
Dormant Independence

Ilya Shpitser and Judea Pearl
Cognitive Systems Laboratory

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA. 90095
{ilyas, judea}@cs.ucla.edu

Abstract

The construction of causal graphs from non-experimental
data rests on a set of constraints that the graph structure
imposes on all probability distributions compatible with the
graph. These constraints are of two types: conditional inde-
pendencies and algebraic constraints, first noted by Verma.
While conditional independencies are well studied and fre-
quently used in causal induction algorithms, Verma con-
straints are still poorly understood, and rarely applied. In
this paper we examine a special subset of Verma constraints
which are easy to understand, easy to identify and easy to ap-
ply; they arise from “dormant independencies,” namely, con-
ditional independencies that hold in interventional distribu-
tions. We give a complete algorithm for determining if a dor-
mant independence between two sets of variables is entailed
by the causal graph, such that this independence is identifi-
able, in other words if it resides in an interventional distribu-
tion that can be predicted without resorting to interventions.
We further show the usefulness of dormant independencies
in model testing and induction by giving an algorithm that
uses constraints entailed by dormant independencies to prune
extraneous edges from a given causal graph.

Introduction
Graphical causal models[Pearl, 2000] embody both causal
and probabilistic assumptions. The vertices incausal
graphs, the carriers of these assumptions, correspond to vari-
ables, while the absence of an edge between two variables
implies that those two variables are conditionally indepen-
dent given some other set of variables. Probabilistic inde-
pendence between sets of variables in a causal model is im-
plied by the well-known criterion of path blocking called d-
separation[Pearl, 1988]. Conversely, independence implies
corresponding path blocking in the graph in a special class
of models termedfaithful [Spirtes, Glymour, & Scheines,
1993] or stable[Pearl & Verma, 1991], [Pearl, 2000].

Graphs constrain observable distributions in two ways,
either by requiring that certain conditional independencies
hold, or imposing other restrictions, termed Verma con-
straints [Verma & Pearl, 1990], [Tian & Pearl, 2002b],
which are more difficult to characterize. The constraints in-
duced on the graph by conditional independencies are al-
ready being utilized by causal induction algorithms such as

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

IC [Verma & Pearl, 1990], [Pearl, 2000], andFCI [Spirtes,
Glymour, & Scheines, 1993]. A better understanding of
Verma constraints may lead to improvements of these algo-
rithms.

In this paper, we examine a special subset of Verma con-
straints with two nice properties. Firstly, these constraints
have a natural interpretation as being due to conditional in-
dependencies in distributions resulting from interventions
[Pearl, 2000] (we call such independenciesdormant). Sec-
ondly, these constraints have the potential to imply features
of the causal graph, specifically the absence of certain edges.

Dormant independencies may imply constraints on the
observable distribution, if the interventional distribution in
which they reside isidentifiable[Pearl, 2000], in other words
if it can be predicted from observational studies. Our contri-
bution is twofold. We develop a polynomial time algorithm
which, given two arbitrary disjoint sets of observable vari-
ables, returns an identifiable witness for the dormant inde-
pendence, in other words an identifiable interventional dis-
tribution in which these sets are conditionally independent.
Moreover, we show that our algorithm is complete for de-
termining all identifiable dormant independencies entailed
by the causal graph, in a sense that if the algorithm fails,
then any identifiable dormant independence is “coinciden-
tal,” and not due to the structure of the graph. Our algo-
rithm is an improvement over a previous algorithm in[Tian
& Pearl, 2002b], which enumerated only unconditional dor-
mant independence.

We illustrate the applicability of identifiable dormant in-
dependencies for model testing and induction by giving an-
other algorithm which, given a causal graph where every
edge is either correct or extraneous (we call such graphs
valid), uses constraints induced by dormant independencies
to systematically rule out extraneous edges.

Our paper is organized as follows. The next section gives
an example of a Verma constraint, and shows how this con-
straint arises due to conditional independence in identifiable
interventional distributions. Section 3 goes over the math-
ematical preliminaries necessary for causal inference. Sec-
tions 4 and 5 develop the algorithm for finding witnesses
for dormant independence for pairs of singletons, and pairs
of arbitrary sets, respectively. Section 6 introduces the algo-
rithm which uses dormant independencies for testing edges.
For exposition reasons, some of the longer proofs are found

Kaoru
Text Box
Shorter version to appear in AAAI-08.

Kaoru
Text Box
TECHNICAL REPORTR-340-LApril 2008

X Z YW X Z YW

(a) (b)

Figure 1: (a) The “P” graph. (b) The graph of the submodel
Mz derived from the “P” graph.

in the Appendix.

Verma Constraints as Dormant
Independencies

Consider the causal graph in Fig. 1 (a). Any model compati-
ble with this graph imposes certain constraints on its observ-
able distributionP (x, w, z, y). Some of these constraints are
in the form of conditional independencies. For instance, in
any such modelX is independent ofZ given W , which
meansP (x|w) = P (x|w, z). However, there is an addi-
tional constraint implied by this graph which cannot be ex-
pressed in terms of conditional independence in the observ-
able distribution. This constraint, noted in[Verma & Pearl,
1990], states that the expression

∑
w P (y|z, w, x)P (w|x) is

a function ofy andz only, not ofx. The key insight that mo-
tivates this paper is that this constraint does emanate from
conditional independencies, albeit not the original observ-
able distribution, but in a distribution resulting from an in-
tervention.

An intervention, writtendo(x) [Pearl, 2000], is an opera-
tion which forces variablesX to attain valuesx regardless of
their usual behavior in a causal model. The result of apply-
ing an interventiondo(x) on a modelM with a set of observ-
able variablesV is asubmodelMx, with stochastic behavior
of variables other thanX described by aninterventional dis-
tribution written asPx(v) or P (v|do(x)). The graph induced
by Mx is almost the same as the graph induced byM , ex-
cept it is missing all arrows incoming toX, to represent the
fact that an intervention sets the values ofX independently
of its usual causal influences, represented by such arrows.
We will denote such a graph asGx. Following[Pearl, 2000],
we call the set of all possible interventional distributionsP∗.
In other words,P∗ = {Px(v \ x)|x ⊆ v}.

A key idea in causal inference is that in certain causal
models, some interventional distributions can be predicted
or identified from the observational distribution. What we
will show is that it is ability to identify interventional dis-
tributions from observational distributions that gives rise to
Verma constraints, including the constraint in the P graph.

Consider a modelM inducing the graph in Fig. 1 (a). If
we intervene onZ in M , we obtain the submodelMz induc-
ing the graph in Fig. 1 (b). The distribution of the unfixed ob-
servables in this submodel,Pz(x, w, y), is identifiable from
P (x, w, z, y) and equals toP (y|z, w, x)P (w|x)P (x) [Tian
& Pearl, 2002a]. Moreover, by d-separation[Pearl, 1988],
the graph in Fig. 1 (b) implies thatX is independent of
Y in Pz(x, w, y), or Pz(y|x) = Pz(y). But it’s not hard
to show thatPz(y|x) is equal to

∑
w P (y|z, w, x)P (w|x),

which means this expression depends only onz andy. Thus,
the identifiability ofPz(x, w, y) leads to a constraint on ob-
servational distributions in the original, unmutilated model
M .

Enumerating constraints of this type can be used to infer
features of the causal graphs, just as conditional indepen-
dencies are used for this purpose by causal induction algo-
rithms. For example, establishing thatX is independent of
Y in Pz(x, w, y) allows us to conclude that the causal graph
lacks an edge betweenX andY , assuming that the submodel
Mz is stable[Pearl & Verma, 1991], [Pearl, 2000], or faith-
ful [Spirtes, Glymour, & Scheines, 1993]. Moreover, since
Pz(x, w, y) is identifiable fromP (v) in the graph in ques-
tion, we can rule out the edge without relying on interven-
tions.

In the remainder of this paper, we will show how to
achieve a full enumeration of conditional independencies in
identifiable interventional distributions entailed by thestruc-
ture of the graph, and how to use these independencies to
infer features of the graph.

Preliminaries
The fundamental object of causal inference is the probabilis-
tic causal model.

Definition 1 A probabilistic causal model (PCM) is a tuple
M = 〈U, V, F, P (u)〉, where

U is a set of background or exogenous variables, which
cannot be observed or experimented on, but which can
influence the rest of the model.
V is a set{V1, ..., Vn} of observable or endogenous vari-
ables. These variables are considered to be functionally
dependent on some subset ofU ∪ V.
F is a set of functions{f1, ..., fn} such that eachfi is a
mapping from a subset ofU ∪ V \ {Vi} to Vi, and such
that

⋃
F is a function fromU to V.

P (u) is a joint probability distribution over the variables
in U.

PCMs represent causal relationships between observable
variables inV by means of the functionsF: a given variable
Vi is causally determined byfi using the values of the vari-
ables in the domain offi. Causal relationships entailed by
a given PCM have an intuitive visual representation using a
graph called a causal diagram. As mentioned in the introduc-
tion, causal diagrams contain two kinds of edges. Directed
edges are drawn from a variableX to a variableVi if X
appears in the domain offi. Bidirected edges are always
drawn between observable variables, and only when their
corresponding functions both make use of the same back-
ground variable. In this paper, we consider models which
induce acyclic graphs whereP (u) =

∏
i P (ui), and each

Ui has at most two observable children. A graph obtained in
this way from a model is said to be induced by said model.

The importance of causal diagrams stems from the fact
that conditional independencies between observable vari-
ables correspond to graphical features in the diagram. Since
the rest of the paper will rely heavily on this correspon-
dence, we introduce probabilistic and graphical notions we

will need to make use of it. The key probabilistic notion we
will use is the standard definition of condition independence.
A set X is independent ofY conditional onZ (written as
X ⊥⊥ Y|Z) if P (x|y, z) = P (x|z). We will use the following
graph-theoretic notation.An(.)G, De(.)G, Pa(.)G stand for
the set of ancestors, descendants and parents of a given vari-
able set inG. The setsAn(.)G andDe(.)G will be inclusive,
in other words, for everyAn(X)G, De(X)G, X ∈ An(X)G

and X ∈ De(X)G. A graphGx stands for the subgraph
of G containing only nodes inX and edges between these
nodes. We denote a maximal set of nodes inG pairwise con-
nected by bidirected paths a C-component[Tian, 2002]. We
denote the C-component containing a given nodeX in G
by C(X)G. We will drop the graph subscript if the graph is
assumed or obvious.

It’s possible to show that whenever edges in a causal
diagram are drawn according to the above rules, the dis-
tribution P (u, v) induced by P (u) and F factorizes as∏

Xi∈V∪U P (xi|Pa(xi)). This factorization implies that
conditional independencies inP (u, v) are mirrored by a
graphical notion of “path blocking” known as d-separation
[Pearl, 1988].

Definition 2 (d-separation) A pathp in G is said to be d-
separated by a setZ if and only if either

1 p contains one of the following three patterns of edges:
I → M → J , I ↔ M → J , or I ← M → J , such that
M ∈ Z, or

2 p contains one of the following three patterns of edges
(called colliders):I → M ← J , I ↔ M ← J , I ↔
M ↔ J , such thatDe(M)G ∩ Z = ∅.

Two setsX, Y are said to be d-separated givenZ (written
X ⊥ Y|Z) in G if all paths fromX to Y in G are d-separated
by Z. Paths or sets which are not d-separated are said to
be d-connected. The relationship between d-separation and
conditional independence is provided by the following well-
known theorem.

Theorem 1 LetG be a causal diagram. Then in any model
M inducingG, if X ⊥ Y|Z, thenX ⊥⊥ Y|Z.

Using d-separation as a guide, we can look for a condi-
tioning setZ which renders given setsX andY independent
by only examining the causal diagram, without having to in-
spect the probability distributionP (v).

In this paper, we examine probabilistic independencies
in distributions resulting from not only conditioning but a
second, powerful operation of intervention, defined in the
previous section. An intervention is a more powerful op-
eration than conditioning, for the purposes of determining
probabilistic independence. This is because conditioningon
a variable can d-separate certain paths, but also d-connect
certain paths (due to the presence of colliders). On the other
hand, interventions can only block paths, since incoming
arrows are cut by interventions, destroying all colliders in-
volving the intervened variable. Moreover, if we restrict our-
selves to interventions identifiable from the observational
distribution, we don’t pay the price for this power, in a sense
that we don’t use any information other than the observa-
tional distribution, and the causal graph.

Identifiability can be defined formally as follows.

Definition 3 (identifiability) Consider a class of modelsM
with a descriptionT , and two objectsφ andθ computable
from each model. I say thatφ is θ-identified inT if φ is
uniquely computable fromθ in anyM ∈ M. In other words
all models inM which agree onθ will also agree onφ.

If φ is θ-identifiable inT , we writeT, θ ⊢id φ. Otherwise,
we writeT, θ 6⊢id φ. In our case, the model classT corre-
sponds to a causal graph,θ is the observational distribution
P (v), andφ is the causal effectP (y|do(x)) of interest. For
example, in Fig. 1 (a),P (v), G ⊢id Pz(x, w, y).

We call conditional independencies in interventional dis-
tributionsdormant, to emphasize the fact that such indepen-
dencies are not apparent in a given observational distribution
without causal assumptions that make interventions a mean-
ingful operation.

Definition 4 (dormant independence)A dormant (condi-
tional) independence exists between variable setsX, Y in
P (v) obtained from the causal graphG if there exist vari-
able setsZ, W such thatP (y|x, z, do(w)) = P (y|z, do(w)).
Furthermore, ifP (v), G ⊢id P (y, x|z, do(w)), the dormant
independence is identifiable and we denote this asX ⊥⊥w
Y|Z. If an identifiable dormant independence does not exist
betweenX, Y we writeX 6⊥⊥∗ Y.

We can extend the definition of d-separation in a straight-
forward way to mirror identifiable dormant independencies.

Definition 5 (d*-separation) Let G be a causal diagram.
Variable setsX, Y are d*-separated inG givenZ, W (written
X ⊥w Y|Z), if we can find setsZ, W, such thatX ⊥ Y|Z in
Gw, andP (v), G ⊢id P (y, x|z, do(w)). If X, Y are not d*-
separable, we writeX 6⊥∗ Y.

Note that despite the presence of probability notation in
the definition, this is a purely graphical notion, since iden-
tification can be determined using only the graph. We can
prove a theorem analogous to Theorem 1 for dormant inde-
pendencies, which allows us to reason about dormant inde-
pendencies graphically.

Theorem 2 LetG be a causal diagram. Then in any model
M inducingG, if X ⊥w Y|Z, thenX ⊥⊥w Y|Z.

Proof: This follows from the fact thatGw is the graph in-
duced by the submodelMw, and any submodel is just an
ordinary causal model where Theorem 1 holds. 2

In this paper we seek to characterize cases when arbitrary
disjoint sets can be d*-separated, and therefore to character-
ize identifiable dormant independencies among sets which
are entailed by causal graphs. The next section will consider
the simpler version of the problem whereX andY are sin-
gleton sets.

D*-separation Among Singletons
To characterize identifiable dormant independence between
X andY , it makes sense to consider the “difficult” neigh-
borhoods ofX, Y , in a sense that no intervention on those
neighborhoods is identifiable. We call such neighborhoods
ancestral confounding sets.

functionFind-MACS (G, Y)
INPUT: G, a causal diagram,Y a node inG.
OUTPUT:Ty, the MACS forY in G.

1 If (∃X 6∈ An(Y)G),
returnFind-MACS (GAn(Y), Y).

2 If (∃X 6∈ C(Y)G),
returnFind-MACS (GC(Y), Y).

3 Else, returnG.

Figure 2: An algorithm for computing the MACS ofY .

Definition 6 Let Y be a variable inG. A setS is ancestral
confounded (ACS) forY if S = An(Y)GS

= C(Y)GS
.

Ancestral confounded sets are a “difficult” neighborhood
due to the following result.

Theorem 3 Let S be ancestral confounded forY . Then for
anyS′ ⊆ S \ {Y }, P (v), G 6⊢id P (y|do(s′)).

Proof: It’s trivial to construct a Y-rooted C-treeT [Shpitser
& Pearl, 2006b] from S. But it is known that for any set
S′ of nodes inT that does not containY , P (v), G 6⊢id

P (y|do(s′)) [Shpitser & Pearl, 2006b]. 2

In our search for suitable variables to intervene on, in
order to separateX andY , we can exclude ancestral con-
founded sets forX andY . But there can be potentially many
such sets. It would be preferable to exclude all such sets at
once. Fortunately, the following results allows us to accom-
plish just that.

Theorem 4 For any variableY in G, there exists a unique
maximum ancestral confounded set (MACS)Ty.

Proof outline:The key step is to note that if two maximal
ancestral confounded sets forY exist, then their union is
also ancestral confounded. 2

Ty contains all ancestral confounded sets forY , which
means if we can find an efficient procedure for computing
Ty, we could rule out all “difficult” sets from consideration
at once. Such an algorithm exists, and is given in Fig. 2.

Theorem 5 Find-MACS(G, Y) outputs the MACS ofY in
polynomial time in the size of the graph.

Proof outline:It’s easy to see that the output ofFind-MACS
is an ACS if given a singleton input. To see that it is maxi-
mum, we note thatFind-MACS can never remove elements
from Ty at any stage. The algorithm is polynomial since de-
terminingAn(.) andC(.) sets can be done in polynomial
time in the size of the graph, and each recursive call elimi-
nates at least one node from the graph. 2

One problem with a MACSTy is that interventions in
Ty are not identifiable, and conditioning inTy does not d-
separate paths fromY out of Ty which consist entirely of
colliders, although all paths with a non-collider inTy are
blocked. In order to block some all-collider paths out of
Tx, Ty we attempt to intervene on the setPa(Tx ∪ Ty) \
(Tx ∪ Ty). It turns out these interventions are sufficient to
create identifiable dormant independence among singletons,
if one exists.

X

M

W Z

K

Y

L

(b)
(a)

Y

Z

W

M N

L

K

X

Figure 3: (a) A graph whereX ⊥z Y |W, K, L, N . (b) A
graph whereX ⊥z Y , X ⊥k L, butX 6⊥∗ {Y, L}.

Theorem 6 Let Tx, Ty be the MACSs ofX, Y . Let Ix,y =
Pa(Tx∪Ty) \ (Tx ∪Ty). Then if eitherX is a parent ofTy,
Y is a parent ofTx or there is a bidirected arc betweenTx

anTy, thenX, Y are not d*-separable. Otherwise,X ⊥ix,y

Y |Tx ∪ Ty \ {X, Y }.

Proof outline:If X is a parent ofTy (or vice versa), or there
is a bidirected arc betweenTx andTy, then there exists an
inducing path betweenX andY , which means conditioning
cannot separateX andY . However, we know from results in
[Shpitser & Pearl, 2006b] and[Shpitser & Pearl, 2006a] that
conditional effectsPx(y|z) are equivalent to unconditional
effects of the formPx’ (y’), and such effects are not identifi-
able if Y ∈ y′, andx′ ⊆ Ty. This means interventions also
don’t help.

To show the other direction, note that a d-connected path
cannot start with outgoing arrows from bothX andY (else
such a path must run into a collider, or an intervened node).
Without loss of generality, say the path crossesTx \ {X}.
A directed arrow leavingTx is blocked either atTx or Ix,y,
while a bidirected arrow cannot connect toTy directly, and
otherwise must be blocked atIx,y. 2

To illustrate this theorem, consider the graph in Fig. 3.
Here,Ty = {K, L, N, Y }, andTx = {W, X}. By Theorem
6, X ⊥z Y |W, K, L, N .

Thus, the MACSs turn out to be key structures for de-
termining identifiable dormant independence between two
variables. In the next section, we generalize our results to
handle dormant independence among sets of variables.

D*-separation Among Sets
To determine identifiable dormant independencies between
setsX, Y, we want to find a multi-node generalization of
MACSs. Unfortunately, we are presented with the following
problem. AssumeY = {K, L} such thatK ⊥w L|Z. In this
case, there really isn’t a difficult neighborhood adjacent to
bothK andL. An appropriate generalization of MACSs to
a setY, then, must partitionY such that a difficult neighbor-
hood can be defined for each subset in the partition.

Definition 7 Let Y be a variable set inG. A setS is ances-
tral confounded forY if for everyY ∈ Y, S = An(Y)GS

=
C(Y)GS

.

Note that ancestral confounded sets are not guaranteed to
exist for sets of nodes. However, if they do exist for some set,
finiteness of graphs we consider guarantees the existence of

a maximal ancestral confounded set. We want to define an
appropriate partition of an arbitrary set, where each element
of the partition has an ACS. We will show the following def-
inition will work for this purpose.

Definition 8 (AC-component) A setY of nodes inG is an
ancestral confounded component (AC-component) if

• Y = {Y }, e.g.,Y is a singleton set, or
• Y is a union of two distinct AC-componentsY1, Y2 which

have ancestral confounded setsS1, S2, respectively, and
S1, S2 are connected by a bidirected arc

Lemma 1 Every AC-component has an ancestral con-
founded set.

Proof: If an AC-component is a singleton, this is obvious.
Otherwise,Y is a union of AC-componentsY1, Y2 with an-
cestral confounded setsS1, S2. LetS = S1∪S2. Since there
is a bidirected arc fromS1 to S2, for every nodeX ∈ S, S =
C(X)GS

. Moreover, by constructionS = An(Y)GS
. Thus,

S is an ancestral confounded set forY. 2

AC-components behave just as singleton sets do with re-
spect to ACS. In fact, there is a unique MACS for every
AC-component, and the algorithm to find it is the familiar
Find-MACS with set inputs.

Theorem 7 Let Y be an AC-component. Then there exists a
unique MACSTy for Y, andFind-MACS-on-set (shown in
Fig. 4) finds it in polynomial time in the size of the graph.

Proof: The proof is a straightforward generalization of the
proof of Theorems 4 and 5. 2

What we have shown is that certain special sets of nodes
have a MACS, just as singletons do. While we cannot show
the same for arbitrary sets (consider a set of two nodes not
in the same C-component), we can show the next best thing,
namely that there exists a unique partition of any set into
AC-components.

Lemma 2 Let Y be a variable set,Y ∈ Y. Then there is a
unique maximum AC-component which both containsY and
is a subset ofY.

Proof: Some such AC-component exists, sinceY itself is a
trivial AC-component. SinceY is finite there is a maximal
such AC-component. Assume there are two distinct maxi-
mal AC-components containingY which are subsets ofY,
sayY1, Y2. Let S1, S2 be the corresponding MACSs. Since
these AC-components have the nodeY in common,S1 and
S2 have a node in common, and so are connected by a bidi-
rected arc. This impliesY1∪Y2 is an AC-component, which
is a contradiction. 2

Theorem 8 Any variable setY has a unique partitionp,
called the AC-partition, where each elementS in p is a max-
imal AC-component in a sense that no superset ofS which
is also a subset ofY is an AC-component.

Proof: To see that there is a unique AC-partitionp, start
with some nodeY ∈ Y, find it’s unique maximum AC-
component which is still a subset ofY, and repeat the pro-
cess for the nodes which have not been made part of some
AC-component. The set of AC-components obtained in this

functionFind-AC-Partition (G, Y)
INPUT: G, a causal diagram,Y a set of nodes inG.
OUTPUT:p, the unique partition ofY into AC-components,
and the unique MACSTs for eachS∈ P .

1 Letp be the partition ofY containing all singleton subsets
of Y.

2 For eachY ∈ Y, let Ty = Find-MACS (G, Y).

3 Repeat until no merges are possible: If∃Y1, Y2 ∈ p such
thatTy

1
, Ty

2
share a bidirected arc, mergeY1, Y2 into Y′

in p, and letTy′ = Find-MACS-on-set(G, Y′).

4 returnp, and the set of MACSs for each element inp.

functionFind-MACS-on-set(G, Y)
INPUT: G, a causal diagram,Y an AC-component inG.
OUTPUT:Ty, the MACS forY in G.

1 If (∃X 6∈ An(Y)G),
returnFind-MACS-on-set(GAn(Y), Y).

2 If (∃Y ∈ Y, ∃X 6∈ C(Y)G),
returnFind-MACS-on-set(GC(Y), Y).

3 Else, returnG.

Figure 4: An algorithm for computing the AC-partition (and
the corresponding sets of MACSs) ofY.

way is a partition where each element is a maximal AC-
component. Since each AC-component is also maximum
and unique,p is unique. 2

There is a simple algorithm, shown in Fig. 4, which, given
an arbitrary setY, finds the unique AC-partitionp of Y, and
finds the MACS for each AC-component inp.

Theorem 9 Find-AC-Partition(G, Y) outputs the unique
AC-partition ofY, and the set of MACSs for each element
in the partition. Moreover, it does so in time polynomial in
the size ofG.

Proof outline:The output ofFind-AC-partition is a parti-
tion p of Y where each element is an AC-component. It’s
a consequence of Lemma 2 that the AC-partition ofY is
coarser thanp. If the AC-partition is not equal top, it’s not
difficult to derive a contradiction using the definition of AC-
components, and the structure ofFind-AC-Partition . To see
that the algorithm is polynomial, note that each invocationof
Find-MACS andFind-MACS-on-set terminates in polyno-
mial time, as those algorithms are themselves polynomial.
Moreover, the set merge operations performed can be easily
implemented in polynomial time. Finally, the total number
of set merges performed by the algorithm is bounded by the
number of nodes in a binary tree with the number of leaves
equal to the number of nodes inG. This means the number
of merges is linear in the size ofG, and the overall algorithm
is polynomial in the size ofG. 2

We want to prove a result analogous to Theorem 6 for sets.
To do so, we must generalize the notion of an inducing path
to sets.

Definition 9 (inducing paths for sets) Let X, Y be sets of
variables inG. A pathp betweenX and Y is called an in-
ducing path if the following two conditions hold
• The path forms a collider for every non-terminal node
• Every non-terminal node is an ancestor ofX or Y.

Not surprisingly, inducing paths characterize d-
separability for sets just as they do for singleton variables.

Theorem 10 X cannot be d-separated fromY in G if and
only if there exists an inducing path fromX to Y in G,

Proof outline:If there is no inducing path fromX to Y, then
A = An(X ∪ Y) \ X ∪ Y will serve as a d-separating set.
Any path not involving nodes inA must contain a collider
and so isn’t d-connecting. Since we condition onA, the d-
connecting path must contain only colliders, but this contra-
dicts the absence of an inducing path.

If there is an inducing path, we can establish by case anal-
ysis on this path thatX 6⊥ Y. The key observation is that
regardless of what set of nodes we condition on, it is al-
ways possible to recover a path which behaves as an induc-
ing path, which meansX andY stay d-connected. 2

We can now prove the generalization of Theorem 6 for
sets. The idea is to find the AC-partition ofX ∪ Y, and gen-
eralize the two conditions for d*-separability in Theorem 6
for this AC-partition.

Theorem 11 Let X, Y be arbitrary sets of variables. Letp
be the AC-partition ofX∪ Y. Then if either elements of both
X and Y share a single AC-component inp, or some ele-
ment ofX is a parent of the MACS of some AC-component
containing elements ofY (or vice versa), thenX cannot be
d*-separated fromY. Otherwise, letTp be the union of all
MACSs of elements inp, and letIp = Pa(Tp) \ Tp. Then,
X ⊥ip

Y|Tp \ (X ∪ Y).

Proof outline: If the above conditions hold, the inducing
path betweenX and Y exists by definition. Thus, condi-
tioning will not help to separateX and Y. To see that in-
terventions also will not help, we can show by induction on
AC-component structure that the effect of any subset of the
MACS of any AC-component on that AC-component cannot
be identified, which implies, using the results in[Shpitser &
Pearl, 2006a] we appealed to in the proof of Theorem 6, that
interventions also do not help.

The proof of the other direction follows the same lines as
the proof in Theorem 6. 2

We conclude this section by noting that just as was the
case with conditional independence, identifiable dormant in-
dependence among subsets does not entail dormant indepen-
dence on sets. For example, in the graph shown in Fig. 3 (b),
X ⊥z Y , X ⊥k L, butX 6⊥∗ {Y, L}.

Having given a complete solution to the problem of deter-
mining identifiable dormant independence implied by causal
graph via d*-separation, we give an example of how such
independencies can be used to test aspects of the causal dia-
gram.

Testing Causal Structure
To illustrate the usefulness of identifiable dormant indepen-
dencies for induction and testing of causal structures, we

X

M

W Z

K

Y

L

(a)

X

M

W Z

K

Y

L

(b)

Figure 5: (a) The true causal graph. (b) A possible valid
graph for the same domain.

consider the problem of detecting if certain edges in a par-
ticular causal graph are extraneous. We call graphs where
every edge is either correct or extraneous valid.

Definition 10 (valid graph) A causal graphG is valid for a
modelM if every edge in the graph induced byM is present
in G.

It is possible to rule out out the presence of certain extra-
neous edges using conditional independence tests. In order
to do so, an additional property offaithfulnessis assumed. In
faithful models, lack of d-separation implies dependence.In
other words,X ⊥ Y|Z iff X ⊥⊥ Y|Z. This property allows us
to reach graphical conclusions from probabilistic premises.
For instance, the presence of a conditioning setZ such that
X ⊥⊥ Y |Z impliesX andY cannot share an edge. System-
atic use of conditional independence tests to rule out adja-
cencies in this way is an important part of causal inference
algorithms such asIC [Verma & Pearl, 1990], [Pearl, 2000]
andFCI [Spirtes, Glymour, & Scheines, 1993].

The advantage of dormant independencies is their ability
to rule out edges even if all conditional independence tests
fail. For instance, it is possible to rule out the edge from
X to Y in Fig. 5 (b) as extraneous ifX ⊥⊥z Y , though
no conditional independence test can succeed in doing the
same, since there is an inducing path fromX to Y .

However, in order to reach graphical conclusions from
dormant independencies, we need to extend the faithfulness
property to hold in interventional settings.

Definition 11 (experimental faithfulness) A modelM is
experimentally faithful, orP∗-faithful if every submodelMx
of M is faithful (that is d-connectedness inGx implies de-
pendence).

Experimental faithfulness states that no “numerically co-
incidental independencies” are introduced by interventions.
We use dormant independence tests to rule out extraneous
edges in valid graphs of experimentally faithful models. To
test if an edge betweenX andY is extraneous, we must find
setsZ, W such thatX ⊥⊥w Y |Z. A naive brute-force ap-
proach to this problem is intractable since we must try all
subsetsZ, W. However, if we assume the edge we are test-
ing is absent in the graph, we can use theFind-MACS algo-
rithm to propose a dormant independence to test in polyno-
mial time. Since testing this independence does not require
we perform any interventions, the test can be performed on
the observational distribution alone. There is an additional

functionTest-Edges(G, P (v))
INPUT: G, a valid graph of an experimentally faithful
modelM , P (v), a corresponding probability distribution.
OUTPUT: G′, a valid graph with some extraneous edges
removed.

• Let π be a topological order of edges inG, where
(X, Y) ≺π (W, Z) if X, Y ∈ An({W, Z})G. Let G′

equalG.

• For every edge(X, Y) in π, if we can find setsZ, W using
Theorem 6 such thatX ⊥w Y |Z in G′ \ (X, Y), and
X ⊥⊥w Y |Z in P (v), G′, remove(X, Y) from G′.

• returnG′.

Figure 6: An algorithm for testing edges in valid graphs.

complication, namely that certain edges ancestral toX and
Y may themselves be extraneous. This may result in a situ-
ation whereX 6⊥∗ Y if the ancestral extraneous edges are
present, while a dormant independence can be established if
they are removed. Fortunately, since we restrict ourselvesto
acyclic graphs, we can establish a topological order among
edges based on ancestry, and test for extraneous edges using
this order. The resulting algorithm is shown in Fig. 6

It is not difficult to establish thatTest-Edgesis sound.

Theorem 12 Test-Edges terminates in polynomial time in
the size of the graph, and any edge it removes fromG′, valid
for an experimentally faithful modelM , is extraneous.

Proof: The first claim is simple to establish since all input
graphs are acyclic, and using Theorem 7. LetG be the true
causal graph. Assume an edge(X, Y) is not extraneous but
is removed fromG′ by Test-Edges. Assume setsZ, W wit-
ness the removal. ButX ⊥⊥w Y |Z, and since the submodel
Mw of M is faithful, this implies(X, Y) must be extrane-
ous. 2

To illustrate the operation of the algorithm, consider the
valid graphG′ in Fig. 5 (b). If the graphG in Fig. 5 (a) rep-
resents the true causal model,Test-Edgeswill be able to re-
move the edges(X, Y) and(X, L), but not the edge(L, Y).
In the case of(X, Y), X ⊥z Y in G′ \(X, Y) and the corre-
sponding dormant independence holds since the true model
inducesG. Similarly, for (X, L), X ⊥k L in G′ \ (X, L)
and the corresponding dormant independence holds. On the
other hand, even though(Y, L) is an extraneous edge,Test-
Edgescannot remove it, since the algorithm cannot estab-
lish dormant independence betweenY andL, even though
P (y, l|do(z, k)) is identifiable in the true model. The intu-
ition here is that this identification relies on the absence of
the very edge we are trying to test (sinceP (y, l|do(z, k)) is
not identifiable inG′).

Similarly, if the graphG shown in Fig. 3 (a) is the true
causal graph, and the valid graph contains an extra edge from
X to Y , Test-Edgeswill be able to remove this edge since
X ⊥z Y |W, K, L, N in G, andP (v), G′ ⊢id Pz(v \ z),
whereG′ is G plus any edge fromX to Y .

Conclusions

In this paper we consider dormant independencies, that is
conditional independencies that surface in interventional
distributions. We give a complete algorithm for the problem
of determining identifiable dormant independencies entailed
by the causal graph, in other words determining if two sets
of random variables can be rendered independent by con-
ditioning in some identifiable interventions. We also pro-
vide a characterization of graphical structures which prevent
identifiable dormant independencies. We have also demon-
strated the usefulness of the notion of dormant independen-
cies for testing and induction of causal structure by giving
an algorithm which uses constraints entailed by identifiable
dormant independencies to remove extraneous edges from
causal diagrams.

Straightforward applications of dormant independencies
rely on some knowledge of the graph in order to conclude
identification. Extending our results to the situations where
the underlying graph is not available, for instance in orderto
do causal induction, is an interesting area of future work.

Acknowledgments

This work was supported in part by the NLM grant #T15
LM07356.

References
[1] Pearl, J., and Verma, T. S. 1991. A theory of inferred

causation. InPrinciples of Knowledge Representation
and Reasoning: Proceedings of the Second International
Conference, 441–452.

[2] Pearl, J. 1988.Probabilistic Reasoning in Intelligent
Systems. Morgan and Kaufmann, San Mateo.

[3] Pearl, J. 2000.Causality: Models, Reasoning, and In-
ference. Cambridge University Press.

[4] Shpitser, I., and Pearl, J. 2006a. Identification of condi-
tional interventional distributions. InUncertainty in Ar-
tificial Intelligence, volume 22.

[5] Shpitser, I., and Pearl, J. 2006b. Identification of joint
interventional distributions in recursive semi-markovian
causal models. InTwenty-First National Conference on
Artificial Intelligence.

[6] Spirtes, P.; Glymour, C.; and Scheines, R. 1993.Causa-
tion, Prediction, and Search. Springer Verlag, New York.

[7] Tian, J., and Pearl, J. 2002a. A general identification
condition for causal effects. InEighteenth National Con-
ference on Artificial Intelligence, 567–573.

[8] Tian, J., and Pearl, J. 2002b. On the testable implications
of causal models with hidden variables. InProceedings
of UAI-02, 519–527.

[9] Tian, J. 2002.Studies in Causal Reasoning and Learn-
ing. Ph.D. Dissertation, Department of Computer Sci-
ence, University of California, Los Angeles.

[10] Verma, T. S., and Pearl, J. 1990. Equivalence and syn-
thesis of causal models. Technical Report R-150, Depart-
ment of Computer Science, University of California, Los
Angeles.

Appendix
Theorem 4 For any variableY in G, there exists a unique
maximum ancestral confounded set (MACS)Ty.
Proof: Maximal ancestral confounded sets exist for anyY
since we only consider finite graphs. Assume there isY with
two distinct maximal ancestral confounded setsS1, S2. We
claim thatS = S1∪S2 is an ancestral confounded set, which
is a contradiction. By construction, S is a C-component in
GS , since any nodeX ∈ S1 and any nodeZ ∈ S2 can
be connected by a bidirected path constructed by append-
ing the bidirected path fromX to Y in GS1

(guaranteed
to exist sinceS1 is a C-component inGS1

) to the bidi-
rected path fromZ to Y in GS2

(guaranteed to exist since
S2 is a C-component inGS2

). SinceS1 ∈ An(Y)S1
, and

S2 ∈ An(Y)S2
, S ∈ An(Y)S . 2

Theorem 5 Find-MACS(G, {Y }) outputsTy, the MACS of
Y in polynomial time in the size of the graph.
Proof: The algorithm is polynomial since determiningAn(.)
and C(.) sets can be done in polynomial time, and each
recursive call eliminates at least one node from the graph.
Since the MACS ofY is unique, all ancestral confound-
ing sets ofY are contained in it (otherwise, we can repeat
the argument in Theorem 4). First, we show that the output
setS of Find-MACS is an ancestral confounding set ofY .
If not, then eitherS 6= An(Y)GS

or S 6= C(Y)GS
. But

the algorithm only returns if there is no element inS out-
sideAn(Y)GS

, and no element inS outsideC(Y)GS
. To

show thatS is maximum, assume this isn’t the case, and
let Z ⊆ Ty \ S be the first node set inTy removed by
Find-MACS . Let G′ be the graph at the stage whereZ is
removed. By assumption,Ty is contained inG′, and either
Z 6⊂ An(Y)G′ or Z 6⊂ C(Y)G′ . But Z ⊂ An(Y)GTy

, and
Z ⊂ C(Y)GTy

by definition ofTy. Contradiction. 2

Theorem 6 Let Tx, Ty be the MACSs ofX, Y . Let Ix,y =
Pa(Tx ∪ Ty) \ (Tx ∪ Ty). Then if eitherX is a parent of
Ty, Y is a parent ofTx or there is a bidirected arc be-
tweenTx anTy, thenX, Y are not d*-separable. Otherwise,
X ⊥ix,y

Y |Tx ∪ Ty \ {X, Y }.
Proof: Assume eitherX is a parent ofTy or Tx, Ty are
connected by a bidirected arc. It’s easy to verify, by def-
inition of Ty, that the the above imply the presence of
an inducing path[Verma & Pearl, 1990] from X to Y .
Thus, no conditioning set can d-separateX and Y . We
want to show that identifiable interventions don’t help. Con-
sider disjoint subsetsS, S′ of Ty. A result in [Shpitser &
Pearl, 2006a] implies thatP (v), G 6⊢id P (y|s′, do(s)) iff
P (v), G 6⊢id P (y, t|do(s, t′)), whereT, T ′ is a certain par-
tition of S′. By Theorem 3,P (v), G 6⊢id P (y|do(w)) for
any subsetW of Ty, which in turn impliesP (v), G 6⊢id

P (y, t|do(s, t)). But if P (v), G 6⊢id P (y|s′, do(s)), then
P (v), G 6⊢id P (y, x|s′, do(s)). It is not difficult to construct
a model where for any supersetZ of S′, and supersetW
of S, P (v), G 6⊢id P (y, x|z, do(w)) (by for instance letting
nodes outsideTy be mutually independent). This implies our
result.

To show the other direction, considerGix,y
, and a pos-

sible d-connected path fromX to Y . This path starts with
an arrow leavingX or an arrow enteringX . Assume the ar-

row is leavingX . X cannot have conditioned descendants in
Gix,y

unlessX was a parent ofTy or x ∈ Ty, both of which
are impossible by assumption. This means the path fromX
is just a set of directed arrows fromX . But such a path must
run into nodes fixed byIx,y, unlessX was a parent ofTy

or in Ty, which is impossible. Thus, no path starting with an
outgoing arrow fromX can be d-connected toY .

Assume the path starts with an incoming arrow intoX .
If the arrow is directed, the corresponding parentZ of X is
either inTx or in Ix,y (and in neither case canZ be equal
to Y). In either case, the path is not d-connected toY . If the
arrow is bidirected, we have two cases. Either the next node
Z in the path is inTy or outside bothTy andIx,y (Z cannot
be inIx,y since then the path will not be d-connected). For
the first case, we repeat the argument until we reach the sec-
ond case. For the second case,Z cannot be inTx, else there
is a bidirected path fromTx to Ty, which is ruled out by as-
sumption. Note thatZ cannot have conditioned descendants
in Gix,y

unlessZ was a parent ofTx or Ty or was inTx or
Ty. But we ruled all these cases out. Therefore, the subse-
quent arrows on the path are directed arrows away fromZ.
As before, these arrows must eventually reachIx,y, which
means the path is not d-connected. 2

Theorem 9 Find-AC-Partition(G, Y) outputs the unique
AC-partition ofY, and the set of MACSs for each element
in p. Moreover, it does so in time polynomial in the size of
G.
Proof: We first show thatp, the output of Find-AC-
Partition , consists of a partition of AC-components (not
necessarily maximal). Clearly this is true at the initializa-
tion step, since a singleton is a trivial AC-component. It’s
also clear by definition that any merge ofY1, Y2 results in
an AC-componentY′. Furthermore, by Theorem 7,Ty′ is the
MACS of Y′.

Let p∗ be the AC-partition ofY. We claim thatp∗ must
be coarser thanp, in a sense that every element inp∗ is a
union of a set of elements inp. Note that this definition holds
if p∗ is equal top. Assume not. Then there are some sets
S ∈ p, S′ ∈ p∗ such that some elements inS are in S′

and some are not. LetZ ∈ S ∩ S′. By Lemma 2, there is a
unique maximum AC-component containingZ which is also
a subset ofY. By definition ofp∗, S′ is this AC-component.
But if S is not contained inS′, we can derive a contradiction
by repeating the argument in the proof of Lemma 2.

Finally, we want to showp∗ is equal top. Assume this
isn’t the case, and fix some elementS′ in p∗ which is a union
of two or more elements inp. Since each AC-component
is either a singleton, or constructed from two smaller AC-
components, we can construct a binary treeT , where each
leaf is a node inS′, and each non-leaf represents an AC-
component obtained from the AC-component corresponding
to the left subtree of the non-leaf and the AC-component
corresponding to the right subtree of the non-leaf.

We want to find an AC-componentA in T with the prop-
erty that its left subtree corresponds to a subset of some el-
ementS1 in p, and its right subtree corresponds to a subset
of another elementS2 in p. This AC-component must ex-
ist, since leaves inT are singletons, and the root ofT cor-

responds toS′, which spans multiple elements inp. This
implies that the MACS of a subset ofS1 is connected to
the MACS of a subset ofS2 by a bidirected arc. But the
MACS of S1 and the MACS ofS2 are supersets of these
connected MACS, so they are themselves connected by a
bidirected arc. But thenp could not have been the output of
Find-AC-Partition . 2

Theorem 10 X cannot be d-separated fromY in G if and
only if there exists an inducing path fromX to Y in G,
Proof: Assume there is no inducing path fromX to Y. Let
A = An(X ∪Y) \ (X ∪Y). We claim thatX ⊥ Y|A. It’s not
hard to see that if there is a d-connected path fromX to Y,
then it does not have any nodes not inA. Assume otherwise.
Then some node on this path not inA must contain a collider.
But this implies the path is not d-connected, since this node
does not have descendants inA.

Since we condition onA, the d-connected path must con-
sist exclusively of colliders. Moreover, by definition every
node on the path is an ancestor of eitherX or Y. But this
means the path is inducing. Contradiction.

Assume the inducing path fromX to Y . We want to show
we cannot d-separateX from Y. First, we show thatX 6⊥ Y.

We have three cases. The inducing path contains either
entirely bidirected arcs, or one directed arc following by zero
or more bidirected arcs, or one directed arc, following by
zero or more bidirected arcs, followed by a directed arc.

Let A be the first node on the inducing path afterX , B be
the first node on the inducing path afterY . If all nodes on
the inducing path are ancestors ofX, thenB is an ancestor
of X. But the edge betweenY andB is either bidirected,
or directed fromY to B. In either case, the ancestral path
from X to B plus this edge forms a d-connected path from
X to Y . The same argument applies if all nodes on the induc-
ing path are ancestors ofY. Otherwise, find two neighboring
nodesC, D on the inducing path whereC is an ancestor of
X, andD is an ancestor ofY. Then the ancestral path from
X to C, along with the edge along the inducing path from
C to D, along with the ancestral path fromY to D form a
d-connected path fromX to Y.

What we have to show is that regardless of which sets of
nodes we condition on, some d-connected path betweenX
andY remains. Letp′ the subpath ofp such that nodes onp′

are either conditioned on themselves, or their descendants
are conditioned on. Ifp′ = p, we are done sincep is d-
connected. Otherwise, consider every pair of nodesA, B on
p \ p′ such that all nodes onp betweenA andB are inp′.
By construction, the fragment ofp betweenA andB is a d-
connected path, terminating with arrowheads on both ends.
To show that there is a d-connected path betweenX andY,
we repeat the above d-connection argument, except rather
than considering the pathp, we consider the pathp \ p′, and
instead of the d-connected paths between every node pair
A, B as above, we consider a bidirected arc. 2

Theorem 11 Let X, Y be arbitrary sets of variables. Let
p be the AC-partition ofX ∪ Y. Then if either elements of
both X and Y share a single AC-component inp, or some
element ofX is a parent of the MACS of some AC-component
containing elements ofY (or vice versa), thenX cannot be
d*-separated fromY. Otherwise, letTp be the union of all

MACSs of elements inp, and letIp = Pa(Tp) \ Tp. Then,
X ⊥ip

Y|Tp \ (X ∪ Y).
Proof: What we want to show is that the conditions for the
absence of d*-separation of setsX, Y imply that there is an
inducing path betweenX andY, and that no interventions on
nodes in that inducing path are identifiable, at least if either
X or Y are the effect variables.

We first want to show that ifZ is an AC-component,
then for any disjoint subsetsS, S′ of the MACS Tz,
P (v), G 6⊢id P (z|s′, do(s)). By a result from[Shpitser &
Pearl, 2006a], P (v), G 6⊢id P (z|s′, do(s)) iff P (v), G 6⊢id

P (z, t|do(s, t′)), where T, T ′ is a particular partition of
S′. But if P (v), G 6⊢id P (z|do(s, t′)), thenP (v), G 6⊢id

P (z, t|do(s, t′)). Without loss of generality, then, we will
prove thatP (v), G 6⊢id P (z|do(s)). By Theorem 3, this is
true if Z = {Z}. Assume this is true for AC-components
Z1, Z2. We want to show this also holds for the AC-
componentZ obtained from these two AC-components.
Clearly, the result also holds forT = Tz1 ∪ Tz2 . We want
to show the same is true forTz. By construction,Tz can be
used to construct a C-forest[Shpitser & Pearl, 2006b] for Z.
The same is true forT . ThenT, Tz form a hedge[Shpitser
& Pearl, 2006b] for P (z|do(s′)), for any setS′ ⊆ Tz \ T ,
which means the result holds forTz.

If there is an AC-component containing both elements of
X andY, then an inducing path betweenX andY exists by
the definition of AC-component. Similarly, if some element
of X is a parent of the MACS of some AC-component which
is a subset ofY, then an inducing path betweenX andY
exists by the definition of AC-component.

If there is an AC-componentC containing both elements
of X andY, then by above reasoning for any disjoint sub-
setsS, S′ of Tz, P (v), G 6⊢id P (c|s′, do(s)). Similarly, if
there is an element ofX which is a parent of the MACS
of some AC-componentY′ which is a subset ofY, then by
above reasoning for any disjoint subsetsS, S′, P (v), G 6⊢id

P (y′|s′, do(s)). As before, it is not difficult to construct
a model where for any supersetZ of S′ and supersetW
of S, P (v), G 6⊢id P (c|z, do(w)) (in the first case), or
P (v), G 6⊢id P (y′|z, do(w)), (in the second case). In either
case, no combination of fixing and conditioning can rid us
of the inducing path, and our result follows.

To prove the other direction, consider a d-connected path
in Gip

from X ∈ X to Y ∈ Y. Without loss of generality,
assume no elements inX, Y, other than the end points are on
this path.

The path either starts with an outgoing arrow, an incom-
ing arrow, or a bidirected arrow. Assume it starts with an
outgoing arrow into a nodeZ. If Z is inside some MACS,
the next edge on the path can be assumed to be bidirected.
This is because this MACS cannot contain any nodes inY,
and because the next nodeZ is conditioned on by assump-
tion. Since the arrow is bidirected, we handle this case in
the “bidirected arrow” situation. IfZ is outside any MACS,
it is either inIp, in which case the path is not d-connected,
or it does not have any conditioned descendants, since the
parents of every MACS are fixed. This means the segment
of the path fromZ is just a set of directed arrows pointing
away fromZ. But such a path must run into nodes fixed by

Ip, which is impossible. Thus there are no d-connected path
starting with an outgoing arrow fromX .

Assume the path starts with an incoming arrow intoX .
If the arrow is directed, the corresponding parentZ of X is
either inTp. or inIp. If it is in Ip, the path is not d-connected,
since no element ofY can be a parent of the MACS of an
AC-component containingX by assumption. If it is inTp, it
is conditioned on, and the path is not d-connected.

If the arrow is bidirected, we have two cases. Either the
next nodeZ in the path is in the MACS of an AC-component
containingX , or outside both this AC-component, andIp.
For the first case, we repeat the argument until we reach the
second case. For the second case,Z cannot be in any other
MACS. Otherwise, there is a bidirected arc between distinct
MACSs returned byFind-AC-Partition which is impossi-
ble by Theorem 9. Note thatZ cannot have conditioned de-
scendants inGip

unlessZ was inIp, which is impossible.
Therefore, the subsequent arrows on the path are directed
arrows away fromZ. As before, these arrows must eventu-
ally reachIp, which means the path is not d-connected.2

