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Introduction

Almost two decades have passed since Paul Holland published his highly cited review paper
on the Neyman-Rubin approach to causal inference [Holland, 1986]. Our understanding of
causal inference has since increased severalfold, due primarily to advances in three areas:

1. Nonparametric structural equations

2. Graphical models

3. Symbiosis between counterfactual and graphical methods

These advances are central to the empirical sciences because the research questions
that motivate most studies in the health, social, and behavioral sciences are not statistical
but causal in nature. For example, what is the efficacy of a given drug in a given
population? Can data prove an employer guilty of hiring discrimination? What fraction of
past crimes could have been avoided by a given policy? What was the cause of death of a
given individual in a specific incident?

Remarkably, although much of the conceptual framework and many of the algorithmic
tools needed for tackling such problems are now well established, they are hardly known to
researchers in the field who could put them into practical use. Why?

Solving causal problems mathematically requires certain extensions in the standard
mathematical language of statistics, and these extensions are not generally emphasized
in the mainstream literature and education. As a result, large segments of the statistical
research community find it hard to appreciate and benefit from the many results that causal
analysis has produced in the past two decades.

This chapter aims at making these advances more accessible to the general research
community by, first, contrasting causal analysis with standard statistical analysis and,
second, comparing and unifying various approaches to causal analysis.

From Associational to Causal Analysis: Distinctions and Barriers

The Basic Distinction: Coping With Change

The aim of standard statistical analysis, typified by regression, estimation, and hypothesis
testing techniques, is to assess parameters of a distribution from samples drawn of that
distribution. With the help of such parameters, one can infer associations among variables,
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estimate the likelihood of past and future events, as well as update the likelihood of events
in light of new evidence or new measurements. These tasks are managed well by standard
statistical analysis so long as experimental conditions remain the same. Causal analysis
goes one step further; its aim is to infer not only the likelihood of events under static
conditions but also the dynamics of events under changing conditions, for example, changes
induced by treatments or external interventions.

This distinction implies that causal and associational concepts do not mix. There is
nothing in the joint distribution of symptoms and diseases to tell us that curing the former
would or would not cure the latter. More generally, there is nothing in a distribution
function to tell us how that distribution would differ if external conditions were to
change—say, from observational to experimental setup—because the laws of probability
theory do not dictate how one property of a distribution ought to change when another
property is modified. This information must be provided by causal assumptions which
identify relationships that remain invariant when external conditions change.

These considerations imply that the slogan “correlation does not imply causation”
can be translated into a useful principle: One cannot substantiate causal claims from
associations alone, even at the population level—behind every causal conclusion there must
lie some causal assumption that is not testable in observational studies.

Formulating the Basic Distinction

A useful demarcation line that makes the distinction between associational and causal
concepts crisp and easy to apply can be formulated as follows. An associational concept is
any relationship that can be defined in terms of a joint distribution of observed variables,
and a causal concept is any relationship that cannot be defined from the distribution alone.
Examples of associational concepts are correlation, regression, dependence, conditional
independence, likelihood, collapsibility, risk ratio, odd ratio, propensity score, “Granger
causality,” marginalization, conditionalization, and “controlling for” Examples of causal
concepts are randomization, influence, effect, confounding, “holding constant,” disturbance,
spurious correlation, instrumental variables, ignorability, exogeneity, exchangeability,
intervention, explanation, and attribution. The former can, while the latter cannot be
defined in term of distribution functions.

This demarcation line is extremely useful in causal analysis for it helps investigators
to trace the assumptions that are needed for substantiating various types of scientific
claims. Every claim invoking causal concepts must rely on some premises that invoke such
concepts; it cannot be inferred from, or even defined in terms of statistical notions alone.

Ramifications of the Basic Distinction

This principle has far-reaching consequences that are not generally recognized in the
standard statistical literature. Many researchers, for example, are still convinced that
confounding is solidly founded in standard, frequentist statistics and that it can be given
an associational definition, saying (roughly) “U is a potential confounder for examining
the effect of treatment X on outcome Y when both U and X and U and Y are not
independent” [Pearl, 2009b, p. 388]. That this definition and all of its many variants
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must fail is obvious from the demarcation line above; “independence” is an associational
concept while confounding is for a tool used in establishing causal relations. The two do
not mix hence, the definition must be false. Therefore, to the bitter disappointment of
generations of epidemiology researchers, confounding bias cannot be detected or corrected
by statistical methods alone; one must make some judgmental assumptions regarding causal
relationships in the problem before an adjustment (e.g., by stratification) can safely correct
for confounding bias.

Another ramification of the sharp distinction between associational and causal
concepts is that any mathematical approach to causal analysis must acquire new notation
for expressing causal relations—probability calculus is insufficient. To illustrate, the syntax
of probability calculus does not permit us to express the simple fact that “symptoms do not
cause diseases,” let alone to draw mathematical conclusions from such facts. All we can say
is that two events are dependent—meaning that if we find one, we can expect to encounter
the other but we cannot distinguish statistical dependence, quantified by the conditional
probability p(disease |symptom) from causal dependence, for which we have no expression
in standard probability calculus. Scientists seeking to express causal relationships must
therefore supplement the language of probability with a vocabulary for causality, one in
which the symbolic representation for the relation “symptoms cause disease” is distinct
from the symbolic representation of “symptoms are associated with disease.”

Two Mental Barriers: Untested Assumptions and New Notation

The preceding requirements—(1) to commence causal analysis with untested,1 theoretically
or judgmentally based assumptions, and (2) to extend the syntax of probability calculus,
constitute the two main obstacles to the acceptance of causal analysis among statisticians
and among professionals with traditional training in statistics.

Associational assumptions, even untested, are testable in principle, given a sufficiently
large sample and sufficiently fine measurements. Causal assumptions, in contrast, cannot be
verified even in principle, unless one resorts to experimental control. This difference stands
out in Bayesian analysis. Though the priors that Bayesians commonly assign to statistical
parameters are untested quantities, the sensitivity to these priors tends to diminish with
increasing sample size. In contrast, sensitivity to prior causal assumptions—say, that
treatment does not change gender—remains substantial regardless of sample size.

This makes it doubly important that the notation we use for expressing causal
assumptions be meaningful and unambiguous so that one can clearly judge the plausibility
or inevitability of the assumptions articulated. Statisticians can no longer ignore the mental
representation in which scientists store experiential knowledge since it is this representation,
and the language used to access that representation that determine the reliability of the
judgments upon which the analysis so crucially depends.

How does one recognize causal expressions in the statistical literature? Those versed
in the potential-outcome notation (Neyman, 1923; Rubin, 1974; Holland, 1986), can
recognize such expressions through the subscripts that are attached to counterfactual events
and variables, for example, Yx(u) or Zxy—some authors use parenthetical expressions, such

1By “untested” I mean untested using frequency data in nonexperimental studies.
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as Y (x, u) or Z(x, y). The expression Yx(u), for example, stands for the value that outcome
Y would take in individual u, had treatment X been at level x. If u is chosen at random, Yx

is a random variable, and one can talk about the probability that Yx would attain a value
y in the population, written p(Yx = y). Alternatively, Pearl (1995) used expressions of the
form p[Y = y|set(X = x)] or p[(Y = y|do(X = x)] to denote the probability (or frequency)
that event (Y = y) would occur if treatment condition X = x were enforced uniformly over
the population.2 Still a third notation that distinguishes causal expressions is provided by
graphical models, where the arrows convey causal directionality.3

However, few have taken seriously the textbook requirement that any introduction of
new notation must entail a systematic definition of the syntax and semantics that govern
the notation. Moreover, in the bulk of the statistical literature before 2000, causal claims
rarely appear in the mathematics. They surface only in the verbal interpretation that
investigators occasionally attach to certain associations and in the verbal description with
which investigators justify assumptions. For example, the assumption that a covariate is not
affected by a treatment, a necessary assumption for the control of confounding [Cox, 1958],
is expressed in plain English, not in a mathematical expression.

Remarkably, though the necessity of explicit causal notation is now recognized by most
leaders in the field, the use of such notation has remained enigmatic to most rank-and-file
researchers and its potentials still lay grossly underutilized in the statistics-based sciences.
The reason for this, I am firmly convinced, can be traced to the way in which causal analysis
has been presented to the research community, relying primarily on outdated paradigms
of controlled randomized experiments and black-box “missing-data” models (Rubin, 1974;
Holland, 1986).

The next section provides a conceptualization that overcomes these mental barriers;
it offers both a friendly mathematical machinery for cause-effect analysis and a formal
foundation for counterfactual analysis.

The Language of Diagrams and Structural Equations

Semantics: Causal Effects and Counterfactuals

How can one express mathematically the common understanding that symptoms do not
cause diseases? The earliest attempt to formulate such a relationship mathematically was
made in the 1920s by the geneticist Sewall Wright (1921), who used a combination of
equations and graphs. For example, if X stands for a disease variable and Y stands for a
certain symptom of the disease, Wright would write a linear equation

y = βx + u (1)

where X stands for the level (or severity) of the disease, Y stands for the level (or severity)
of the symptom, and u stands for all factors, other than the disease in question, that could

2Clearly, P [Y = y|do(X = x)] is equivalent to P (Yx = y), This is what we normally assess in a controlled
experiment, with X randomized, in which the distribution of Y is estimated for each level x of X.

3These notational clues should be useful for detecting inadequate definitions of causal concepts; any defini-
tion of confounding, randomization or instrumental variables that is cast in standard probability expressions,
void of graphs, counterfactual subscripts or do(∗) operators, can safely be discarded as inadequate.
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possibly affect Y .4 In interpreting this equation one should think of a physical process
whereby Nature examines the values of x and u and, accordingly, assigns variable Y the
value y = βx + u.

To express the directionality inherent in this process, Wright augmented the equation
with a diagram, later called a “path diagram,” in which arrows are drawn from perceived)
causes to their (perceived) effects and, more importantly, the absence of an arrow makes
the empirical claim that the value nature assigns to one variable is not determined by the
value taken by another.5

The variables V and U are called “exogenous”; they represent observed or unobserved
background factors that the modeler decides to keep unexplained, that is, factors that
influence, but are not influenced by, the other variables (called “endogenous”) in the model.

If correlation is judged possible between two exogenous variables, U and V , it is
customary to connect them by a dashed double arrow, as shown in Figure 1(b).

V UV U

βX YβX Y

(b)(a)

x = v

y =   x + uβ

Figure 1: A simple structural equation model, and its associated diagrams. Unobserved
exogenous variables are connected by dashed arrows.

To summarize, path diagrams encode causal assumptions via missing arrows,
representing claims of zero influence, and missing double arrows (e.g., between V and U),
representing the (causal) assumption Cov(U, V )=0.

(a) (b)
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Y
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X

Figure 2: (a) The diagram associated with the structural model of Eq. (2). (b) The diagram
associated with the modified model of Eq. (3), representing the intervention do(X = x0).

The generalization to a nonlinear system of equations is straightforward. For example,
the non-parametric interpretation of the diagram of Figure 2(a) corresponds to a set of
three functions, each corresponding to one of the observed variables:

z = fZ(w)

4We use capital letters (e.g., X, Y, U) for variable names and lower case letters (e.g., x, y, u) for values
taken by these variables.

5A weaker class of causal diagrams, known as “causal Bayesian networks,” encode interventional rather
than functional dependencies; it can be used to predict outcomes of randomized experiments but not prob-
abilities of counterfactuals (for formal definitions, see Pearl (2000a, pp. 22–24) for formal definition).
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x = fX(z, v) (2)

y = fY (x, u)

where W, V , and U are here assumed to be jointly independent but, otherwise, arbitrarily
distributed.

Remarkably, unknown to most economists and philosophers, structural equation
models provide a formal interpretation and symbolic machinery for analyzing counterfactual
relationships of the type “Y would be y had X been x in situation U = u,” denoted
Yx(u) = y. Here U stands for the vector of all exogenous variables, and represents all
relevant features of an experimental unit (i.e., a patient or a subject).

The key idea is to interpret the phrase “had X been x0” as an instruction to modify
the original model M and replace the equation for X by a constant x0, yielding a modified
model, Mx0

:

z = fZ(w)

x = x0 (3)

y = fY (x, u)

the graphical description of which is shown in Figure 2(b).
This replacement permits the constant x0 to differ from the actual value of X—namely,

fX(z, v)—without rendering the system of equations inconsistent, thus yielding a formal
definition of counterfactuals in multistage models, where the dependent variable in one
equation may be an independent variable in another (Balke & Pearl, 1994a, 1994b; Pearl,
2000b). The general definition reads as follows:

Yx(u)
∆
= YMx

(u). (4)

In words, the counterfactual Yx(u) in model M is defined as the solution for Y in the
modified submodel Mx, in which the equation for X is replaced by X = x. For example,
to compute the average causal effect of X on Y , that is, E(Yx0

) we solve equation 3 for
Y in terms of the exogenous variables, yielding Yx0

= fY (x0, u), and average over U and
V . To answer more sophisticated questions, such as whether Y would be y1 if X were x1

given that in fact Y is y0 and X is x0, we need to compute the conditional probability,
P (Yx1

= y1|Y = y0, X = x0), which is well defined once we know the forms of the structural
equations and the distribution of the exogenous variables in the model.

This formalization of counterfactuals, cast as solutions to modified systems of
equations, provides the conceptual and formal link between structural equation models used
in economics and social science, the potential-outcome framework, to be discussed later
under The Language of Potential Outcomes Lewis (1973) “closest-world” counterfactuals,
Woodward’s (2003) “interventionalism” approach, Mackie’s (1965) ”insufficient but
necessary components of unnecessary but sufficient” (INUS) condition; and Rothman’s
(1976) “sufficient component” framework (see VanderWeele and Robins’s 2007). The next
section discusses two long-standing problems that have been completely resolved in purely
graphical terms, without delving into algebraic techniques.
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Confounding and Causal Effect Estimation

The central target of most studies in the social and health sciences is the elucidation of
cause-effect relationships among variables of interests, for example, treatments, policies,
preconditions, and outcomes. While good statisticians have always known that the
elucidation of causal relationships from observational studies must rest on assumptions
about how the data were generated, the relative roles of assumptions and data and the
ways of using those assumptions to eliminate confounding bias have been a subject of much
controversy. The preceding structural framework puts these controversies to rest.

Covariate Selection: The back-door criterion

Consider an observational study where we wish to find the effect of X on Y , for example,
treatment on response, and assume that the factors deemed relevant to the problem are
structured as in Figure 3; some are affecting the response, some are affecting the treatment,

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Figure 3: Graphical model illustrating the back-door criterion. Error terms are not shown
explicitly.

and some are affecting both treatment and response. Some of these factors may be
unmeasurable, such as genetic trait or lifestyle, while others are measurable, such as gender,
age, and salary level. Our problem is to select a subset of these factors for measurement
and adjustment so that if we compare treated vs. untreated subjects having the same
values of the selected factors, we get the correct treatment effect in that subpopulation of
subjects. Such a set of factors is called a “sufficient set,” “admissible” or a set “appropriate
for adjustment.” The problem of defining a sufficient set, let alone finding one, has baffled
epidemiologists and social scientists for decades (for review, see Greenland, Pearl & Robins,
1999; Pearl, 2000a; 2009a).

The following criterion, named the “back-door” criterion (Pearl, 1993a), provides a
graphical method of selecting such a set of factors for adjustment. It states that a set S is
appropriate for adjustment if two conditions hold:

1. No element of S is a descendant of X.

2. The elements of S “block” all back-door paths from X to Y , that is, all paths that
end with an arrow pointing to X.6

6In this criterion, a set S of nodes is said to block a path P if either (i) P contains at least one arrow-
emitting node that is in S, or (ii) P contains at least one collision node (e.g.,→ Z ←) that is outside S and
has no descendant in S (see Pearl, 2000a, 2009b, pp. 16–17, 335–337).
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Based on this criterion we see, for example, that each of the sets {Z1, Z2, Z3}, {Z1, Z3},
and {W2, Z3} is sufficient for adjustment because each blocks all back-door paths between
X and Y . The set {Z3}, however, is not sufficient for adjustment because it does not block
the path X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y .

The implication of finding a sufficient set, S, is that stratifying on S is guaranteed
to remove all confounding bias relative to the causal effect of X on Y . In other words, it
renders the causal effect of X on Y identifiable, via

P (Y = y|do(X = x))

=
∑

s

P (Y = y|X = x, S = s)P (S = s) (5)

Since all factors on the right-hand side of the equation are estimable (e.g., by regression)
from the pre-interventional data, the causal effect can likewise be estimated from such data
without bias.

The back-door criterion allows us to write equation 5 directly, after selecting a
sufficient set, S, from the diagram, without resorting to any algebraic manipulation. The
selection criterion can be applied systematically to diagrams of any size and shape, thus
freeing analysts from judging whether “X is conditionally ignorable given S,” a formidable
mental task required in the potential-response framework (Rosenbaum & Rubin, 1983).
The criterion also enables the analyst to search for an optimal set of covariates—namely, a
set, S, that minimizes measurement cost or sampling variability (Tian, Paz, & Pearl, 1998).

LEFT OFF HERE

General Control of Confounding

Adjusting for covariates is only one of many methods that permit us to estimate causal
effects in nonexperimental studies. A much more general identification criterion is provided
by the following theorem:

Theorem 1 [Tian and Pearl, 2002]
A sufficient condition for identifying the causal effect P [y|do(x)] is that every path

between X and any of its children traces at least one arrow emanating from a measured
variable.7

For example, if W3 is the only observed covariate in the model of Fig. 3, then there
exists no sufficient set for adjustment (because no set of observed covariates can block the
paths from X to Y through Z3), yet P (y|do(x)) can nevertheless be estimated since every
path from X to W3 (the only child of X) traces either the arrow X → W3, or the arrow
W3 → Y , each emanating from a measured variable. In this example, the variable W3 acts
as a “mediating instrumental variable” [Pearl, 1993b; Chalak and White, 2006] and yields
the estimand:

P (Y = y|do(X = x))

7Before applying this criterion, one may delete from the causal graph all nodes that are not ancestors of
Y .
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=
∑

w3

P (W3 = w|do(X = x))P (Y = y|do(W3 = w))

=
∑

w

P (w|x)
∑

x′

P (y|w, x′)P (x′) (6)

More recent results extend this theorem by (1) presenting a necessary and sufficient
condition for identification [Shpitser and Pearl, 2006], and (2) extending the condition
from causal effects to any counterfactual expression [Shpitser and Pearl, 2007]. The
corresponding unbiased estimands for these causal quantities, are readable directly from
the diagram.

The Language of Potential Outcomes

The elementary object of analysis in the potential-outcome framework is the unit-based
response variable, denoted Yx(u), read: “the value that Y would obtain in unit u, had
treatment X been x” [Neyman, 1923; Rubin, 1974]. These subscripted variables are
treated as undefined quantities, useful for expressing the causal quantities we seek, but
are not derived from other quantities in the model. In contrast, in the previous section
counterfactual entities were derived from a set of meaningful physical processes, each
represented by an equation, and unit was interpreted a vector u of background factors that
characterize an experimental unit. Each structural equation model thus provides a compact
representation for a huge number of counterfactual claims, guaranteed to be consistent.

In view of these features, the structural definition of Yx(u) (Eq. (4)) can be regarded as
the formal basis for the potential outcome approach. It interprets the opaque English phrase
“the value that Y would obtain in unit u, had X been x” in terms of a scientifically-based
mathematical model that allows such values to be computed unambiguously. Consequently,
important concepts in potential response analysis that researchers find ill-defined or esoteric
often obtain meaningful and natural interpretation in the structural semantics. Examples
are: “unit” (“exogenous variables” in structural semantics), “principal stratification”
(“equivalence classes” in structural semantics [Balke and Pearl, 1994b] and [Pearl, 2000b]
“conditional ignorability” (“back-door condition” in [Pearl, 1993a]“assignment mechanism”
(P (x|direct-causes of X) in structural semantics) and so on. The next two subsections
examine how assumptions and inferences are handled in the potential outcome approach vis
a vis the graphical-structural approach.

0.1 Formulating Assumptions

The distinct characteristic of the potential outcome approach is that, although its primitive
objects are undefined, hypothetical quantities, the analysis itself is conducted almost
entirely within the axiomatic framework of probability theory. This is accomplished, by
postulating a “super” probability function on both hypothetical and real events, treating
the former as ”missing data”. In other words, if U is treated as a random variable then the
value of the counterfactual Yx(u) becomes a random variable as well, denoted as Yx. The
potential-outcome analysis proceeds by treating the observed distribution P (x1, . . . , xn)
as the marginal distribution of an augmented probability function P ∗ defined over both
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observed and counterfactual variables. Queries about causal effects are phrased as queries
about the probability distribution of the counterfactual variable of interest, written
P ∗(Yx = y). The new hypothetical entities Yx are treated as ordinary random variables;
for example, they are assumed to obey the axioms of probability calculus, the laws of
conditioning, and the axioms of conditional independence. Moreover, these hypothetical
entities are not entirely whimsy, but are assumed to be connected to observed variables via
consistency constraints [Robins, 1986] such as

X = x =⇒ Yx = Y, (7)

which states that, for every u, if the actual value of X turns out to be x, then the value that
Y would take on if X were x is equal to the actual value of Y . For example, a person who
chose treatment x and recovered, would also have recovered if given treatment x by design.

The main conceptual difference between the two approaches is that, whereas the
structural approach views the subscript x as an operation that changes the distribution but
keeps the variables the same, the potential-outcome approach views the variable Yx, to be a
different variable, unobserved, loosely connected to Y through relations such as (7).

Pearl [2000a, Chapter 7] shows, using the structural interpretation of Yx(u), that it
is indeed legitimate to treat counterfactuals as jointly distributed random variables in all
respects, that consistency constraints like (7) are automatically satisfied in the structural
interpretation and, moreover, that investigators need not be concerned about any additional
constraints except the following two:8

Yyz = y for all y and z (8)

Xz = x =⇒ Yxz = Yz for all x and z (9)

Eq. (8) ensures that the interventions do(Y = y) results in the condition Y = y, regardless
of concurrent interventions, say do(Z = z), that are applied to variables other than Y .
Equation (9) generalizes (7) to cases where Z is held fixed, at z.

To communicate substantive causal knowledge, the potential-outcome analyst must
express causal assumptions as constraints on P ∗, usually in the form of conditional
independence assertions involving counterfactual variables. In Fig. 2(a) for instance, to
communicate the understanding that a treatment assignment (Z) is randomized (hence
independent of both U and V ), the potential-outcome analyst needs to use the independence
constraint Z⊥⊥{Xz , Yx}. To further formulate the understanding that Z does not affect Y
directly, except through X, the analyst would write a, so called, “exclusion restriction”:
Yxz = Yx. Clearly, no mortal can judge the validity of such assumptions in any real life
problem without resorting to graphs.9

8This completeness result is due to Halpern [1998], who noted that an additional axiom

{Yxz = y} & {Zxy = z} =⇒ Yx = y

must hold in non-recursive models. This fundamental axiom may come to haunt economists and social
scientists who blindly apply NR analysis in their fields.

9Even with the use of graphs the task is not easy, for example, the reader should try to verify whether
{Z⊥⊥Xz|Y } holds in the simple model of Fig. 2(a). The answer is given in Pearl [2000a, p. 214].
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0.2 Performing Inferences

A collection of assumptions of this type might sometimes be sufficient to permit a unique
solution to the query of interest; in other cases, only bounds on the solution can be
obtained. For example, if one can plausibly assume that a set Z of covariates satisfies the
conditional independence

Yx⊥⊥X|Z (10)

(an assumption that was termed “conditional ignorability” by [Rosenbaum and Rubin, 1983]
then the causal effect P ∗(Yx = y) can readily be evaluated to yield

P ∗(Yx = y) =
∑

z

P ∗(Yx = y|z)P (z)

=
∑

z

P ∗(Yx = y|x, z)P (z) (using (10))

=
∑

z

P ∗(Y = y|x, z)P (z) (using (7))

=
∑

z

P (y|x, z)P (z). (11)

which is the usual covariate-adjustment formula, as in Eq. (5).
Note that almost all mathematical operations in this derivation are conducted within

the safe confines of probability calculus. Save for an occasional application of rule (9) or
(7)), the analyst may forget that Yx stands for a counterfactual quantity—it is treated
as any other random variable, and the entire derivation follows the course of routine
probability exercises.

However, this mathematical illusion comes at the expense of conceptual clarity,
especially at a stage where causal assumptions need be formulated. The reader may
appreciate this aspect by attempting to judge whether the assumption of conditional
ignorability Eq. (10), the key to the derivation of Eq. (11), holds in any familiar situation,
say in the experimental setup of Fig. 2(a). This assumption reads: “the value that Y would
obtain had X been x, is independent of X, given Z” (see footnote 5). Such assumptions
of conditional independence among counterfactual variables are not straightforward to
comprehend or ascertain, for they are cast in a language far removed from ordinary
understanding of cause and effect. When counterfactual variables are not viewed as
byproducts of a deeper, process-based model, it is also hard to ascertain whether all relevant
counterfactual independence judgments have been articulated, whether the judgments
articulated are redundant, or whether those judgments are self-consistent.

The need to express, defend, and manage formidable counterfactual relationships
of this type explains the slow acceptance of causal analysis among epidemiologists and
statisticians, and why economists and social scientists continue to use structural equation
models instead of the potential-outcome alternatives advocated in Holland [1988], Angrist
et al. [1996], and Sobel [1998].

On the other hand, the algebraic machinery offered by the potential-outcome
notation, once a problem is properly formalized, can be powerful in refining assumptions
[Angrist et al., 1996], deriving consistent estimands [Robins, 1986], analyzing mediation
[Pearl, 2001], bounding probabilities of causation [Tian and Pearl, 2000], and combining
data from experimental and nonexperimental studies [Pearl, 2000a, pp. 302–303].

11



0.3 Combining Graphs and Counterfactuals – The Mediation

Formula

Pearl [2000a, p. 232] presents a way of combining the best features of the two approaches.
It is based on encoding causal assumptions in the language of diagrams, translating these
assumptions into potential outcome notation, performing the mathematics in the algebraic
language of counterfactuals and, finally, interpreting the result in plain causal language.
Often, the answer desired can be obtained directly from the diagram, and no translation is
necessary (as demonstrated in Section ).

One area that has benefited substantially from this symbiosis is the analysis of
direct and indirect effects, also known as “mediation analysis” [Shrout and Bolger, 2002],
which has resisted generalizations to discrete variables and non-linear interactions for
several decades [Robins and Greenland, 1992; Mackinnon et al., 2007]. The obstacles were
definitional; the direct effect is sensitive to the level at which we condition the intermediate
variable, while the indirect effect cannot be defined by conditioning on a third variable, or
taking the difference between the total and direct effects.

The structural definition of counterfactuals (Eq. (4)) and the graphical analysis of
Section combined to produce formal definitions of, and graphical conditions under which
direct and indirect effects can be estimated from data [Pearl, 2001; Petersen et al., 2006].
In particular, under conditions of no unmeasured (or uncontrolled for) confounders, this
symbiosis has produced the following “Mediation Formulas” for the expected direct (DE)
and indirect (IE) effects of the transition from X = x to X = x′ (with outcome Y , and
mediating set Z):

DE =
∑

z

[E(Y |x′, z)−E(Y |x, z)]P (z|x). (12)

IE =
∑

z

E(Y |x, z)[P (z|x′)− P (z|x)] (13)

These general formulas are applicable to any type of variables,10 any nonlinear
interactions, any distribution and, moreover, are readily estimable by regression. IE
(respectively, DE) represents the average increase in the outcome Y that the transition
from X = x to X = x′ is expected to produce absent any direct (respectively indirect) effect
of X on Y . When the outcome Y is binary (e.g., recovery, or hiring) the ratio (1− IE/TE)
represents the fraction of responding individuals who owe their response to direct paths,
while (1 −DE/TE) represents the fraction who owe their response to Z-mediated paths.
TE stands for the total effect TE = E(Y |x′)− E(Y |x) which, in nonlinear systems may or
may not be the sum of the direct and indirect effects.

Additional results spawned by the structural-graphical-counterfactual symbiosis
include: effect estimation under non compliance [Balke and Pearl, 1997; Chickering and
Pearl, 1997], mediating instrumental variables [Pearl, 1993b; Brito and Pearl, 2006],
robustness analysis [Pearl, 2004], selecting predictors for propensity scores [Pearl, 2009c;

10Integrals should replace summations when Z is continuous. Generalizations to cases involving observed
or unobserved confounders are given in [Pearl, 2001] and exemplified in [Pearl, 2010a, Pearl, 2010b]. Con-
ceptually, IE measures the average change in Y under the operation of setting X to x and, simultaneously,
setting Z to whatever value it would have obtained under X = x′ [Robins and Greenland, 1992].
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2010c], and estimating the effect of treatment on the treated Shpitser and Pearl [2009].
Detailed descriptions of these results are given in the corresponding articles which are
available on 〈http://bayes.cs.ucla.edu/csl papers.html〉.

Conclusions

Statistics is strong in devising ways of describing data and inferring distributional
parameters from sample. Causal inference require two addition ingredients: a science-
friendly language for articulating causal knowledge, and a mathematical machinery for
processing that knowledge, combining it with data and drawing new causal conclusions
about a phenomena. This paper introduces nonparametric structural equations models as
a formal and meaningful language for formulating causal knowledge and for explicating
causal concepts used in scientific discourse. These include: randomization, intervention,
direct and indirect effects, confounding, counterfactuals, and attribution. The algebraic
component of the structural language coincides with the potential-outcome framework, and
its graphical component embraces Wright’s method of path diagrams (in its nonparametric
version.) When unified and synthesized, the two components offer investigators a powerful
methodology for empirical research [e.g., Morgan and Winship, 2007; Greenland et al.,
1999; Glymour and Greenland, 2008; Chalak and White, 2006; Pearl, 2009a].

Perhaps the most important message of the discussion and methods presented in this
paper would be a widespread awareness that (1) all studies concerning causal relations must
begin with causal assumptions of some sort and (2) that a friendly and formal language is
currently available for articulating such assumptions. This means that scientific articles
concerning questions of causation must contain a section in which causal assumptions
are articulated using either graphs or subscripted formulas. Authors who wish their
assumptions to be understood, scrutinized and discussed by readers and colleagues would
do well to use graphs. Authors who refrain from using graphs would be risking a suspicion
of attempting to avoid transparency of their working assumptions.

Another important implication of this paper is that every causal inquiry can be
mathematized. In other words, mechanical procedures can now be invoked to determine
what assumptions investigators must be willing to make in order for desired quantities to
be estimable consistently from the data. This is not to say that the needed assumptions
would be reasonable, or that the resulting estimation method would be easy. It means that
the needed causal assumptions can be made transparent, brought up for discussion and
refinement and, once consistency is assured, causal quantities can be estimated from data
through ordinary statistical methods, free of the mystical aura that has shrouded causal
analysis in the past.
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