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Abstract

This paper introduces empirical researchers to recent advances in causal inference and stresses the
paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal
analysis of multivariate data� Special emphasis is placed on the assumptions that underly all causal
inferences� the languages used in formulating those assumptions� and the conditional nature of causal
claims inferred from nonexperimental studies�

In particular� the paper advocates a formalism based on nonparametric structural equations
�Pearl� ����a� which provides both a mathematical foundation for the analysis of counterfactuals and a
conceptually transparent language for expressing causal knowledge� This framework gives rise to a
friendly calculus of causation that uni�es the graphical� potential outcome 	Neyman
Rubin� and
structural equation approaches and resolves long
standing problems in several of the sciences� These
include questions of confounding� causal e�ect estimation� policy analysis� legal responsibility� direct
and indirect e�ects� instrumental variables� surrogate designs� and the integration of data from
experimental and observational studies�

KEY WORDS� Structural equation models� confounding� Rubin causal model� graphical methods�
counterfactuals� causal e�ects�

� Introduction

Almost two decades have passed since Paul Holland published his highly cited review paper on the
Neyman�Rubin �NR� approach to causal inference 	Holland� 
���� Our understanding of causal inference
has since increased several folds� due primarily to advances in three areas�


� Nonparametric structural equations

�� Graphical models

�� Symbiosis between counterfactual and graphical methods�

These advances are central to the empirical sciences because the research questions that motivate
most studies in the health� social and behavioral sciences are not statistical but causal in nature� For
example� what is the e�cacy of a given drug in a given population� Whether data can prove an employer
guilty of hiring discrimination� What fraction of past crimes could have been avoided by a given policy�
What was the cause of death of a given individual� in a speci�c incident�

Remarkably� although much of the conceptual framework and algorithmic tools needed for tackling
such problems are now well established� they are hardly known to researchers in the �eld who could put
them into practical use� Why�

Solving causal problems mathematically requires certain extensions in the standard mathematical
language of statistics� and these extensions are not generally emphasized in the mainstream literature and
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education� As a result� large segments of the statistical research community �nd it hard to appreciate and
bene�t from the many results that causal analysis has produced in the past two decades�

This paper aims at making these advances more accessible to the general research community by�
�rst� contrasting causal analysis with standard statistical analysis and� second� by comparing and unifying
various approaches to causal analysis�

� From Associational to Causal Analysis� Distinctions and

Barriers

��� The Basic Distinction� Coping With Change

The aim of standard statistical analysis� typi�ed by regression� estimation� and hypothesis testing
techniques� is to assess parameters of a distribution from samples drawn of that distribution� With the
help of such parameters� one can infer associations among variables� estimate the likelihood of past and
future events� as well as update the likelihood of events in light of new evidence or new measurements�
These tasks are managed well by standard statistical analysis so long as experimental conditions remain
the same� Causal analysis goes one step further� its aim is to infer not only the likelihood of events under
static conditions� but also the dynamics of events under changing conditions� for example� changes induced
by treatments or external interventions�

This distinction implies that causal and associational concepts do not mix� There is nothing in the
joint distribution of symptoms and diseases to tell us that curing the former would or would not cure the
latter� More generally� there is nothing in a distribution function to tell us how that distribution would
di�er if external conditions were to change�say from observational to experimental setup�because the
laws of probability theory do not dictate how one property of a distribution ought to change when another
property is modi�ed� This information must be provided by causal assumptions which identify relationships
that remain invariant when external conditions change�

These considerations imply that the slogan �correlation does not imply causation� can be translated
into a useful principle� one cannot substantiate causal claims from associations alone� even at the
population level�behind every causal conclusion there must lie some causal assumption that is not testable
in observational studies�

��� Formulating the Basic Distinction

A useful demarcation line that makes the distinction between associational and causal concepts crisp and
easy to apply� can be formulated as follows� An associational concept is any relationship that can be de�ned
in terms of a joint distribution of observed variables� and a causal concept is any relationship that cannot
be de�ned from the distribution alone� Examples of associational concepts are� correlation� regression�
dependence� conditional independence� likelihood� collapsibility� risk ratio� odd ratio� marginalization�
conditionalization� �controlling for�� and so on� Examples of causal concepts are� randomization�
in�uence� e�ect� confounding� �holding constant�� disturbance� spurious correlation� instrumental variables�
intervention� explanation� attribution� and so on� The former can� while the latter cannot be de�ned in
term of distribution functions�

This demarcation line is extremely useful in causal analysis for it helps investigators to trace the
assumptions that are needed for substantiating various types of scienti�c claims� Every claim invoking
causal concepts must rely on some premises that invoke such concepts� it cannot be inferred from� or even
de�ned in terms statistical associations alone�

��� Rami�cations of the Basic Distinction

This principle has far reaching consequences that are not generally recognized in the standard statistical
literature� Many researchers� for example� are still convinced that confounding is solidly founded in
standard� frequentist statistics� and that it can be given an associational de�nition saying �roughly�� �U
is a potential confounder for examining the e�ect of treatment X on outcome Y when both U and X and
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U and Y are not independent�� That this de�nition and all its many variants must fail� is obvious from
the demarcation line above� �independence� is an associational concept while confounding is needed for
establishing causal relations� The two do not mix� hence� the de�nition must be false� Therefore� to the
bitter disappointment of generations of epidemiology researchers� confounding bias cannot be detected
or corrected by statistical methods alone� one must make some judgmental assumptions regarding causal
relationships in the problem before an adjustment �e�g�� by strati�cation� can safely correct for confounding
bias�

Another rami�cation of the sharp distinction between associational and causal concepts is that any
mathematical approach to causal analysis must acquire new notation for expressing causal relations �
probability calculus is insu�cient� To illustrate� the syntax of probability calculus does not permit us to
express the simple fact that �symptoms do not cause diseases�� let alone draw mathematical conclusions
from such facts� All we can say is that two events are dependent�meaning that if we �nd one� we
can expect to encounter the other� but we cannot distinguish statistical dependence� quanti�ed by the
conditional probability P �disease jsymptom� from causal dependence� for which we have no expression in
standard probability calculus� Scientists seeking to express causal relationships must therefore supplement
the language of probability with a vocabulary for causality� one in which the symbolic representation for the
relation �symptoms cause disease� is distinct from the symbolic representation of �symptoms are associated
with disease��

��� Two Mental Barriers� Untested Assumptions and New Notation

The preceding two requirements� �
� to commence causal analysis with untested�� theoretically or
judgmentally based assumptions� and ��� to extend the syntax of probability calculus� constitute the two
main obstacles to the acceptance of causal analysis among statisticians and among professionals with
traditional training in statistics�

Associational assumptions� even untested� are testable in principle� given su�ciently large sample and
su�ciently �ne measurements� Causal assumptions� in contrast� cannot be veri�ed even in principle� unless
one resorts to experimental control� This di�erence stands out in Bayesian analysis� Though the priors that
Bayesians commonly assign to statistical parameters are untested quantities� the sensitivity to these priors
tends to diminish with increasing sample size� In contrast� sensitivity to prior causal assumptions� say that
treatment does not change gender� remains substantial regardless of sample size�

This makes it doubly important that the notation we use for expressing causal assumptions
be meaningful and unambiguous so that one can clearly judge the plausibility or inevitability of the
assumptions articulated� Statisticians can no longer ignore the mental representation in which scientists
store experiential knowledge� since it is this representation� and the language used to access that
representation that determine the reliability of the judgments upon which the analysis so crucially depends�

How does one recognize causal expressions in the statistical literature� Those versed in the
potential�outcome notation 	Neyman� 
���� Rubin� 
���� Holland� 
����� can recognize such expressions
through the subscripts that are attached to counterfactual events and variables� e�g� Yx�u� or Zxy� �Some
authors use parenthetical expressions� e�g� Y �x� u� or Z�x� y��� The expression Yx�u�� for example� stands
for the value that outcome Y would take in individual u� had treatment X been at level x� If u is chosen
at random� Yx is a random variable� and one can talk about the probability that Yx would attain a
value y in the population� written P �Yx � y�� Alternatively� Pearl 	
���� used expressions of the form
P �Y � yjset�X � x�� or P �Y � yjdo�X � x�� to denote the probability �or frequency� that event �Y � y�
would occur if treatment condition X � x were enforced uniformly over the population�� Still a third
notation that distinguishes causal expressions is provided by graphical models� where the arrows convey
causal directionality��

However� few have taken seriously the textbook requirement that any introduction of new notation
must entail a systematic de�nition of the syntax and semantics that governs the notation� Moreover� in

�By �untested� I mean untested using frequency data in nonexperimental studies�
�Clearly� P �Y � yjdo�X � x�� is equivalent to P �Yx � y�� This is what we normally assess in a controlled experiment� with

X randomized� in which the distribution of Y is estimated for each level x of X�
�These notational clues should be useful for detecting inadequate de	nitions of causal concepts
 any de	nition of confounding�

randomization or instrumental variables that is cast in standard probability expressions� void of graphs� counterfactual subscripts
or do��� operators� can safely be discarded as inadequate�
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the bulk of the statistical literature before ����� causal claims rarely appear in the mathematics� They
surface only in the verbal interpretation that investigators occasionally attach to certain associations� and
in the verbal description with which investigators justify assumptions� For example� the assumption that a
covariate is not a�ected by a treatment� a necessary assumption for the control of confounding 	Cox� 
�����
is expressed in plain English� not in a mathematical expression�

Remarkably� though the necessity of explicit causal notation is now recognized by most leaders in the
�eld� the use of such notation has remained enigmatic to most rank and �le researchers� and its potentials
still lay grossly underutilized in the statistics based sciences� The reason for this� I am �rmly convinced�
can be traced to the unfriendly and ad�hoc way in which causal analysis� has been presented to the research
community� relying primarily on the NR and structural equation models�

The next section provides a conceptualization that overcomes these mental barriers� it o�ers both
a friendly mathematical machinery for cause�e�ect analysis and a formal foundation for counterfactual
analysis�

� The Language of Diagrams and Structural Equations

��� Semantics� Causal E�ects and Counterfactuals

How can one express mathematically the common understanding that symptoms do not cause diseases�
The earliest attempt to formulate such relationship mathematically was made in the 
����s by the geneticist
Sewall Wright 	
��
�� who used a combination of equations and graphs� For example� if X stands for a
disease variable and Y stands for a certain symptom of the disease� Wright would write a linear equation�

y � �x  u �
�

where x stands for the level �or severity� of the disease� y stands for the level �or severity� of the symptom�
and u stands for all factors� other than the disease in question� that could possibly a�ect Y � In interpreting
this equation one should think of a physical process whereby Nature examines the values of x and u and�
accordingly� assigns variable Y the value y � �x u�

To express the directionality inherent in this process� Wright augmented the equation with a diagram�
later called �path diagram�� in which arrows are drawn from perceived� causes to their �perceived� e�ects
and� more importantly� the absence of an arrow makes the empirical claim that the value Nature assigns to
one variable is not determined by the value taken by another�

The variables V and U are called �exogenous� � they represent observed or unobserved background
factors that the modeler decides to keep unexplained� that is� factors that in�uence but are not in�uenced
by the other variables �called �endogenous�� in the model�

If correlation is judged possible between two exogenous variables� U and V � it is customary to
connect them by a dashed double arrow� as shown in Fig� 
�b��

V UV U

βX YβX Y

(b)(a)

x = v
y =   x + uβ

Figure 
� A simple structural equation model� and its associated diagrams� Unobserved exogenous variables
are connected by dashed arrows�

To summarize� path diagrams encode causal assumptions via missing arrows� representing claims of
zero in�uence� and missing double arrows �e�g�� between V and U�� representing the �causal� assumption
Cov�U� V ����

The generalization to nonlinear system of equations is straightforward� For example� the
non�parametric interpretation of the diagram of Fig� ��a� corresponds to a set of three functions� each
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Figure �� �a� The diagram associated with the structural model of Eq� ���� �b� The diagram associated with
the modi�ed model of Eq� ���� representing the intervention do�X � x���

corresponding to one of the observed variables�

z � fZ�w�

x � fX�z� v� ���

y � fY �x� u�

where W�V and U are assumed to be jointly independent but� otherwise� arbitrarily distributed�
Remarkably� unknown to most economists and philosophers� structural equation models provide a

formal interpretation and symbolic machinery for analyzing counterfactual relationships of the type� �Y
would be y had X been x in situation U � u�� denoted Yx�u� � y� Here U represents the vector of all
exogenous variables�

The key idea is to interpret the phrase �had X been x�� as an instruction to modify the original
model and replace the equation for X by a constant x�� yielding paper�

z � fZ�w�

x � x� ���

y � fY �x� u�

the graphical description of which is shown in Fig� ��b��
This replacement permits the constant x� to di�er from the actual value of X �namely fX�z� v��

without rendering the system of equations inconsistent� thus yielding a formal interpretation of
counterfactuals in multi�stage models� where the dependent variable in one equation may be an independent
variable in another 	Balke and Pearl� 
���ab� Pearl� ����b�� For example� to compute the average
causal e�ect of X on Y � i�e�� E�Yx�� we solve Eq� ��� for Y in terms of the exogenous variables� yielding
Yx� � fY �x�� u�� and average over U and V � To answer more sophisticate questions such as whether Y
would be y� if X were x�� given that in fact Y is y� and X is x�� we need to compute the conditional
probability P �Yx� � y�jY � y�� X � x�� which is well de�ned once we know the forms of the structural
equations and the distribution of the exogenous variables in the model�

This interpretation of counterfactuals� cast as solutions to modi�ed systems of equations� provides
the conceptual and formal link between structural equation models� used in economics and social science
and the Neyman�Rubin potential�outcome framework to be discussed in Section �� But �rst we discuss two
long�standing problems that have been completely resolved in purely graphical terms� without delving into
algebraic techniques�

��� Confounding and Causal E�ect Estimation

The central target of most studies in the social and health sciences is the elucidation of cause�e�ect
relationships among variables of interests� for example� treatments� policies� preconditions and outcomes�
While good statisticians have always known that the elucidation of causal relationships from observational
studies must be shaped by assumptions about how the data were generated� the relative roles of assumptions
and data� and ways of using those assumptions to eliminate confounding bias have been a subject of much
controversy� The structural framework of Section ��
 puts these controversies to rest�
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Covariate Selection� The back�door criterion

Consider an observational study where we wish to �nd the e�ect of X on Y � for example� treatment
on response� and assume that the factors deemed relevant to the problem are structured as in Fig� ��
some are a�ecting the response� some are a�ecting the treatment and some are a�ecting both treatment

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Figure �� Graphical model illustrating the back�door criterion� Error terms are not shown explicitly�

and response� Some of these factors may be unmeasurable� such as genetic trait or life style� others are
measurable� such as gender� age� and salary level� Our problem is to select a subset of these factors for
measurement and adjustment� namely� that if we compare treated vs� untreated subjects having the same
values of the selected factors� we get the correct treatment e�ect in that subpopulation of subjects� Such a
set of factors is called a �su�cient set� or a set �appropriate for adjustment�� The problem of de�ning a
su�cient set� let alone �nding one� has ba!ed epidemiologists and social science for decades �see Greenland
et al�� 	
����� Pearl 	����a� and 	����� for review��

The following criterion� named �back�door� in 	Pearl� 
���a�� provides a graphical method of
selecting such a set of factors for adjustment� It states that a set S is appropriate for adjustment if two
conditions hold�


� No element of S is a descendant of X

�� The elements of S �block� all �back�door� paths from X to Y � namely all paths that end with an
arrow pointing to X ��

Based on this criterion we see� for example� that the sets fZ�� Z�� Z�g� fZ�� Z�g� and fW�� Z�g�
each is su�cient for adjustment� because each blocks all back�door paths between X and Y � The set
fZ�g� however� is not su�cient for adjustment because� as explained above� it does not block the path
X �W� � Z� � Z� � Z� �W� � Y �

The implication of �nding a su�cient set S is that� stratifying on S is guaranteed to remove all
confounding bias relative the causal e�ect of X on Y � In other words� it renders the causal e�ect of X on
Y identi�able� via

P �Y � yjdo�X � x��

�
X

s

P �Y � yjX � x� S � s�P �S � s� ���

Since all factors on the right hand side of the equation are estimable �e�g�� by regression� from the
pre�interventional data� the causal e�ect can likewise be estimated from such data without bias�

The back�door criterion allows us to write Eq� ��� directly� after selecting a su�cient set S from
the diagram� without resorting to any algebraic manipulation� The selection criterion can be applied
systematically to diagrams of any size and shape� thus freeing analysts from judging whether �X is
conditionally ignorable given S�� a formidable mental task required in the potential�response framework
	Rosenbaum and Rubin� 
����� The criterion also enables the analyst to search for an optimal set of
covariate�namely� a set S that minimizes measurement cost or sampling variability 	Tian et al�� 
�����

�In this criterion� a set S of nodes is said to block a path p if either �i� p contains at least one arrow�emitting node that is
in S� or �ii� p contains at least one collision node that is outside S and has no descendant in S� See Pearl ����a� pp� ������





General control of confounding

Adjusting for covariates is only one of many methods that permits us to estimate causal e�ects in
nonexperimental studies� A much more general identi�cation criterion is provided by the following theorem�

Theorem � 	Tian and Pearl� �����
A su�cient condition for identifying the causal e�ect P �yjdo�x�� is that every path between X and

any of its children traces at least one arrow emanating from a measured variable��

For example� if W� is the only observed covariate in the model of Fig� �� then there exists no su�cient
set for adjustment �because no set of observed covariates can block the paths from X to Y through Z���
yet P �yjdo�x�� can nevertheless be estimated since the one path from X to W� �the only child of X� traces
the arrow X �W�� which emanates from a measured variable� X � In this example� the variable W� acts as
a �mediating instrumental variable� 	Pearl 
���b� Chalak and White� ���� and yields the estimand�

P �Y � yjdo�X � x��

�
X

w�

P �W� � wjdo�X � x��P �Y � yjdo�W� � w��

�
X

w

P �wjx�
X

x�

P �yjw� x��P �x�� ���

More recent results extend this theorem by �
� presenting a necessary and su�cient condition
for identi�cation 	Shpitser and Pearl� ����� and ��� extending the condition from causal e�ects to any
counterfactual expression 	Shpitser and Pearl� ������ The corresponding unbiased estimands for these
causal quantities� are readable directly from the diagram�

� The Language of Potential Outcomes

The elementary object of analysis in the potential�outcome framework is the unit�based response variable�
denoted Yx�u�� read� �the value that Y would obtain in unit u� had treatment X been x� 	Neyman� 
����
Rubin� 
����� These subscripted variables are treated as unde�ned quantities� useful for expressing the
causal quantities we seek� but are not derived from other quantities in the model� In contrast� in the
previous section counterfactual entities were derived from a set of meaningful physical processes� each
represented by an equation� and unit was interpreted a vector u of background factors that characterize
an experimental unit� Each structural equation model thus provides a compact representation for a huge
number of counterfactual claims� guaranteed to be consistent� The potential outcome framework lacks such
compactness� nor does it provide guarantees that any given set of claims is consistent�

In view of these features� the structural de�nition of Yx�u� can be regarded as the formal basis for
the potential outcome approach� It interprets the opaque English phrase �the value that Y would obtain
in unit u� had X been x� in terms of a meaningful mathematical model that allows such values to be
computed unambiguously� Consequently� important concepts in potential response analysis that researchers
�nd ill�de�ned or overly esoteric often obtain meaningful and natural interpretation in the structural
semantics� Examples are� �unit� ��exogenous variables� in structural semantics�� �principal strati�cation�
��equivalence classes� in structural semantics 	Balke and Pearl� 
���a� and 	Pearl ����b� �conditional
ignorability� ��back�door condition� in 	Pearl 
���a� �assignment mechanism� �P �xjdirect�causes of X� in
structural semantics� and so on� The next two subsections examine how assumptions and inferences are
handled in the potential outcome approach vis a vis the graphical�structural approach�

��� Formulating Assumptions

The distinct characteristic of the potential outcome approach is that� although its primitive objects are
unde�ned� hypothetical quantities� the analysis itself is conducted almost entirely within the axiomatic
framework of probability theory� This is accomplished� by postulating a �super� probability function

�Before applying this criterion� one may delete from the causal graph all nodes that are not ancestors of Y �
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on both hypothetical and real events� treating the former as �missing data�� In other words� if U is
treated as a random variable then the value of the counterfactual Yx�u� becomes a random variable
as well� denoted as Yx� The potential�outcome analysis proceeds by treating the observed distribution
P �x�� � � � � xn� as the marginal distribution of an augmented probability function P � de�ned over both
observed and counterfactual variables� Queries about causal e�ects are phrased as queries about the
probability distribution of the counterfactual variable of interest� written P ��Yx � y�� The new hypothetical
entities Yx are treated as ordinary random variables� for example� they are assumed to obey the axioms of
probability calculus� the laws of conditioning� and the axioms of conditional independence� Moreover� these
hypothetical entities are not entirely whimsy� but are assumed to be connected to observed variables via
consistency constraints 	Robins� 
��� such as

X � x �� Yx � Y� ��

which states that� for every u� if the actual value of X turns out to be x� then the value that Y would
take on if X were x is equal to the actual value of Y � For example� a person who chose treatment x and
recovered� would also have recovered if given treatment x by design�

The main conceptual di�erence between the two approaches is that� whereas the structural approach
views the subscript x as an operation that changes the distribution but keeps the variables the same�
the potential�outcome approach views the variable Yx� to be a di�erent variable� loosely connected to Y
through relations such as ���

Pearl 	����a� Chapter �� shows� using the structural interpretation of Yx�u�� that it is indeed
legitimate to treat counterfactuals as jointly distributed random variables in all respects� that consistency
constraints like �� are automatically satis�ed in the structural interpretation and� moreover� that
investigators need not be concerned about any additional constraints except the following two��

Yyz � y for all y and z ���

Xz � x �� Yxz � Yz for all x and z ���

Eq� ��� ensures that the interventions do�Y � y� results in the condition Y � y� regardless of concurrent
interventions� say do�Z � z�� that are applied to variables other than Y � Equation ��� generalizes �� to
cases where Z is held �xed� at z�

To communicate substantive causal knowledge� the potential�outcome analyst must express causal
assumptions as constraints on P �� usually in the form of conditional independence assertions involving
counterfactual variables� In Fig� ��a� for instance� to communicate the understanding that a treatment
assignment �Z� is randomized �hence independent of both U and V �� the potential�outcome analyst needs
to use the independence constraint Z��fXz� Yxg� To further formulate the understanding that Z does not
a�ect Y directly� except through X � the analyst would write a� so called� �exclusion restriction�� Yxz � Yx�
Clearly� no mortal can judge the validity of such assumptions in any real life problem without resorting to
graphs��

��� Performing Inferences

A collection of assumptions of this type might sometimes be su�cient to permit a unique solution to the
query of interest� in other cases� only bounds on the solution can be obtained� For example� if one can
plausibly assume that a set Z of covariates satis�es the conditional independence

Yx��X jZ ���

�This completeness result is due to Halpern ������� who noted that an additional axiom

fYxz � yg � fZxy � zg �� Yx � y

must hold in non�recursive models� This fundamental axiom may come to haunt economists and social scientists who blindly
apply NR analysis in their 	elds�

�Even with the use of graphs the task is not easy� for example� the reader should try to verify whether fZ��Xz jY g holds in
the simple model of Fig� �a�� The answer is given in Pearl ����a� page ���

�



�an assumption that was termed �conditional ignorability� by 	Rosenbaum and Rubin� 
���� then the
causal e�ect P ��Yx � y� can readily be evaluated to yield

P ��Yx � y� �
X

z

P ��Yx � yjz�P �z�

�
X

z

P ��Yx � yjx� z�P �z� �using ����

�
X

z

P ��Y � yjx� z�P �z� �using ���

�
X

z

P �yjx� z�P �z�� �
��

which is the usual covariate�adjustment formula� as in Eq� ����
Note that almost all mathematical operations in this derivation are conducted within the safe

con�nes of probability calculus� Save for an occasional application of rule ��� or ���� the analyst may
forget that Yx stands for a counterfactual quantity�it is treated as any other random variable� and the
entire derivation follows the course of routine probability exercises�

However� this mathematical illusion comes at the expense of conceptual clarity� especially at a stage
where causal assumptions need be formulated� The reader may appreciate this aspect by attempting to
judge whether the assumption of conditional ignorability Eq� ���� the key to the derivation of Eq� �
���
holds in any familiar situation� say in the experimental setup of Fig� ��a�� This assumption reads� �the
value that Y would obtain had X been x� is independent of X � given Z�� Such assumptions of conditional
independence among counterfactual variables are not straightforward to comprehend or ascertain� for they
are cast in a language far removed from ordinary understanding of cause and e�ect� When counterfactual
variables are not viewed as byproducts of a deeper� process�based model� it is also hard to ascertain
whether all relevant counterfactual independence judgments have been articulated� whether the judgments
articulated are redundant� or whether those judgments are self�consistent�

The need to express� defend� and manage formidable counterfactual relationships of this type explains
the slow acceptance of causal analysis among epidemiologists and statisticians� and why economists and
social scientists continue to use structural equation models instead of the potential�outcome alternatives
advocated in Holland 	
����� Angrist et al� 	
���� and Sobel 	
�����

On the other hand� the algebraic machinery o�ered by the potential�outcome notation� once a
problem is properly formalized� can be powerful in re�ning assumptions 	Angrist et al�� 
���� deriving
consistent estimands 	Robins� 
���� bounding probabilities of causation 	Tian and Pearl� ������ and
combining data from experimental and nonexperimental studies 	Pearl� ����a� pages ��������

��� Combining Graphs and Algebra 	 Methods and Accomplishments�

Pearl 	����a� page ���� presents a way of combining the best features of the two approaches� It is based
on encoding causal assumptions in the language of diagrams� translating these assumptions into potential
outcome notation� performing the mathematics in the algebraic language of counterfactuals and� �nally�
interpreting the result in plain causal language� Often� the answer desired can be obtained directly from
the diagram� and no translation is necessary �as demonstrated in Section �����

This method has scored an impressive list of accomplishments� including solutions to the long�standing
problems of legal responsibility 	Tian and Pearl� ����� Pearl� ���
�� non�compliance 	Balke and Pearl� 
����
Chickering and Pearl� 
����� direct and indirect e�ects 	Pearl� ���
�� mediating instrumental variables
	Pearl� 
���b� Brito and Pearl� ����� robustness analysis 	Pearl� ������ and the integration of data from
experimental and observational studies 	Tian and Pearl� ����� Pearl� ����a�� Detailed descriptions of these
results are given in the corresponding articles which are available on hbayes�cs�ucla�edu"jp�home�htmli�

� Conclusions

Statistics is strong in devising ways of describing data and inferring distributional parameters from
sample� Causal inference require two addition ingredients� a science�friendly language for articulating

�



causal knowledge� and a mathematical machinery for processing that knowledge� combining it with data
and drawing new causal conclusions about a phenomena� This paper introduces nonparametric structural
equations models as a formal and meaningful language for formulating causal knowledge and for explicating
causal concepts used in scienti�c discourse� These include� randomization� intervention� direct and indirect
e�ects� confounding� counterfactuals� and attribution� The algebraic component of the structural language
coincides with the potential�outcome framework� and its graphical component embraces Wright�s method
of path diagrams �in its nonparametric version�� When uni�ed and synthesized� the two components o�er
investigators a powerful methodology for empirical research� The merits of this methodology have quickly
been recognized by several research communities 	e�g�� Morgan and Winship� ����� Greenland et al�� 
����
Petersen et al�� ���� Chalak and White� ���� and are making their way� past obvious pockets of resistance�
to statistical education as well�

Perhaps the most important message of the discussion and methods presented in this paper would be
a widespread awareness that �
� all studies concerning causal relations must begin with causal assumptions
of some sort and ��� that a friendly and formal language is currently available for articulating such
assumptions� This means that scienti�c articles concerning questions of causation must contain a section in
which causal assumptions are articulated using either graphs or subscripted formulas� Authors who wish
their assumptions to be understood� scrutinized and discussed by readers and colleagues would do well to
use graphs� Authors who refrain from using graphs would be risking a suspicion of attempting to avoid
transparency of their working assumptions�

Another important implication of this paper is that every causal inquiry can be mathematized� In
other words� mechanical procedures can now be invoked to determine what assumptions investigators must
be willing to make in order for desired quantities to be estimable consistently from the data� This is not to
say that the needed assumptions would be reasonable� or that the resulting estimation method would be
easy� It means that the needed causal assumptions can be made transparent� brought up for discussion and
re�nement and� once consistency is assured� causal quantities can be estimated from data through ordinary
statistical methods� free of the mystical aura that has shrouded causal analysis in the past�
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