, which

is a contradiction. o

Theorem 8 Any variable setfY has a unique partitiorp,
called the AC-partition, where each eleméhin p is a max-
imal AC-component in a sense that no supersef wfhich
is also a subset of is an AC-component.

Proof: To see that there is a unique AC-partitipn start
with some nodeY” € Y, find it's unigue maximum AC-
component which is still a subset ¥f and repeat the pro-

and the unique MACJ5 for eachS € P.

1 Letp be the partition off containing all singleton subsets
of Y.

2 Foreachlt €V, letT, = Find-MACS (G, Y).

3 Repeat until no merges are possibled¥Yf;, Y, € p such
that7y ,Ty, share a bidirected arc, merye, Y into Y’

in p, and letTy, = Find-MACS-on-set(G, Y’).
4 returnp, and the set of MACSs for each elemenpin

functionFind-MACS-on-set(G, Y)
INPUT: G, a causal diagran¥, an AC-component il
OUTPUT:Ty, the MACS forY in G.

11f(3X ¢ An(Y)eo),
returnFind-MACS-on-set(G 4,,(y), Y)-

21f(FY eY,IX € C(Y)q),
returnFind-MACS-on-se{(G ¢ (y), Y).

3 Else, returr.

Figure 4: An algorithm for computing the AC-partition (and
the corresponding sets of MACSs) 6f

AC-component. The set of AC-components obtained in this
way is a partition where each element is a maximal AC-
component. Since each AC-component is also maximum
and uniquep is unique. o

There is a simple algorithm, shown in Fig. 4, which, given
an arbitrary sev, finds the unique AC-partitiop of Y, and
finds the MACS for each AC-componentin

Theorem 9 Find-AC-Partition(G, Y) outputs the unique
AC-partition of Y, and the set of MACSs for each element
in the partition. Moreover, it does so in time polynomial in
the size of5.

Proof outline: The output ofFind-AC-partition is a parti-
tion p of Y where each element is an AC-component. It's
a consequence of Lemma 2 that the AC-partitionYofs
coarser tham. If the AC-partition is not equal tg, it's not
difficult to derive a contradiction using the definition of AC
components, and the structurerand-AC-Partition . To see
that the algorithm is polynomial, note that each invocatibn
Find-MACS andFind-MACS-on-setterminates in polyno-
mial time, as those algorithms are themselves polynomial.
Moreover, the set merge operations performed can be easily
implemented in polynomial time. Finally, the total number
of set merges performed by the algorithm is bounded by the
number of nodes in a binary tree with the number of leaves
equal to the number of nodes @ This means the number
of mergesiis linear in the size 6f, and the overall algorithm
is polynomial in the size of7. o

We want to prove a result analogous to Theorem 6 for sets.

cess for the nodes which have not been made part of some To do so, we must generalize the notion of an inducing path



to sets. -l

Definition 9 (inducing paths for sets) Let X, Y be sets of /,Vﬁ”_,j_gl

variables inG. A pathp betweenX andY is called an in- Xe / L

ducing path if the following two conditions hold ° A" ‘\:.

e The path forms a collider for every non-terminal node hN.K ,/‘ L AN

e Every non-terminal node is an ancestonobr Y.

Not surprisingly, inducing paths characterize d-

separability for sets just as they do for singleton varigble Figure 5: (a) The true causal graph. (b) A possible valid

Theorem 10 X cannot be d-separated froiiin G if and graph for the same domain.
only if there exists an inducing path froxito Y in G,
Proof outline:If there is no inducing path frord to Y, then Testing Causal Structure

A = An(XUY)\ XUY wil serve as a d-separating set. ~ To illustrate the usefulness of identifiable dormant indepe
Any path not involving nodes i must contain a collider  dencies for induction and testing of causal structures, we

and so isn’'t d-connecting. Since we conditionAnthe d- consider the problem of detecting if certain edges in a par-
connecting path must contain only colliders, but this cantr  ticular causal graph are extraneous. We call graphs where
dicts the absence of an inducing path. every edge is either correct or extraneous valid.

If there is an inducing path, we can establish by case anal-

ysis on this path thak £ Y. The key observation is that Definition 10 (valid graph) A causal graph( is valid for a

model) if every edge in the graph induced by is present

regardless of what set of nodes we condition on, it is al- ; G
ways possible to recover a path which behaves as an induc- ] ) )
ing path, which mean¥ andY stay d-connected. o Itis possible to rule out out the presence of certain extra-
We can now prove the generalization of Theorem 6 for Neous edges using conditional independence tests. In order

sets. The idea is to find the AC-partitionXfu Y, and gen- {0 d0 so, an additional property fzfithfulnesss assumed. In
eralize the two conditions for d*-separability in Theorem 6 faithful models, lack of d-separation implies dependefice.
for this AC-partition. otherwordsX L Y|Z iff X 1L Y|Z. This property allows us

to reach graphical conclusions from probabilistic premise
Theorem 11 Let X, Y be arbitrary sets of variables. Let For instance, the presence of a conditioningzstich that
be the AC-partition oK U Y. Then if either elements of both X 1l Y|Z implies X andY cannot share an edge. System-
X and Y share a single AC-component jn or some ele- atic use of conditional independence tests to rule out adja-
ment ofX is a parent of the MACS of some AC-component cencies in this way is an important part of causal inference
containing elements of (or vice versa), therX cannot be algorithms such akC [Verma & Pearl, 199 [Pearl, 200D
d*-separated fronl. Otherwise, letl;, be the union of all andFCI [Spirtes, Glymour, & Scheines, 1903
MACSs of elements in and letl, = Pa(T},) \ T,. Then, The advantage of dormant independencies is their ability
X L, YT, \ (XUY). to rule out edges even if all conditional independence tests

fail. For instance, it is possible to rule out the edge from
X to Y in Fig. 5 (b) as extraneous X 1L, Y, though

no conditional independence test can succeed in doing the
same, since there is an inducing path framo Y.

However, in order to reach graphical conclusions from
ormant independencies, we need to extend the faithfulness
property to hold in interventional settings.

Proof outline: If the above conditions hold, the inducing
path betweenX andY exists by definition. Thus, condi-
tioning will not help to separatX andY. To see that in-
terventions also will not help, we can show by induction on
AC-component structure that the effect of any subset of the d
MACS of any AC-component on that AC-component cannot
be identified, which implies, using the resultd 8hpitser & o ] ] ]
Pearl, ZOOGhV\/e appea|ed toin the proof of Theorem 6, that Definition 11 (experlmental falthfulness) A model M is

interventions also do not help. experimentally faithful, o, -faithful if every submodeliy
The proof of the other direction follows the same lines as ©f M is faithful (that is d-connectedness @# implies de-
the proof in Theorem 6. o pendence).

We conclude this section by noting that just as was the  Experimental faithfulness states that no “numerically co-
case with conditional independence, identifiable dormanti  incidental independencies” are introduced by interversio
dependence among subsets does not entail dormantindepenwe use dormant independence tests to rule out extraneous
dence on sets. For example, in the graph shown in Fig. 3 (b), edges in valid graphs of experimentally faithful models. To
XL, YV, X 1L butX f,{Y,L}. test if an edge betweeki andY is extraneous, we must find

Having given a complete solution to the problem of deter- setsZ, W such thatX 1, Y|Z. A naive brute-force ap-
mining identifiable dormantindependence implied by causal proach to this problem is intractable since we must try all
graph via d*-separation, we give an example of how such subsetsZ, W. However, if we assume the edge we are test-
independencies can be used to test aspects of the causal diaing is absent in the graph, we can useRired-MACS algo-
gram. rithm to propose a dormant independence to test in polyno-



functionTest-Edge$G, P(v))

INPUT: G, a valid graph of an experimentally faithful
modelM, P(v), a corresponding probability distribution.
OUTPUT: ¢/, a valid graph with some extraneous edges
removed.

e Let 7 be a topological order of edges ¥, where
(X,)Y) = W, 2) if XY € An({W,Z})c. Let G’
equalG.

e ForeveryedgéX,Y) inm, if we can find set&, W using
Theorem 6 such that 1, Y|ZinG'\ (X,Y), and
X Uy Y|Zin P(v),G', remove(X,Y) fromG'.

e returnG’.

Figure 6: An algorithm for testing edges in valid graphs.

mial time. Since testing this independence does not require
we perform any interventions, the test can be performed on
the observational distribution alone. There is an addition
complication, namely that certain edges ancestra tand

Y may themselves be extraneous. This may result in a situ-
ation whereX [, Y if the ancestral extraneous edges are

present, while a dormant independence can be established if

they are removed. Fortunately, since we restrict oursatves
acyclic graphs, we can establish a topological order among

edges based on ancestry, and test for extraneous edges using

this order. The resulting algorithm is shown in Fig. 6
It is not difficult to establish thatest-Edgess sound.

Theorem 12 Test-Edges terminates in polynomial time in
the size of the graph, and any edge it removes ff8nvalid
for an experimentally faithful modél/, is extraneous.

Proof: The first claim is simple to establish since all input
graphs are acyclic, and using Theorem 7. Gebe the true
causal graph. Assume an edg€, Y) is not extraneous but
is removed fronG’ by Test-Edges Assume setZ, W wit-
ness the removal. But' 1L, Y'|Z, and since the submodel
M,, of M is faithful, this implies(X,Y) must be extrane-
ous. O

To illustrate the operation of the algorithm, consider the
valid graphG’ in Fig. 5 (b). If the graplG in Fig. 5 (a) rep-
resents the true causal modedst-Edgeswill be able to re-
move the edgegX, Y) and(X, L), but notthe edgéL,Y").
Inthecase ofX,Y), X L, YinG'\(X,Y)and the corre-

sponding dormant independence holds since the true model

inducesG. Similarly, for (X,L), X 1, LinG'\ (X,L)

and the corresponding dormant independence holds. On the

other hand, even thoudl, L) is an extraneous edgégst-
Edgescannot remove it, since the algorithm cannot estab-
lish dormant independence betwegrand L, even though
P(y,lldo(z, k)) is identifiable in the true model. The intu-
ition here is that this identification relies on the absenfce o
the very edge we are trying to test (sinBéy, l|do(z, k)) is
not identifiable inG”).

Similarly, if the graphG shown in Fig. 3 (a) is the true

causal graph, and the valid graph contains an extra edge from

X to Y, Test-Edgeswill be able to remove this edge since

X L, YIW,K,L,N in G, andP(v),G" ;s P,(v\ 2),
whereG’ is G plus any edge fronX toY'.

Conclusions

In this paper we consider dormant independencies, that is
conditional independencies that surface in interventiona
distributions. We give a complete algorithm for the problem
of determining identifiable dormant independencies ezdail

by the causal graph, in other words determining if two sets
of random variables can be rendered independent by con-
ditioning in some identifiable interventions. We also pro-
vide a characterization of graphical structures which gnév
identifiable dormant independencies. We have also demon-
strated the usefulness of the notion of dormant independen-
cies for testing and induction of causal structure by giving
an algorithm which uses constraints entailed by identiéabl
dormant independencies to remove extraneous edges from
causal diagrams.

Straightforward applications of dormant independencies
rely on some knowledge of the graph in order to conclude
identification. Extending our results to the situations mehe
the underlying graph is not available, for instance in otder
do causal induction, is an interesting area of future work.
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