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Abstract

The construction of causal graphs from non-experimental
data rests on a set of constraints that the graph structure
imposes on all probability distributions compatible wittet
graph. These constraints are of two types: conditional-inde
pendencies and algebraic constraints, first noted by Verma.
While conditional independencies are well studied and fre-
quently used in causal induction algorithms, Verma con-
straints are still poorly understood, and rarely applied. |
this paper we examine a special subset of Verma constraints
which are easy to understand, easy to identify and easy to ap-
ply; they arise from “dormant independencies,” namely,-con
ditional independencies that hold in interventional dist
tions. We give a complete algorithm for determining if a dor-
mant independence between two sets of variables is entailed
by the causal graph, such that this independence is identifi-
able, in other words if it resides in an interventional disir

tion that can be predicted without resorting to intervemgio

We further show the usefulness of dormant independencies
in model testing and induction by giving an algorithm that
uses constraints entailed by dormant independencies e pru
extraneous edges from a given causal graph.

Introduction
Graphical causal model®earl, 200Dembody both causal
and probabilistic assumptions. The vertices ¢ausal
graphs the carriers of these assumptions, correspond to vari-

IC [Verma & Pearl, 1990 [Pearl, 2000 andFCI [Spirtes,
Glymour, & Scheines, 1993 A better understanding of
Verma constraints may lead to improvements of these algo-
rithms.

In this paper, we examine a special subset of Verma con-
straints with two nice properties. Firstly, these constisi
have a natural interpretation as being due to conditioral in
dependencies in distributions resulting from intervemgio
[Pearl, 200D (we call such independencidsrman). Sec-
ondly, these constraints have the potential to imply festur
of the causal graph, specifically the absence of certainsedge

Dormant independencies may imply constraints on the
observable distribution, if the interventional distrilaut in
which they reside iglentifiable[Pearl, 200{) in other words
if it can be predicted from observational studies. Our dentr
bution is twofold. We develop a polynomial time algorithm
which, given two arbitrary disjoint sets of observable vari
ables, returns an identifiable witness for the dormant inde-
pendence, in other words an identifiable interventional dis
tribution in which these sets are conditionally indeperiden
Moreover, we show that our algorithm is complete for de-
termining all identifiable dormant independencies endaile
by the causal graph, in a sense that if the algorithm fails,
then any identifiable dormant independence is “coinciden-
tal,” and not due to the structure of the graph. Our algo-
rithm is an improvement over a previous algorithn{ Tian

ables, while the absence of an edge between two variables& Pearl, 2002, which enumerated only unconditional dor-

implies that those two variables are conditionally indepen
dent given some other set of variables. Probabilistic inde-

pendence between sets of variables in a causal model is im-

plied by the well-known criterion of path blocking called d-
separatiorfPearl, 1988 Conversely, independence implies
corresponding path blocking in the graph in a special class
of models termedaithful [Spirtes, Glymour, & Scheines,
1993 or stable[Pearl & Verma, 1991 [Pearl, 2000

Graphs constrain observable distributions in two ways,
either by requiring that certain conditional independesci
hold, or imposing other restrictions, termed Verma con-
straints [Verma & Pearl, 199)) [Tian & Pearl, 2002h
which are more difficult to characterize. The constraints in
duced on the graph by conditional independencies are al-
ready being utilized by causal induction algorithms such as
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mant independence.

We illustrate the applicability of identifiable dormant in-
dependencies for model testing and induction by giving an-
other algorithm which, given a causal graph where every
edge is either correct or extraneous (we call such graphs
valid), uses constraints induced by dormant independencies
to systematically rule out extraneous edges.

Our paper is organized as follows. The next section gives
an example of a Verma constraint, and shows how this con-
straint arises due to conditional independence in idehtdia
interventional distributions. Section 3 goes over the math
ematical preliminaries necessary for causal inference: Se
tions 4 and 5 develop the algorithm for finding witnesses
for dormant independence for pairs of singletons, and pairs
of arbitrary sets, respectively. Section 6 introduces the-a
rithm which uses dormant independencies for testing edges.
For exposition reasons, some of the longer proofs are found
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Figure 1: (a) The “P” graph. (b) The graph of the submodel
M, derived from the “P” graph.

in the Appendix.

Verma Constraints as Dormant
Independencies

Consider the causal graph in Fig. 1 (a). Any model compati-
ble with this graph imposes certain constraints on its abser
able distributionP (z, w, z, y). Some of these constraints are
in the form of conditional independencies. For instance, in
any such modelX is independent ofZ given W, which
meansP(z|w) = P(z|w,z). However, there is an addi-
tional constraint implied by this graph which cannot be ex-
pressed in terms of conditional independence in the observ-
able distribution. This constraint, noted [Werma & Pearl,
1994, states that the expressidn,, P(y|z, w, z) P(w|z) is

a function ofy andz only, not ofz. The key insight that mo-
tivates this paper is that this constraint does emanate from
conditional independencies, albeit not the original obser
able distribution, but in a distribution resulting from amn i
tervention.

An intervention, writtendo(x) [Pearl, 2000 is an opera-
tion which forces variableX to attain valuex regardless of
their usual behavior in a causal model. The result of apply-
ing an interventioro(x) on a model/ with a set of observ-
able variable¥ is asubmodel/y, with stochastic behavior
of variables other thaK described by amterventional dis-
tribution written asP(v) or P(v|do(x)). The graph induced
by My is almost the same as the graph induced\byex-
cept it is missing all arrows incoming %, to represent the
fact that an intervention sets the valuesoindependently

of its usual causal influences, represented by such arrows.

We will denote such a graph &%. Following[Pearl, 2000}
we call the set of all possible interventional distributdr.
In other words P, = {Px(v \ X)|x C v}.

A key idea in causal inference is that in certain causal
models, some interventional distributions can be predicte
or identifiedfrom the observational distribution. What we
will show is that it is ability to identify interventional di
tributions from observational distributions that giveserio
Verma constraints, including the constraint in the P graph.

Consider a modeM inducing the graph in Fig. 1 (a). If
we intervene or¥ in M, we obtain the submod@V, induc-
ing the graph in Fig. 1 (b). The distribution of the unfixed ob-
servables in this submodé®, (x, w, y), is identifiable from
P(x,w, z,y) and equals td®(y|z, w, z) P(w|z) P(z) [Tian
& Pearl, 2002h Moreover, by d-separatioiPearl, 1988
the graph in Fig. 1 (b) implies thaX is independent of
Y in P.(z,w,y), or P,(ylx) = P.(y). But it's not hard
to show thatP, (y|z) is equal to) , P(y|z,w,z)P(w|z),

which means this expression depends only andy. Thus,
the identifiability of P, (x, w, y) leads to a constraint on ob-
servational distributions in the original, unmutilated aebd
M.

Enumerating constraints of this type can be used to infer
features of the causal graphs, just as conditional indepen-
dencies are used for this purpose by causal induction algo-
rithms. For example, establishing th&tis independent of
Y in P,(x,w,y) allows us to conclude that the causal graph
lacks an edge betweenandY’, assuming that the submodel
M, is stablePearl & Verma, 1991 [Pearl, 2000 or faith-
ful [Spirtes, Glymour, & Scheines, 1993Moreover, since
P, (z,w,y) is identifiable fromP(v) in the graph in ques-
tion, we can rule out the edge without relying on interven-
tions.

In the remainder of this paper, we will show how to
achieve a full enumeration of conditional independencies i
identifiable interventional distributions entailed by #tauc-
ture of the graph, and how to use these independencies to
infer features of the graph.

Preliminaries

The fundamental object of causal inference is the prolsabili
tic causal model.

Definition 1 A probabilistic causal model (PCM) is a tuple
M = (U,V,F, P(u)), where

U is a set of background or exogenous variables, which
cannot be observed or experimented on, but which can
influence the rest of the model.

Visaset{Vi,...,V,} of observable or endogenous vari-
ables. These variables are considered to be functionally
dependent on some subsetlf V.

F is a set of functiong f1, ..., f} such that eacly; is a
mapping from a subset &f U V \ {V;} to V;, and such
that J F is a function fromJ to V.

P(u) is a joint probability distribution over the variables
in U.

PCMs represent causal relationships between observable
variables invV by means of the functiorfs: a given variable
V; is causally determined by; using the values of the vari-
ables in the domain of;. Causal relationships entailed by
a given PCM have an intuitive visual representation using a
graph called a causal diagram. As mentioned in the introduc-
tion, causal diagrams contain two kinds of edges. Directed
edges are drawn from a variablé to a variableV; if X
appears in the domain of;. Bidirected edges are always
drawn between observable variables, and only when their
corresponding functions both make use of the same back-
ground variable. In this paper, we consider models which
induce acyclic graphs whete(u) = [, P(u;), and each
U, has at most two observable children. A graph obtained in
this way from a model is said to be induced by said model.

The importance of causal diagrams stems from the fact
that conditional independencies between observable vari-
ables correspond to graphical features in the diagrameSinc
the rest of the paper will rely heavily on this correspon-
dence, we introduce probabilistic and graphical notions we



will need to make use of it. The key probabilistic notion we
will use is the standard definition of condition independenc
A set X is independent off conditional onZ (written as
X U Y|Z)if P(x]y,z) = P(x|z). We will use the following
graph-theoretic notatiomn(.)¢, De(.)a, Pa(.)¢ stand for

the set of ancestors, descendants and parents of a given vari

able setinG. The setsAn(.)¢ andDe(.)¢ will be inclusive,

in other words, for evervin(X)q, De(X)ag, X € An(X)¢
and X € De(X)q. A graph Gy stands for the subgraph
of G containing only nodes iiX and edges between these
nodes. We denote a maximal set of nodeS ipairwise con-
nected by bidirected paths a C-compondiin, 2002. We
denote the C-component containing a given nédén G

by C(X)q. We will drop the graph subscript if the graph is
assumed or obvious.

It's possible to show that whenever edges in a causal
diagram are drawn according to the above rules, the dis-
tribution P(u,v) induced by P(u) and F factorizes as
[Ix,evou P(zi|Pa(x;)). This factorization implies that
conditional independencies iff(u,v) are mirrored by a
graphical notion of “path blocking” known as d-separation
[Pearl, 1988

Definition 2 (d-separation) A pathp in G is said to be d-

separated by a sét if and only if either

1 p contains one of the following three patterns of edges:
I—-M—J,I- M- J,orl«— M — J,suchthat
MeZor

2 p contains one of the following three patterns of edges
(called colliders): I — M «— J, I & M «— J, I <
M « J, such thatDe(M)g NZ = 0.

Two setsX, Y are said to be d-separated giv@rgwritten
X 1 Y|Z)in G if all paths fromX to Y in G are d-separated

by Z. Paths or sets which are not d-separated are said to
be d-connected. The relationship between d-separation and

conditional independence is provided by the following well
known theorem.

Theorem 1 LetG be a causal diagram. Then in any model
M inducingG, if X L Y|Z, thenX 1L Y|Z.

Using d-separation as a guide, we can look for a condi-
tioning setZ which renders given se¥ andY independent
by only examining the causal diagram, without having to in-
spect the probability distributioR(v).

In this paper, we examine probabilistic independencies
in distributions resulting from not only conditioning but a
second, powerful operation of intervention, defined in the
previous section. An intervention is a more powerful op-
eration than conditioning, for the purposes of determining
probabilistic independence. This is because conditioaing

a variable can d-separate certain paths, but also d-connec

certain paths (due to the presence of colliders). On the othe
hand, interventions can only block paths, since incoming
arrows are cut by interventions, destroying all colliders i
volving the intervened variable. Moreover, if we restriat-o
selves to interventions identifiable from the observationa
distribution, we don'’t pay the price for this power, in a sens
that we don'’t use any information other than the observa-
tional distribution, and the causal graph.

Identifiability can be defined formally as follows.

Definition 3 (identifiability) Consider a class of modeld
with a descriptionT’, and two objectg) and # computable
from each model. | say that is ¢-identified inT if ¢ is
uniquely computable from in any M € M. In other words
all models inM which agree o will also agree onp.

If ¢ is 6-identifiable inT", we writeT, 0 I-,4 ¢. Otherwise,
we write T, 0 ;4 ¢. In our case, the model clagscorre-
sponds to a causal graphis the observational distribution
P(v), and¢ is the causal effecP(y|do(x)) of interest. For
example, in Fig. 1 ()P (v), G Fiq P.(z,w,y).

We call conditional independencies in interventional dis-
tributionsdormant to emphasize the fact that such indepen-
dencies are not apparent in a given observational disioibbut
without causal assumptions that make interventions a mean-
ingful operation.

Definition 4 (dormant independence) A dormant (condi-
tional) independence exists between variable 3etg in
P(v) obtained from the causal grapfi if there exist vari-
able setsZ, W such thatP(y|x, z,do(w)) = P(y|z do(w)).
Furthermore, ifP(v),G F,q P(Y,X|z,do(w)), the dormant
independence is identifiable and we denote thixasl

Y|Z. If an identifiable dormant independence does not exist
betweerX, Y we writeX /., Y.

We can extend the definition of d-separation in a straight-
forward way to mirror identifiable dormant independencies.

Definition 5 (d*-separation) Let G be a causal diagram.
Variable setsX, Y are d*-separated itz givenZ, W (written
X L Y|Z), if we can find setZ, W, such thatX L Y|Z in
Gw, and P(v), G t;q P(Y,X|z,do(w)). If X,Y are not d*-
separable, we writX f, Y.

Note that despite the presence of probability notation in
the definition, this is a purely graphical notion, since iden
tification can be determined using only the graph. We can
prove a theorem analogous to Theorem 1 for dormant inde-
pendencies, which allows us to reason about dormant inde-
pendencies graphically.

Theorem 2 LetG be a causal diagram. Then in any model
M inducingG, if X Ly, Y|Z, thenX L, Y|Z.

Proof: This follows from the fact thaGyw is the graph in-
duced by the submodél/,,, and any submodel is just an
ordinary causal model where Theorem 1 holds. o

In this paper we seek to characterize cases when arbitrary
disjoint sets can be d*-separated, and therefore to claaract
ize identifiable dormant independencies among sets which
are entailed by causal graphs. The next section will conside
tthe simpler version of the problem wheXeandY are sin-
gleton sets.

D*-separation Among Singletons

To characterize identifiable dormant independence between
X andY, it makes sense to consider the “difficult” neigh-
borhoods ofX, Y, in a sense that no intervention on those
neighborhoods is identifiable. We call such neighborhoods
ancestral confounding sets.



functionFind-MACS (G, Y)
INPUT: G, a causal diagrany, a node inG.
OUTPUT.: Ty, the MACS forY in G.

11f(3X € An(Y)o),
returnFind-MACS (G 45, (v), Y)-

2If(3X €CY)g),
returnFind-MACS (G ¢y ), Y).

3 Else, returr.

Figure 2: An algorithm for computing the MACS &f.

Definition 6 LetY be a variable inG. A setS is ancestral
confounded (ACS) fdr if S = An(Y)gs = C(Y)gs-

Ancestral confounded sets are a “difficult” neighborhood
due to the following result.

Theorem 3 Let S be ancestral confounded faf. Then for
any s’ € S\{Y}, P(v), G Via P(y|do(s')).
Proof: It's trivial to construct a Y-rooted C-tre€ [Shpitser
& Pearl, 2006b from S. But it is known that for any set
S’ of nodes inT that does not contaity’, P(v),G /4
P(y|do(s")) [Shpitser & Pearl, 2006b =

In our search for suitable variables to intervene on, in
order to separat& andY, we can exclude ancestral con-
founded sets foX andY. But there can be potentially many

such sets. It would be preferable to exclude all such sets at
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Figure 3: (a) A graph wher& 1. Y|W,K,L,N. (b) A
graphwhereX 1, Y, X 1, L,butX t,{Y,L}.

Theorem 6 Let T, T, be the MACSs oK, Y. Letl, , =
Pa(T,UTy)\ (T, UTy). Thenif eithetX is a parent ofl},
Y is a parent ofT, or there is a bidirected arc betwedh,
anT,, thenX,Y are not d*-separable. Otherwis& L
YT, UT,\ {X,Y}.

Proof outline:If X is a parent off, (or vice versa), or there

is a bidirected arc betweéf, andT,, then there exists an
inducing path betweeX andY’, which means conditioning
cannot separat&¥ andY. However, we know from results in
[Shpitser & Pearl, 2004and[Shpitser & Pearl, 2008ahat
conditional effectsP(y|z) are equivalent to unconditional
effects of the formP (y'), and such effects are not identifi-
able ifY e y’, andx’ C T,. This means interventions also
don't help.

To show the other direction, note that a d-connected path

ifﬂwy

once. Fortunately, the following results allows us to accom ~Cannot start with outgoing arrows from bathandY’ (else

plish just that.

Theorem 4 For any variableY in G, there exists a unique
maximum ancestral confounded set (MACR)

Proof outline: The key step is to note that if two maximal
ancestral confounded sets fBr exist, then their union is
also ancestral confounded. o

T, contains all ancestral confounded sets Yarwhich
means if we can find an efficient procedure for computing
T,, we could rule out all “difficult” sets from consideration
at once. Such an algorithm exists, and is given in Fig. 2.

Theorem 5 Find-MACS(G, Y) outputs the MACS of in
polynomial time in the size of the graph.

Proof outline:lt's easy to see that the outputleihd-MACS
is an ACS if given a singleton input. To see that it is maxi-
mum, we note thatind-MACS can never remove elements
from T}, at any stage. The algorithm is polynomial since de-
termining An(.) andC(.) sets can be done in polynomial
time in the size of the graph, and each recursive call elimi-
nates at least one node from the graph. o
One problem with a MACST, is that interventions in
T, are not identifiable, and conditioning ifi, does not d-
separate paths frori out of T, which consist entirely of
colliders, although all paths with a non-collider T are
blocked. In order to block some all-collider paths out of
T,,T, we attempt to intervene on the sBu (T, U T,) \
(T U T,). It turns out these interventions are sufficient to

such a path must run into a collider, or an intervened node).
Without loss of generality, say the path crosgs\ {X}.

A directed arrow leaving’, is blocked either af’, or I ,,
while a bidirected arrow cannot connectfp directly, and
otherwise must be blocked &t ,,. o

To illustrate this theorem, consider the graph in Fig. 3.
Here, T, = {K,L,N,Y}, andT, = {W, X }. By Theorem
6,X L. Y|W,K,L, N.

Thus, the MACSs turn out to be key structures for de-
termining identifiable dormant independence between two
variables. In the next section, we generalize our results to
handle dormant independence among sets of variables.

D*-separation Among Sets

To determine identifiable dormant independencies between
setsX,Y, we want to find a multi-node generalization of
MACSs. Unfortunately, we are presented with the following
problem. Assum& = {K, L} such that’’ 1, L|Z. In this
case, there really isn't a difficult neighborhood adjacent t
both K and L. An appropriate generalization of MACSs to

a setY, then, must partitioty such that a difficult neighbor-
hood can be defined for each subset in the partition.

Definition 7 LetY be a variable set irf7. A setS is ances-
tral confounded folY if for everyY € Y, S = An(Y)g, =
C(Y)GS'

Note that ancestral confounded sets are not guaranteed to

create identifiable dormant independence among singletons exist for sets of nodes. However, if they do exist for some set

if one exists.

finiteness of graphs we consider guarantees the existence of



a maximal ancestral confounded set. We want to define an
appropriate partition of an arbitrary set, where each efégme
of the partition has an ACS. We will show the following def-
inition will work for this purpose.

Definition 8 (AC-component) A setY of nodes inG is an
ancestral confounded component (AC-component) if

e Y={Y}, eug.,Yisasingleton set, or
e Y is a union of two distinct AC-components, Yo which

have ancestral confounded séts, S», respectively, and
S1, 52 are connected by a bidirected arc

Lemma 1 Every AC-component has an ancestral con-
founded set.

Proof: If an AC-component is a singleton, this is obvious.

Otherwise)Y is a union of AC-component;, Y, with an-

cestral confounded sefs, Ss. LetS = S;USs. Since there

is a bidirected arc fron§; to .Sy, forevery nodeX € S, S =

C(X)¢s- Moreover, by constructiof = An(Y)g,. Thus,

S is an ancestral confounded set for o
AC-components behave just as singleton sets do with re-

spect to ACS. In fact, there is a unique MACS for every

AC-component, and the algorithm to find it is the familiar

Find-MACS with set inputs.

Theorem 7 LetY be an AC-component. Then there exists a
uniqgue MACSIy, for Y, and Find-MACS-on-set (shown in
Fig. 4) finds it in polynomial time in the size of the graph.

Proof: The proof is a straightforward generalization of the
proof of Theorems 4 and 5. o

functionFind-AC-Partition (G, Y)

INPUT: G, a causal diagrany, a set of nodes id-.
OUTPUT:p, the unique partition of into AC-components,
and the unique MACJ5 for eachS € P.

1 Letp be the partition off containing all singleton subsets
of Y.

2 Foreacht €Y, letT, = Find-MACS (G, Y).

3 Repeat until no merges are possibled¥Yf;, Y, € p such
that7y ,Ty, share a bidirected arc, merye, Y into Y’

in p, and letTy, = Find-MACS-on-set(G, Y’).
4 returnp, and the set of MACSs for each elemenpin

functionFind-MACS-on-set(G, Y)
INPUT: G, a causal diagran¥, an AC-component il
OUTPUT:Ty, the MACS forY in G.

11f(3X ¢ An(Y)e),
returnFind-MACS-on-set(G 4,,(y), Y)-

21f(FY €Y, IX € C(Y)q),
returnFind-MACS-on-se{(G ¢ (y), Y).

3 Else, returr.

Figure 4: An algorithm for computing the AC-partition (and
the corresponding sets of MACSs) 6f

way is a partition where each element is a maximal AC-

What we have shown is that certain special sets of nodes component. Since each AC-component is also maximum

have a MACS, just as singletons do. While we cannot show

the same for arbitrary sets (consider a set of two nodes not
in the same C-component), we can show the next best thing,

namely that there exists a unique partition of any set into
AC-components.

Lemma 2 LetY be a variable sety” € Y. Then there is a
unigue maximum AC-componentwhich both contirssd
is a subset of.

Proof: Some such AC-component exists, siicatself is a
trivial AC-component. Sincé is finite there is a maximal
such AC-component. Assume there are two distinct maxi-
mal AC-components containing which are subsets of,
sayYq,Ys. Let Sy, Se be the corresponding MACSs. Since
these AC-components have the nddén common,S; and

S have a node in common, and so are connected by a bidi-
rected arc. This implie¥; UY 5 is an AC-component, which

is a contradiction. o

Theorem 8 Any variable setY has a unique partitiorp,
called the AC-partition, where each eleméhin p is a max-
imal AC-component in a sense that no supersef wfhich
is also a subset of is an AC-component.

Proof: To see that there is a unique AC-partitipn start
with some node€Y” € Y, find it's unigue maximum AC-
component which is still a subset ¥f and repeat the pro-

and uniquep is unique. o

There is a simple algorithm, shown in Fig. 4, which, given
an arbitrary sev, finds the unique AC-partitiop of Y, and
finds the MACS for each AC-componentin

Theorem 9 Find-AC-Partition(G, Y) outputs the unique
AC-partition of Y, and the set of MACSs for each element
in the partition. Moreover, it does so in time polynomial in
the size of7.

Proof outline: The output ofFind-AC-partition is a parti-
tion p of Y where each element is an AC-component. It's
a consequence of Lemma 2 that the AC-partitionYofs
coarser tham. If the AC-partition is not equal te, it's not
difficult to derive a contradiction using the definition of AC
components, and the structurgrand-AC-Partition . To see
that the algorithm is polynomial, note that each invocatibn
Find-MACS andFind-MACS-on-setterminates in polyno-
mial time, as those algorithms are themselves polynomial.
Moreover, the set merge operations performed can be easily
implemented in polynomial time. Finally, the total number
of set merges performed by the algorithm is bounded by the
number of nodes in a binary tree with the number of leaves
equal to the number of nodes @ This means the number
of mergesiis linear in the size 6f, and the overall algorithm
is polynomial in the size ofs. o

We want to prove a result analogous to Theorem 6 for sets.

cess for the nodes which have not been made part of someTo do so, we must generalize the notion of an inducing path

AC-component. The set of AC-components obtained in this

to sets.



Definition 9 (inducing paths for sets) Let X, Y be sets of
variables inG. A pathp betweenX andY is called an in-
ducing path if the following two conditions hold

e The path forms a collider for every non-terminal node
e Every non-terminal node is an ancestonobr Y.

Not surprisingly, inducing paths characterize d-
separability for sets just as they do for singleton varigble

Theorem 10 X cannot be d-separated from in G if and
only if there exists an inducing path froito Y in G,

Proof outline:If there is no inducing path frot to Y, then
A = An(XUY)\ XUY will serve as a d-separating set.
Any path not involving nodes i, must contain a collider
and so isn’'t d-connecting. Since we conditionAnthe d-
connecting path must contain only colliders, but this cantr
dicts the absence of an inducing path.

If there is an inducing path, we can establish by case anal-
ysis on this path thaX [} Y. The key observation is that
regardless of what set of nodes we condition on, it is al-

ways possible to recover a path which behaves as an induc-'

ing path, which meanX andY stay d-connected. o

We can now prove the generalization of Theorem 6 for
sets. The idea is to find the AC-partitionXfU Y, and gen-
eralize the two conditions for d*-separability in Theorem 6
for this AC-partition.

Theorem 11 Let X, Y be arbitrary sets of variables. Let
be the AC-partition oK U Y. Then if either elements of both
X andY share a single AC-component jn or some ele-
ment ofX is a parent of the MACS of some AC-component
containing elements of (or vice versa), therX cannot be
d*-separated fromyY. Otherwise, letl}, be the union of all
MACSs of elements in and letl, = Pa(T},) \ T,. Then,
X Li, Y|T, \ (XUY).
Proof outline: If the above conditions hold, the inducing
path betweernX andY exists by definition. Thus, condi-
tioning will not help to separatX andY. To see that in-
terventions also will not help, we can show by induction on
AC-component structure that the effect of any subset of the
MACS of any AC-component on that AC-component cannot
be identified, which implies, using the resultd 8hpitser &
Pearl, 2006pwe appealed to in the proof of Theorem 6, that
interventions also do not help.

The proof of the other direction follows the same lines as
the proofin Theorem 6. o

We conclude this section by noting that just as was the
case with conditional independence, identifiable dormant i

Figure 5: (a) The true causal graph. (b) A possible valid
graph for the same domain.

consider the problem of detecting if certain edges in a par-
ticular causal graph are extraneous. We call graphs where
every edge is either correct or extraneous valid.

Definition 10 (valid graph) A causal graph( is valid for a
model) if every edge in the graph induced by is present
inG.

It is possible to rule out out the presence of certain extra-
neous edges using conditional independence tests. In order
to do so, an additional property faithfulnesss assumed. In
faithful models, lack of d-separation implies dependefrce.
otherwordsX L Y|Ziff X L Y|Z. This property allows us
to reach graphical conclusions from probabilistic premise
For instance, the presence of a conditioningsstich that
X 1l Y|Z implies X andY cannot share an edge. System-
atic use of conditional independence tests to rule out adja-
cencies in this way is an important part of causal inference
algorithms such akC [Verma & Pearl, 199]) [Pearl, 200D
andFClI [Spirtes, Glymour, & Scheines, 1993

The advantage of dormant independencies is their ability
to rule out edges even if all conditional independence tests
fail. For instance, it is possible to rule out the edge from
X to Y in Fig. 5 (b) as extraneous X 1L, Y, though
no conditional independence test can succeed in doing the
same, since there is an inducing path fraimo Y.

However, in order to reach graphical conclusions from
dormant independencies, we need to extend the faithfulness
property to hold in interventional settings.

Definition 11 (experimental faithfulness) A model M is

experimentally faithful, o, -faithful if every submodeliy

of M is faithful (that is d-connectedness @ implies de-
pendence).

Experimental faithfulness states that no “numerically co-

dependence among subsets does not entail dormantindepenincidental independencies” are introduced by interverstio

dence on sets. For example, in the graph shown in Fig. 3 (b),
XL, YV, X 1, LbutX f,{Y,L}.

Having given a complete solution to the problem of deter-
mining identifiable dormantindependence implied by causal
graph via d*-separation, we give an example of how such

We use dormant independence tests to rule out extraneous
edges in valid graphs of experimentally faithful models. To
test if an edge betweek andY is extraneous, we must find
setsZ, W such thatX 1, Y|Z. A naive brute-force ap-
proach to this problem is intractable since we must try all

independencies can be used to test aspects of the causal diagyhsetsz, W. However, if we assume the edge we are test-

gram.

Testing Causal Structure

To illustrate the usefulness of identifiable dormant inadepe
dencies for induction and testing of causal structures, we

ing is absent in the graph, we can useired-MACS algo-
rithm to propose a dormant independence to test in polyno-
mial time. Since testing this independence does not require
we perform any interventions, the test can be performed on
the observational distribution alone. There is an addiion



functionTest-Edge¢G, P(v)) Conclusions
INPUT: G, a valid graph of an experimentally faithful

modelM, P(v), a corresponding probability distribution. In this paper we consider dormant independencies, that is
OUTPUT: ¢/, a valid graph with some extraneous edges conditional independencies that surface in interventiona
removed. distributions. We give a complete algorithm for the problem

of determining identifiable dormant independencies esdiail

by the causal graph, in other words determining if two sets
of random variables can be rendered independent by con-
ditioning in some identifiable interventions. We also pro-

e Let 7 be a topological order of edges ¥, where
(X,)Y) = W, 2) if XY € An({W,Z})c. Let G’

equalG. vide a characterization of graphical structures which enév
e ForeveryedgéX,Y) inm, if we can find set&, W using identifiable dormant independencies. We have also demon-
Theorem 6 such that 1, Y|ZinG’\ (X,Y), and strated the usefulness of the notion of dormant independen-
X Uy Y|Zin P(v),G, remove(X,Y) fromG'. cies for testing and induction of causal structure by giving
e returnc’. an algorithm which uses constraints entailed by identi&abl

dormant independencies to remove extraneous edges from
causal diagrams.

Straightforward applications of dormant independencies
rely on some knowledge of the graph in order to conclude

o . identification. Extending our results to the situations mhe
complication, namely that certain edges ancestral tand the underlying graph is not available, for instance in otder

Y’ may themselves be extraneous. This may result in a situ- 44 caysal induction, is an interesting area of future work.
ation whereX [, Y if the ancestral extraneous edges are

present, while a dormant independence can be established if
they are removed. Fortunately, since we restrict oursdtves Acknowledgments
acyclic graphs, we can establish a topological order among
edges based on ancestry, and test for extraneous edges usin
this order. The resulting algorithm is shown in Fig. 6

It is not difficult to establish thafest-Edgess sound.

Figure 6: An algorithm for testing edges in valid graphs.
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Appendix

Theorem 4 For any variableY in G, there exists a unique
maximum ancestral confounded set (MACR)

Proof: Maximal ancestral confounded sets exist for &y
since we only consider finite graphs. Assume theié vgith

two distinct maximal ancestral confounded s€{sS>. We
claim thatS = S; US> is an ancestral confounded set, which
is a contradiction. By construction, S is a C-component in
G, since any nodeX € S; and any nodeZ € S, can

row is leavingX . X cannot have conditioned descendants in
Gi— unlessX was a parent df’, or z € T,, both of which
are |mp055|ble by assumption. This means the path fkom
is just a set of directed arrows froM. But such a path must
run into nodes fixed by, ,, unlessX was a parent of’,
or in T, which is impossible. Thus, no path starting with an
outgoing arrow fromX can be d-connected 16.

Assume the path starts with an incoming arrow ifo
If the arrow is directed, the corresponding pargmf X is

be connected by a bidirected path constructed by append- €ither inT;; or in I, ,, (and in neither case cati be equal

ing the bidirected path fronX to Y in Ggs, (guaranteed
to exist sinceS; is a C-component inGs,) to the bidi-
rected path fron¥” to Y in Gs, (Quaranteed to exist since
Sy is a C-component iiGg,). SinceS; € An(Y)s,, and

Sy € An(Y)Sz, S e An(Y)s O
Theorem 5 Find-MACS(G, {Y'}) outputsT},, the MACS of

Y in polynomial time in the size of the graph.

Proof: The algorithm is polynomlal since determinirdg(.)

and C(.) sets can be done in polynomial time, and each

toY). In either case, the path is not d-connectell tdf the
arrow is bidirected, we have two cases. Either the next node
Z in the path is irl, or outside bot¥, andI, , (Z cannot

be inI, , since then the path will not be d-connected). For
the first case, we repeat the argument until we reach the sec-
ond case. For the second ca8e;annot be iril,, else there

is a bidirected path frorf, to T}, which is ruled out by as-
sumptlon Note thaZ cannot have conditioned descendants
in G— unlessZ was a parent of’, or T}, or was inZ;, or

recursive call eliminates at least one node from the graph. 7. But we ruled all these cases out. Therefore the subse-

Since the MACS ofY is unique, all ancestral confound-
ing sets ofY” are contained in it (otherwise, we can repeat

quent arrows on the path are directed arrows away ffom
As before, these arrows must eventually reégh, which

the argument in Theorem 4). First, we show that the output means the path is not d-connected. O

set.S of Find-MACS is an ancestral confounding set bf

If not, then eitherS # An(Y)g, or S # C(Y)g,. But
the algorithm only returns if there is no elementSnout-
side An(Y)g,, and no element irf outsideC(Y)g,. To
show thatS is maximum, assume this isn’t the case, and
letZ C T, \ S be the first node set ifl;, removed by
Find- MACS Let G’ be the graph at the stage whetds
removed. By assumptiofT,, is contained inG’, and either

Z ¢ An(Y)e orZ ¢ C(Y)g. ButZ C An(Y)g,,, and

Z C C(Y)qy, by definition ofT},. Contradiction. o

Theorem 6 Let T,,T, be the MACSs oK, Y. Letl, , =
Pa(T, UTy)\ (T» UTy). Then if eitherX is a parent of
T,, Y is a parent ofT or there is a bidirected arc be-
tweenT, anT),, thenX,Y are not d*-separable. Otherwise,
X 1, , YT, UT, \ (X, Y},
Proof: Assume e|therX is a parent ofT, or T,T, are
connected by a bidirected arc. It's easy to verify, by def-
inition of T, that the the above imply the presence of
an inducing patiVerma & Pearl, 199D from X to Y.
Thus, no conditioning set can d-separdfeand Y. We
want to show that identifiable interventions don't help. €on
sider disjoint subsets, S’ of T}. A result in[Shpitser &
Pearl, 2006Rhimplies thatP( ), e Fia P(yls',do(s)) iff
P(V),G Wia P(y,t|do(s,t')), whereT, T" is a certain par-
tition of S’. By Theorem 3,P(v),G |711d P(y|do(w)) for
any subseW of T,, which in turn impliesP(v),G q

P(y,t|do(s,t)). But if P(v ) G Wia P(yls',do(s)), then
P(v),G t/;a P(y,z|s’,do(s)). Itis not difficult to construct
a model where for any supersétof S’, and supersetV
of S, P(v), G Via P(y,z|z,do(w)) (by for instance letting
nodes outsid&), be mutually independent). This implies our
result.

To show the other direction, con&d% and a pos-
sible d-connected path frod¥ to Y. This path starts with
an arrow leavingX or an arrow enteringl. Assume the ar-

Theorem 9 Find-AC-Partition(G, Y) outputs the unique
AC-partition of Y, and the set of MACSs for each element
in p. Moreover, it does so in time polynomial in the size of
G.

Proof: We first show thatp, the output of Find-AC-
Partition, consists of a partition of AC-components (not
necessarily maximal). Clearly this is true at the initiatiz
tion step, since a singleton is a trivial AC-component. It's
also clear by definition that any merge ¥f, Y, results in

an AC-component’. Furthermore, by Theorem 7, is the
MACS of Y’.

Let p* be the AC-partition ofY. We claim thatp* must
be coarser thap, in a sense that every elementzh is a
union of a set of elements jn Note that this definition holds
if p* is equal top. Assume not. Then there are some sets
S € p, S’ € p* such that some elements Fare inS’
and some are not. Leéf € SN S’. By Lemma 2, there is a
unique maximum AC-component containidigvhich is also
a subset of. By definition ofp*, S’ is this AC-component.
Butif S is not contained irb’, we can derive a contradiction
by repeating the argument in the proof of Lemma 2.

Finally, we want to show* is equal top. Assume this
isn’t the case, and fix some eleméiitin p* which is a union
of two or more elements ip. Since each AC-component
is either a singleton, or constructed from two smaller AC-
components, we can construct a binary t¥fgevhere each
leaf is a node inS’, and each non-leaf represents an AC-
component obtained from the AC-component corresponding
to the left subtree of the non-leaf and the AC-component
corresponding to the right subtree of the non-leaf.

We want to find an AC-componeuit in 7" with the prop-
erty that its left subtree corresponds to a subset of some el-
ementsS; in p, and its right subtree corresponds to a subset
of another elemen$, in p. This AC-component must ex-
ist, since leaves ifl" are singletons, and the root ®fcor-



responds taS’, which spans multiple elements in This
implies that the MACS of a subset ¢f; is connected to
the MACS of a subset of, by a bidirected arc. But the
MACS of S; and the MACS ofS, are supersets of these

MACSs of elements in, and letl, = Pa(T},) \ T,. Then,

X L, YT, \ (XUY).

Proof: What we want to show is that the conditions for the
absence of d*-separation of s{sY imply that there is an

connected MACS, so they are themselves connected by ainducing path betweex andY, and that no interventions on

bidirected arc. But thep could not have been the output of
Find-AC-Partition . o
Theorem 10 X cannot be d-separated fromin G if and
only if there exists an inducing path froito Y in G,

Proof: Assume there is no inducing path frafnto Y. Let
A= An(XUY)\ (XUY). We claim thaX L Y|A. It's not
hard to see that if there is a d-connected path fiomo Y,
then it does not have any nodes noAinAssume otherwise.
Then some node on this path noinmust contain a collider.

But this implies the path is not d-connected, since this node

does not have descendant®in

Since we condition o/, the d-connected path must con-
sist exclusively of colliders. Moreover, by definition eyer
node on the path is an ancestor of eithepr Y. But this
means the path is inducing. Contradiction.

Assume the inducing path froXi to Y. We want to show
we cannot d-separa¥efrom Y. First, we show thaX / Y.

nodes in that inducing path are identifiable, at least ifegith
X orY are the effect variables.

We first want to show that iZ is an AC-component,
then for any disjoint subsets, S’ of the MACS T,
P(v),G Wa P(z]s',do(s)). By a result from[Shpitser &
Pearl, 2006R P(v), G fiq P(z|s',do(s)) iff P(V),G Via
P(z,t|do(s,t")), whereT, T’ is a particular partition of
S’. But if P(v),G Wiqa P(z|do(s,t")), then P(V),G tia
P(z,t|do(s,t")). Without loss of generality, then, we will
prove thatP(v), G t/;q P(z|do(s)). By Theorem 3, this is
true if Z = {Z}. Assume this is true for AC-components
Z1,Z>. We want to show this also holds for the AC-
componentZ obtained from these two AC-components.
Clearly, the result also holds far = T, U T5,. We want
to show the same is true f@k. By construction;; can be
used to construct a C-fordShpitser & Pearl, 2008kor Z.
The same is true fof. ThenT, T, form a hedgd Shpitser

We have three cases. The inducing path contains either & Pearl, 2006b for P(z|do(s")), for any setS” C T; \ T,

entirely bidirected arcs, or one directed arc following by
or more bidirected arcs, or one directed arc, following by
zero or more bidirected arcs, followed by a directed arc.
Let A be the first node on the inducing path aftér B be
the first node on the inducing path aftér If all nodes on
the inducing path are ancestorsXfthenB is an ancestor
of X. But the edge betweer and B is either bidirected,
or directed fromY to B. In either case, the ancestral path
from X to B plus this edge forms a d-connected path from

X toY. The same argument applies if all nodes on the induc-

ing path are ancestors ¥t Otherwise, find two neighboring
nodesC, D on the inducing path wher@ is an ancestor of
X, andD is an ancestor of . Then the ancestral path from
X to C, along with the edge along the inducing path from
C to D, along with the ancestral path frohto D form a
d-connected path frotd to Y.

What we have to show is that regardless of which sets of

nodes we condition on, some d-connected path betieen
andY remains. Lep’ the subpath op such that nodes gplf

which means the result holds f@j.

If there is an AC-component containing both elements of
X andY, then an inducing path betwe&handY exists by
the definition of AC-component. Similarly, if some element
of X is a parent of the MACS of some AC-component which
is a subset ofr, then an inducing path betweefandY
exists by the definition of AC-component.

If there is an AC-componer@ containing both elements
of X andY, then by above reasoning for any disjoint sub-
setsS, S of Ty, P(v),G Wiq P(c|s’,do(s)). Similarly, if
there is an element of which is a parent of the MACS
of some AC-component’ which is a subset oY, then by
above reasoning for any disjoint subsstss’, P(v), G tiq
P(y'|s’,do(s)). As before, it is not difficult to construct
a model where for any supersétof S’ and supersetV
of S, P(v),G Va P(c|z,do(w)) (in the first case), or
P(v),G tiq P(Y'|z, do(w)), (in the second case). In either
case, no combination of fixing and conditioning can rid us
of the inducing path, and our result follows.

are either conditioned on themselves, or their descendants To prove the other direction, consider a d-connected path

are conditioned on. Ip/ = p, we are done sinceg is d-
connected. Otherwise, consider every pair of nadleB on
p \ p’ such that all nodes op betweenA and B are inp’.
By construction, the fragment gfbetweend and B is a d-

in G; from X € XtoY € Y. Without loss of generality,
assume no elementsi Y, other than the end points are on
this path.

The path either starts with an outgoing arrow, an incom-

connected path, terminating with arrowheads on both ends. ing arrow, or a bidirected arrow. Assume it starts with an

To show that there is a d-connected path betweemdY,

outgoing arrow into a nod¢. If Z is inside some MACS,

we repeat the above d-connection argument, except ratherthe next edge on the path can be assumed to be bidirected.

than considering the pagh we consider the path\ p’, and

This is because this MACS cannot contain any nodes,in

instead of the d-connected paths between every node pairand because the next nodeis conditioned on by assump-

A, B as above, we consider a bidirected arc. o
Theorem 11 Let X,Y be arbitrary sets of variables. Let
p be the AC-partition ofX U Y. Then if either elements of
both X and Y share a single AC-component jn or some
element oK is a parent of the MACS of some AC-component
containing elements of (or vice versa), therX cannot be
d*-separated fromyY. Otherwise, letl}, be the union of all

tion. Since the arrow is bidirected, we handle this case in
the “bidirected arrow” situation. I is outside any MACS,

it is either in1,, in which case the path is not d-connected,
or it does not have any conditioned descendants, since the
parents of every MACS are fixed. This means the segment
of the path fromZ is just a set of directed arrows pointing
away fromZ. But such a path must run into nodes fixed by



I,,, which is impossible. Thus there are no d-connected path
starting with an outgoing arrow from .

Assume the path starts with an incoming arrow o
If the arrow is directed, the corresponding pargmf X is
eitherinT,. orinI,. Ifitisin I,, the path is not d-connected,
since no element of can be a parent of the MACS of an
AC-component containing’ by assumption. If it is i, it
is conditioned on, and the path is not d-connected.

If the arrow is bidirected, we have two cases. Either the
next nodeZ in the path is in the MACS of an AC-component
containingX, or outside both this AC-component, aig
For the first case, we repeat the argument until we reach the
second case. For the second caeannot be in any other
MACS. Otherwise, there is a bidirected arc between distinct
MACSs returned byrind-AC-Partition which is impossi-
ble by Theorem 9. Note tha cannot have conditioned de-
scendants it~ unlessZ was in I, which is impossible.
Therefore, the subsequent arrows on the path are directed
arrows away fronZ. As before, these arrows must eventu-
ally reachi,,, which means the path is not d-connected:





