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From their inception in the early 20th century, causal systems models (more
commonly known as structural-equations models) were accompanied by graphi-
cal representations or path diagrams that provided compact summaries of qual-
itative assumptions made by the models. Fig. 1 provides a graph that would
correspond to any system of 5 equations encoding these assumptions:

1. independence of A and B,

2. direct dependence of C' on A and B,

3. direct dependence of E on A and C,

4. direct dependence of F on C and,

5. direct dependence of D on B, C, and E
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Figure 1:
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The interpretation of “direct dependence” was kept rather informal and usually
conveyed by causal intuition, for example, that the entire influence of A on F
is “mediated” by C.

By the 1980s it was recognized that these diagrams could be reinterpreted
formally as probability models, which opened the visual power of graph theory
for use in probabilistic inference and allowed easy deduction of other indepen-
dence conditions implied by the assumptions. By the 1990’s it was further
recognized that these diagrams could also be used as a formal tool for causal
inference, such as predicting the effects of external interventions. Given that the
graph is correct, one can see whether the causal effects of interest (target effects,
or causal estimands) can be estimated from available data, or what additional
observations are needed to validly estimate those effects. One can also see how
to represent the effects as familiar standardized effect measures.

The present article gives an overview of: (1) components of causal graph
theory; (2) probability interpretations of graphical models; and (3) the method-
ologic implications of the causal and probability structures encoded in the graph.
See CAUSATION AND CAUSAL INFERENCE for discussion of definitions of
causation and statistical models for causal inference.

Basics of Graph Theory

As befitting a well developed mathematical topic, graph theory has an extensive
terminology that, once mastered, provides access to a number of elegant results
which may be used to model any system of relations. The term dependence in a
graph, usually represented by connectivity, may refer to mathematical, causal,
or statistical dependencies. The connectives joining variables in the graph are
called arcs, edge, or links, and the variables are also called nodes or wvertices.
Two variables connected by an arc are adjacent or neighbors and arcs that meet
at a variable are also adjacent. If the arc is an arrow, the tail (starting) variable
is the parent and the head (ending) variable is the child. In causal diagrams, an
arrow represents a “direct effect” of the parent on the child, although this effect
is direct only relative to a certain level of abstraction, in that the graph omits
any variables that might mediate the effect.

A variable that has no parent (such as A and B in Fig. 1) is ezogenous or
external, or a root or source node, and is determined only by forces outside of
the graph; otherwise it is endogenous or internal. A variable with no children
(such as D in Fig. 1) is a sink or terminal node. The set of all parents of a
variable X (all variables at the tail of an arrow pointing into X) is denoted
pa[X]; in Fig. 1, pa|D] = {B,C, E}.

A path or chain is a sequence of adjacent arcs. A directed path is a path
traced out entirely along arrows tail-to-head. If there is a directed path from X
to Y, X is an ancestor of Y and Y is a descendant of X. In causal diagrams,
directed paths represent causal pathways from the starting variable to the ending
variable; a variable is thus often called a cause of its descendants and an effect
of its ancestors. In a directed graph the only arcs are arrows, and an acyclic is
a graph in which there are no feedback loops (directed paths from a variable



back to itself). Therefore, a directed acyclic graph or DAG is a graph with only
arrows for edges and no feedback loops (i.e., no variable is its own ancestor or
its own descendant). A DAG represents a complete causal structure, in that all
sources of dependence are explained by causal links.

A variable intercepts or mediates a path if it is in the path (but not at the
ends); similarly, a set of variables S intercepts a path if it contains any variable
intercepting the path. Variables that intercept directed paths are intermediates
on the pathway. A variable is a collider on the path if the path enters and leaves
the variable via arrowheads (a term suggested by the collision of causal forces
at the variable). Note that being a collider is relative to a path; for example in
Fig. 1, C is a collider on the path A — C < B — D and a noncollider on the
path A — C' — D. Nonetheless, it is common to refer to a variable as a collider
if it is a collider along any path (i.e., if it has more than one parent). A path
is open or unblocked at noncolliders and closed or blocked at colliders; hence a
path with no collider (like E <— C < B — D) is open or active, while a path
with a collider (like E <~ A — C < B — D) is closed or inactive.

Two variables (or sets of variables) in the graph are d-separated (or just sep-
arated) if there is no open path between them. Some of the most important
constraints imposed by a graphical model correspond to independencies arising
from separation; e.g., absence of an open path from A to B in Fig. 1 constrains
A and B to be marginally independent (i.e., independent if no stratification
is done). Nonetheless, the converse does not hold; i.e., presence of an open
path allows but does not imply dependency. Independence may arise through
cancellation of dependencies; as a consequence even adjacent variables may be
marginally independent; e.g., in Fig. 1, A and E could be marginally indepen-
dent if the dependencies through paths A — E and A - C — E cancelled each
other. The assumption of faithfulness, discussed below, is designed to exclude
such possibilities.

Some authors use a bidirectional arc (two-headed arrow, <+) to represent the
assumption that two variables share ancestors that are not shown in the graph;
A < B then means that there is an unspecified variable U with directed paths
to both A and B (e.g., A< U — B).

Control: Manipulation versus Conditioning

The word “control” is used throughout science, but with a variety of meanings
that are important to distinguish. In experimental research, to control a vari-
able C' usually means to manipulate or set its value. In observational studies,
however, to control C' more often means to condition on C, usually by strati-
fying on C or to entering it in a regression model. The two processes are very
different physically and have very different representations and implications.

If a variable X is influenced by a researcher, the DAG would need an ancestor
R of X to represent this influence. In the classical experimental case in which
the researcher alone determines X, R and X would be identical. In human trials,
however, R more often represents just an intention to treat (with the assigned
level of X), leaving X to be influenced by other factors that affect compliance



with the assigned treatment R. In either case, R might be affected by other
variables in the graph. For example, if the researcher uses age to determine
assignments (an age-biased allocation), age would be a parent of R. Ordinarily
however R would be exogenous, as when R represents a randomized allocation.

In contrast, by definition in an observational study there is no such variable
R representing the researcher influence on X, and conditioning is substituted for
experimental control. Conditioning on a variable C'in a DAG can be represented
by creating a new graph from the original graph to represent constraints on
relations within levels (strata) of C' implied by the constraints imposed by the
original graph. This conditional graph can be found by following sequence of
operations:

1. If C is a collider, join (“marry”) all pairs of parents of C' by undirected
arcs; here dashed lines without arrowheads will be used (some authors use
solid lines without arrowheads).

2. Similarly, if A is an ancestor of C' and a collider, join all pairs of parents
of A by undirected arcs.

3. Erase C' and all arcs connecting C' to other variables.

Fig. 2 shows the graph derived from conditioning on C in Fig. 1: The parents
A and B of C are joined by an undirected arc, while C' and all its arcs are gone.
Fig. 3 shows the result of conditioning on F: C is an ancestral collider of F'
and so again its parents A and B are joined, but only F' and its single arc are
erased. Note that, because of the undirected arcs, neither figure is a DAG.
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Figure 2:

Operations 1 and 2 reflect that if C' depends on A and B through distinct
pathways, the marginal dependence of A on B will not equal the dependence
of A on B stratified on C (apart from special cases). To illustrate, suppose A
and B are binary indicators (i.e., equal to 1 or 0), marginally independent, and
C = A+ B. Then among persons with C' = 1, some will have A = 1,B =0
and some will have A = 0, B =1 (because other combinations produce C # 1).
Thus when C' = 1, A and B will exhibit perfect negative dependence: A =1—B
for all persons with C' = 1.

Conditioning on a variable C' reverses the status of C' on paths that pass
through it: Paths that were open at C' are closed by conditioning on C', while



paths that were closed at C' become open at C' (although they may remain
closed elsewhere). Similarly, conditioning on a descendant of C' partially re-
verses the status of C: Typically, paths that were open at C' remain open, but
with attenuated association across the path; while paths that were closed at C'
become open at C, although not as open as when conditioning on C itself. In
other words, conditioning on a variable tends to partially reverse the status of
ancestors on paths passing through the ancestors. In particular, conditioning
on a variable may open a path even if it is not on the path, as with F' in Fig. 1
and 3.

Figure 3:

A path is closed after conditioning on a set of variables S if S contains a
noncollider along the path, or if the conditioning leaves the path closed at a
collider; in either case S is said to block the path. Thus conditioning on S
closes an open path if and only if S intercepts path, and opens a closed path if
S contains no noncolliders on the path and every collider on the path is either
in S or has a descendant in S. In Fig. 1 the closed path E « A - C < B —» D
will remain closed after conditioning on S if S contains A or B or if S does not
contain C', but will be opened if S contains only C, F', or both.

Two variables (or sets of variables) in the graph are d-separated (or just
separated) by a set S if, after conditioning on S, there is no open path between
them. Thus in Fig. 1, {A, C} separates E from B, but {C} does not (because
conditioning on C alone results in Fig. 2, in which £ and B are connected
via the open path A). In a DAG, pa[X] separates X from every variable that
is not affected by X (i.e., not a descendant of X). This feature of DAGs is
sometimes called the “Markov condition,” expressed by saying the parents of a
variable “screen off” the variable from everything but its effects. Thus in Fig. 1
pa[E] = {4, C}, which separates E from B but not from D.

Dependencies induced by conditioning on a set S can be read directly from
the original graph using the criterion of d-separation, by tracing the original
paths in the graph while testing whether colliders are, or have, descendants in
S. The conditional dependencies are then illustrated in the original graph by
drawing a circle around each C in S to denote the conditioning, then defining a
path blocked by S if C' is a noncollider on the path, or by a circle-free collider
that does not have a circled desendant. Thus if we circle C in Fig. 1, it will
completely block the E — D paths E < C +~ B+ Dand E+ A—-C — D



but unblock the path £ < A — C + B — D via the circled collider C', which
is equivalent to having a dashed arc as in Fig. 2. Were we to circle F' but not
C, no open path would be completely blocked, but the collider C' would again
be opened by virtue of its circled descendant F', which is equivalent to having
a dashed arc as in Fig. 3.

Selection Bias and Confounding

There is considerable variation in the literature in the usage of terms like “bias,”
“confounding,” and related concepts which refer to dependencies that reflect
more than just the effect under study. To capture these notions in a causal
graph, we say that a nondirected open path between X and Y is a biasing path
for the dependence of Y on X. The latter dependence is then unbiased for the
effect of X on Y if the only open paths from X to Y are the directed paths.
Next, consider a set of variables S that contains no effect (descendant) of X
(including those descended through Y'). The dependence of Y on X is unbiased
given S if; after conditioning on S, the open paths between X and Y are exactly
(only and all) the directed paths in the starting graph. In such a case we say S
is sufficient to block bias in the X — Y dependence, and is minimally sufficient
if no proper subset of S is sufficient.

The exclusion from S of descendants of X in these definitions arises first,
because conditioning on X-descendants Z can partially block directed (causal)
paths that are part of the effect of interest (if those descendants are intermedi-
ates or descendants of intermediates); and second, because conditioning on X
descendants can unblock or create paths that are not part of the X — Y effect,
and thus create new bias. For example, biasing paths can be created when one
conditions on a descendant Z of both X and Y. The resulting bias is called
Berksonian bias, after its discoverer, Joseph Berkson.

Informally, confounding is a source of bias arising from causes of Y that are
associated with but not affected by X. Thus we say an open nondirected path
from X to Y is a confounding path if it ends with an arrow into Y. Variables that
intercept confounding paths between X and Y are confounders. If a confounding
path is present, we say confounding is present and that the dependence of Y on
X is confounded. If no confounding path is present we say the dependence is
unconfounded, in which case the only open paths from X to Y through a parent
of Y are directed paths. Note that an unconfounded dependency may still be
biased due to nondirected open paths that do not end in an arrow into Y (e.g.,
if Berksonian bias is present).

The dependence of Y on X is unconfounded given S if, after conditioning on
S, the only open paths between X and Y through a parent of Y are the directed
paths. Consider again a set of variables S that contains no descendant of X. S
is sufficient to block confounding if the dependence of Y on X is unconfounded
given S. “No confounding” thus corresponds to sufficiency of the empty set.
A sufficient S is called minimally sufficient to block confounding if no proper
subset of S is sufficient.

A back-door path from X to Y is a path that begins with a parent of X



(i.e., leaves X from a “back door”) and ends at Y. A set S then satisfies the
back-door criterion with respect to X and Y if S contains no descendant of X
and there are no open back-door paths from X to Y after conditioning on S.
In a DAG, the following simplifications occur:

1. All biasing paths are back-door paths, hence the dependence of Y on X
is unbiased whenever there is no open back-door path from X to Y;

2. If X is exogenous, the dependence of any Y on X is unbiased;
3. All confounders are ancestors of either X or of Y7

4. A back-door path is open if and only if it contains a common ancestor of
X and Y;

5. If S satisfies the back-door criterion, then S is sufficient to block X —Y
confounding.

These conditions do not extend to non-DAGS like Fig. 2. Also, although pa[X]
always satisfies the back-door criterion and hence is sufficient in a DAG, it may
be far from minimal sufficient. For example, in a DAG there is no confounding
and hence no need for conditioning whenever X separates pa[X] from Y (i.e.,
whenever the only open paths from p[X] to Y are through X).

The terms “confounding” and “selection bias” have somewhat varying and
overlapping usage. Epidemiologists typically refer to Berksonian bias as “se-
lection bias,” and some call any bias created by conditioning “selection bias.”
Nonetheless, some writers (especially in econometrics) use “selection bias” to
refer to what epidemiologists call confounding. Indeed, Figs. 1 and 3 show how
selection on a nonconfounder (F') can generate confounding. As a final caution,
we note that the biases dealt with by the above concepts are only confounding
and selection biases. Biases due to measurement error and model-form misspec-
ification require further structure to describe.

Statistical Interpretations

A joint probability distribution for the variables in a graph is compatible with
the graph if two sets of variables are independent given S whenever S sepa-
rates them. For such distributions, two sets of variables will be statistically
unassociated if there is no open path between them. Many special results fol-
low for distributions compatible with a DAG. For example, if in a DAG, X is
not an ancestor of any variable in a set 7', then 7" and X will be independent
given pa[X]. A distribution compatible with a DAG thus can be reduced to
a product of factors P(z|pa[X]), with one factor for each variable X in the
DAG; this is sometimes called the “Markov factorization” for the DAG. When
X is a treatment, this condition implies the probability of treatment (propen-
sity score) is fully determined by the parents of X,pa[X]. Roughly speaking,
the factorization implies that a distribution compatible with a complete causal



structure factorizes into the product of the propensity scores for each variable
in the structure.

Suppose now we are interested in the effect of X on Y in a DAG, and we
assume a probability model compatible with the DAG. Then, given a sufficient
conditioning set S, the only source of association between X and Y within
strata of S will be the directed paths from X to Y. Hence the net effect of
X =23 vs. X =20 on Y when S = s is defined as P(y|z1,s) — P(y|zo, s),
the difference in risks of ¥ = y at X = x; and X = xzg. Alternatively one
may use another effect measure such as the risk ratio P(y|z1,s)/P(y|zo,s). A
standardized effect is a difference or ratio of weighted averages of these stratum-
specific P(y|z,s) over S, using a common weighting distribution. The latter
definition can be generalized to include intermediate variables in S by allowing
the weighting distribution to causally depend on X. Furthermore, given a set
Z of intermediates along all directed paths from X to Y with X —Z and Z —-Y
unbiased, one can produce formulas for the X — Y effect as a function of the
X —Z and Z - Y effects (“front-door adjustment”).

The above form of standardized effect is identical to the forms derived under
other causal models.When S is sufficient, some authors go so far as to identify
the P(y|z,s) with the distribution of potential outcomes given S. There have
been objections to this identification on the grounds that not all variables in the
graph can be manipulated, and that potential-outcome models do not apply to
nonmanipulable variables. The objection loses force when X is an intervention
variable, however. In that case, sufficiency of a set .S implies that the potential-
outcome distribution equals ) P(y|z,s)P(s), the risk of Y = y given X =z
standardized to the S distribution.

Some Epidemiologic Applications

To check sufficiency and identify minimally sufficient sets of variables given
a graph of the causal structure, one need only see whether the open paths
from X to Y after conditioning are exactly the directed paths from X to Y
in the starting graph. Mental effort may then be shifted to evaluating the
reasonableness of the causal independencies encoded by the graph, some of which
are reflected in conditional independence relations.This property of graphical
analysis facilitates the articulation of necessary background knowledge and eases
teaching nonstatisticians algebraically difficult concepts.

As an example, spurious sample associations may arise if each variable af-
fects selection into the study, even if those selection effects are independent.
This phenomenon is a special case of the collider-stratification effect illustrated
earlier. Tts presence is easily seen by starting with a DAG that includes a se-
lection indicator F' = 1 for those selected, 0 otherwise, as well as the study
variables, then noting that we are always forced to examine associations within
the F' = 1 stratum (i.e., by definition, our observations stratify on selection).
Thus, if selection (F) is affected by multiple causal pathways, we should expect
selection to create or alter associations among the variables.

Fig. 4 displays a situation common in randomized trials, in which the net



effect of E on D is unconfounded, despite the presence of an unmeasured cause
U of D. Unfortunately, a common practice in health and social sciences is to
stratify on (or otherwise adjust for) an intermediate variable F' between a cause
E and effect D, and then claim that the estimated (F-residual) association rep-
resents that portion of the effect of E on D not mediated through F. In Fig. 4
this would be a claim that, upon stratifying on F', the E — D association rep-
resents the direct effect of ' on D. Fig. 5 however shows the graph conditional
on F', in which we see that there is now an open path from F to D through U,
and hence the residual £ — D association is confounded for the direct effect of

FE on D.
E )

D

Figure 4:

The E — D confounding by U in Fig. 5 can be seen as arising from the
confounding of the F' — D association by U in Fig. 4. In a similar fashion,
conditioning on C' in Fig. 1 opens the confounding path through A and B in
Fig. 2; this path can be seen as arising from the confounding of the C' — E
association by A and the C' — D association by B in Fig. 1. In both examples,
further stratification on either A or B blocks the created path and thus removes
the new confounding.

O

Figure 5:

The generation of biasing paths by conditioning on a collider or its descen-
dant has been called “collider bias.” Starting from a DAG, there are two distinct
forms of this bias: Confounding induced in the conditional graph (Figs. 2, 3,
and 5), and Berksonian bias from conditioning on an effect of X and Y. Both
biases can in principle be removed by further conditioning on variables along
the biasing paths from X to Y in the conditional graph. Nonetheless, the start-
ing DAG will always display ancestors of X or Y that, if known, could be used



remove confounding; in contrast, no variable need appear that could be used to
remove Berksonian bias.

Fig. 4 also provides a schematic for estimating the F' — D effect, as in ran-
domized trials in which E represents assignment to or encouragement toward
treatment F'. Subject to additional assumptions, one can put bounds on con-
founding of the F' — D association (and with more assumptions remove it en-
tirely) through use of E as an instrumental variable (a variable associated with
X and separated from Y by X).

Questions of Discovery

While deriving statistical implications of graphical models is uncontroversial,
algorithms that claim to discover causal (graphical) structures from observa-
tional data have been subject to strong criticism. A key assumption in certain
“discovery” algorithms is a converse of compatibility called faithfulness.

A compatible distribution is faithful to or perfectly compatible with a given
graph if for all X, Y, and S, X and Y are independent given S only when
S separates X and Y (i.e., the distribution contains no independencies other
than those implied by graphical separation). A distribution is stable if there
is a DAG to which it is faithful. Methods exist for constructing a distribution
that is faithful to a given DAG. Methods also exist for constructing a minimal
DAG compatible with a given distribution (minimal in that no arrow can be
removed from the DAG without violating compatibility). Faithfulness implies
that minimal sufficient sets in the graph will also be minimal for consistent esti-
mation of effects. Nonetheless, there are real examples of near cancellation (e.g.,
when confounding obscures a real effect), which make faithfulness questionable
as a routine assumption. Fortunately, faithfulness is not needed for the uses of
graphical models discussed here.

Whether or not one assumes faithfulness, the generality of graphical models
is purchased with limitations on their informativeness. The nonparametric
nature of the graphs implies that parametric concepts like effect modification
cannot be displayed by the graphs (although the graphs still show whether the
effects and hence their modification can be estimated from the given informa-
tion). Similarly, the graphs may imply that several distinct conditionings are
minimal sufficient (e.g., both {4, C} and {B, C} are sufficient for the ED effect
in Fig. 1), but offer no further guidance on which to use. Open paths may
suggest the presence of an association, but that association may be negligible
even if nonzero. For example, bounds on the size of direct effects imply more
severe bounds on the size of effects mediated in multiple steps (indirect effects),
with the bounds becoming more severe with each step. As a consequence, there
is often good reason to expect certain phenomena (such as the conditional
E — D confounding shown in Figs. 2, 3 and 5) to be small in epidemiologic
examples. Thus, when quantitative information is used, graphical modeling
becomes more a schematic adjunct than an alternative to causal modeling.
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See also: Bias, Types of; Causation and Causal Inference; Confounding

Further Readings

Full technical details of causal diagrams and their relation to causal inference
can be found in Pearl (2000) and Spirtes et al. (2001). Less technical reviews
geared toward health scientists include Greenland et al. (1999), Greenland and
Brumback (2002), Jewell (2004), and Glymour (2006).
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