
section, a regional difference in practice patterns in

this group will be most noticeable. In this example,

it is clear that such an effect is evident. For the study

at hand, there is no ‘‘correct’’ choice. It may be

a study where Table 11 is provided. A smaller sum-

mary may be prepared as in Table 12. With only one

anomaly in combining ages 18 to 49 years within

the other two factors, the overall story appears rea-

sonable to combine these ages. Collapsing the esti-

mate by insurance type may also be useful.

To summarize, many decisions need to be made

during the statistical analysis of epidemiologic data.

Maintaining a focus on the research question of inter-

est is important and more difficult for those with little

experience. Understanding the nature of the associa-

tion, including how the exposure may be related to

the outcome, even if only theoretically, can aid the

decision-making process.

—Robert Bednarczyk and Louise-Anne McNutt

See also Causal Diagrams; Causation and Causal Inference;

Confounding; Effect Modification and Interaction; Study

Design
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CAUSAL DIAGRAMS

From their inception in the early 20th century, causal

systems models (more commonly known as struc-

tural-equations models) were accompanied by graph-

ical representations or path diagrams that provided

compact summaries of qualitative assumptions made

by the models. Figure 1 provides a graph that would

correspond to any system of five equations encoding

these assumptions:

1. Independence of A and B

2. Direct dependence of C on A and B

3. Direct dependence of E on A and C

4. Direct dependence of F on C

5. Direct dependence of D on B, C, and E

The interpretation of ‘‘direct dependence’’ was kept

rather informal and usually conveyed by causal intui-

tion, for example, that the entire influence of A on F

is ‘‘mediated’’ by C.

By the 1980s, it was recognized that these dia-

grams could be reinterpreted formally as probability

models, which opened the visual power of graph the-

ory for use in probabilistic inference and allowed

easy deduction of other independence conditions

implied by the assumptions. By the 1990s, it was fur-

ther recognized that these diagrams could also be

F

C

DE

BA

Figure 1 Example of a Directed Acrylic Graph
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used as a formal tool for causal inference, such as

predicting the effects of external interventions. Given

that the graph is correct, one can see whether the

causal effects of interest (target effects, or causal esti-

mands) can be estimated from available data, or what

additional observations are needed to validly estimate

those effects. One can also see how to represent the

effects as familiar standardized effect measures.

This entry gives an overview of (1) components

of causal graph theory, (2) probability interpretations

of graphical models, and (3) the methodological

implications of the causal and probability structures

encoded in the graph.

Basics of Graph Theory

As befitting a well-developed mathematical topic,

graph theory has an extensive terminology that, once

mastered, provides access to a number of elegant

results that may be used to model any system of rela-

tions. The term dependence in a graph, usually repre-

sented by connectivity, may refer to mathematical,

causal, or statistical dependencies. The connectives

joining variables in the graph are called arcs, edge,

or links, and the variables are also called nodes or

vertices. Two variables connected by an arc are

adjacent or neighbors, and arcs that meet at a vari-

able are also adjacent. If the arc is an arrow, the tail

(starting) variable is the parent and the head (ending)

variable is the child. In causal diagrams, an arrow

represents a ‘‘direct effect’’ of the parent on the

child, although this effect is direct only relative to

a certain level of abstraction, in that the graph omits

any variables that might mediate the effect.

A variable that has no parent (such as A and B

in Figure 1) is exogenous or external, or a root or

source node, and is determined only by forces outside

the graph; otherwise it is endogenous or internal. A

variable with no children (such as D in Figure 1)

is a sink or terminal node. The set of all parents of

a variable X (all variables at the tail of an arrow point-

ing into X) is denoted by pa[X]; in Figure 1,

pa[D]= {B, C, E}.

A path or chain is a sequence of adjacent arcs. A

directed path is a path traced out entirely along

arrows tail-to-head. If there is a directed path from

X to Y , X is an ancestor of Y and Y is a descendant

of X. In causal diagrams, directed paths represent

causal pathways from the starting variable to the

ending variable; a variable is thus often called

a cause of its descendants and an effect of its ances-

tors. In a directed graph, the only arcs are arrows,

and in an acyclic graph there is no feedback loop

(directed path from a variable back to itself). There-

fore, a directed acyclic graph (DAG) is a graph with

only arrows for edges and no feedback loops (i.e., no

variable is its own ancestor or its own descendant).

A causal DAG represents a complete causal structure

in that all sources of dependence are explained by

causal links; in particular, all common (shared)

causes of variables in the graph are also in the graph.

A variable intercepts or mediates a path if it is in

the path (but not at the ends); similarly, a set of

variables S intercepts a path if it contains any vari-

able intercepting the path. Variables that intercept

directed paths are intermediates on the pathway. A

variable is a collider on the path if the path enters

and leaves the variable via arrowheads (a term sug-

gested by the collision of causal forces at the vari-

able). Note that being a collider is relative to a path;

for example, in Figure 1, C is a collider on the path

A→C  B→D and a noncollider on the path

A→C →D. Nonetheless, it is common to refer to

a variable as a collider if it is a collider along any

path (i.e., if it has more than one parent). A path is

open or unblocked at noncolliders and closed or

blocked at colliders; hence, a path with no collider

(such as E C  B D) is open or active, while

a path with a collider (such as E A B→D) is

closed or inactive.

Two variables (or sets of variables) in the graph

are d-separated (or just separated) if there is no open

path between them. Some of the most important con-

straints imposed by a graphical model correspond to

independencies arising from separation; for example,

absence of an open path from A to B in Figure 1

constrains A and B to be marginally independent

(i.e., independent if no stratification is done). None-

theless, the converse does not hold; that is, presence

of an open path allows but does not imply depen-

dency. Independence may arise through cancellation

of dependencies; as a consequence, even adjacent

variables may be marginally independent; for exam-

ple, in Figure 1, A and E could be marginally inde-

pendent if the dependencies through paths A→E

and A→C →E canceled each other. The assump-

tion of faithfulness, discussed below, is designed to

exclude such possibilities.

Some authors use a bidirectional arc (two-headed

arrow, $) to represent the assumption that two
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variables share ancestors that are not shown in the

graph; A$ B then means that there is an unspecified

variable U with directed paths to both A and B (e.g.,

A U →B).

Control: Manipulation
Versus Conditioning

The word ‘‘control’’ is used throughout science, but

with a variety of meanings that are important to

distinguish. In experimental research, to control

a variable C usually means to manipulate or set its

value. In observational studies, however, to control

C (or more precisely, to control for C) more often

means to condition on C, usually by stratifying on

C or by entering C in a regression model. The two

processes are very different physically and have

very different representations and implications.

If a variable X is influenced by a researcher, the

DAG would need an ancestor R of X to represent this

influence. In the classical experimental case in which

the researcher alone determines X, R and X would be

identical. In human trials, however, R more often

represents just an intention to treat (with the assigned

level of X), leaving X to be influenced by other fac-

tors that affect compliance with the assigned treat-

ment R. In either case, R might be affected by other

variables in the graph. For example, if the researcher

uses age to determine assignments (an age-biased

allocation), age would be a parent of R. Ordinarily,

however, R would be exogenous, as when R repre-

sents a randomized allocation.

In contrast, by definition, in an observational study

there is no such variable R representing the researcher

influence on X, and conditioning is substituted for

experimental control. Conditioning on a variable C in

a DAG can be represented by creating a new graph

from the original graph to represent constraints on

relations within levels (strata) of C implied by the

constraints imposed by the original graph. This condi-

tional graph can be found by the following sequence

of operations:

1. If C is a collider, join (‘‘marry’’) all pairs of parents

of C by undirected arcs; here dashed lines without

arrowheads will be used (some authors use solid

lines without arrowheads).

2. Similarly, if A is an ancestor of C and a collider,

join all pairs of parents of A by undirected arcs.

3. Erase C and all arcs connecting C to other variables.

Figure 2 shows the graph derived from condition-

ing on C in Figure 1: The parents A and B of C are

joined by an undirected arc, while C and all its arcs

are gone. Figure 3 shows the result of conditioning

on F: C is an ancestral collider of F and so again its

parents A and B are joined, but only F and its single

arc are erased. Note that, because of the undirected

arcs, neither figure is a DAG.

Operations 1 and 2 reflect that if C depends on

A and B through distinct pathways, the marginal

dependence of A on B will not equal the dependence

of A on B stratified on C (apart from special cases).

To illustrate, suppose A and B are binary indicators

(i.e., equal to 1 or 0), marginally independent, and

C =A+B. Then among persons with C = 1, some

will have A= 1, B= 0 and some will have A= 0,

B= 1 (because other combinations produce C 6¼ 1).

Thus, when C = 1, A and B will exhibit perfect nega-

tive dependence: A= 1−B for all persons with

C = 1.

Conditioning on a variable C reverses the status of

C on paths that pass through it: Paths that were open

at C are closed by conditioning on C, while paths that

were closed at C become open at C (although they

may remain closed elsewhere). Similarly, condition-

ing on a descendant of C partially reverses the status

of C: Typically, paths that were open at C remain

open, but with attenuated association across the path;

while paths that were closed at C become open at C,

although not as open as when conditioning on C

itself. In other words, conditioning on a variable tends

to partially reverse the status of ancestors on paths

passing through the ancestors. In particular, condition-

ing on a variable may open a path even if it is not on

the path, as with F in Figure 1.

A B

D

F

E

Figure 2 Graph Resulting From Figure 1 After
Conditioning on C
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A path is closed after conditioning on a set of

variables S if S contains a noncollider along the path,

or if the conditioning leaves the path closed at a col-

lider; in either case, S is said to block the path. Thus,

conditioning on S closes an open path if and only if

S intercepts path and opens a closed path if S con-

tains no noncolliders on the path and every collider

on the path is either in S or has a descendant in S. In

Figure 1, the closed path E A→C  B→D will

remain closed after conditioning on S if S contains A

or B or if S does not contain C, but will be opened if

S contains only C, F, or both.

Two variables (or sets of variables) in the graph

are d-separated (or just separated) by a set S if, after

conditioning on S, there is no open path between

them. Thus, in Figure 1, fA, Cg separates E from B,

but fCg does not (because conditioning on C alone

results in Figure 2, in which E and B are connected

via the open path A). In a DAG, pa[X] separates X

from every variable that is not affected by X (i.e., not

a descendant of X). This feature of DAGs is some-

times called the ‘‘Markov condition,’’ expressed by

saying the parents of a variable ‘‘screen off’’ the vari-

able from everything but its effects. Thus, in Figure 1,

pa[E]= fA, Cg, which separates E from B but not

from D.

Dependencies induced by conditioning on a set S

can be read directly from the original graph using the

criterion of d-separation, by tracing the original paths

in the graph while testing whether colliders are, or

have, descendants in S. The conditional dependencies

are then illustrated in the original graph by drawing

a circle around each C in S to denote the conditioning,

then defining a path blocked by S if C is a noncollider

on the path, or by a circle-free collider that does not

have a circled descendant. Thus, if we circle C in

Figure 1, it will completely block the E −D paths

E C  B→D and E  A→D but unblock the

path E A→C  B→D via the circled collider C,

which is equivalent to having a dashed arc as in Figure

2. Were we to circle F but not C, no open path would

be completely blocked, but the collider C would again

be opened by virtue of its circled descendant F, which

is equivalent to having a dashed arc as in Figure 3.

Selection Bias and Confounding

There is considerable variation in the literature in the

usage of terms such as bias, confounding, and related

concepts that refer to dependencies that reflect more

than just the effect under study. To capture these

notions in a causal graph, we say that an open path

between X and Y is a biasing path if it is not a directed

path. The association of X with Y is then unbiased for

the effect of X on Y if the only open paths from X to

Y are the directed paths. Next, consider a set of vari-

ables S that contains no effect (descendant) of X

(including those descended through Y). The depen-

dence of Y on X is unbiased given S if, after condi-

tioning on S, the open paths between X and Y are

exactly (only and all) the directed paths in the starting

graph. In such a case, we say S is sufficient to block

bias in the X � Y dependence and is minimally suffi-

cient if no proper subset of S is sufficient.

The exclusion from S of descendants of X in

these definitions arises first, because conditioning on

X-descendants Z can partially block directed (causal)

paths that are part of the effect of interest (if those

descendants are intermediates or descendants of

intermediates); and second, because conditioning on

X descendants can unblock or create paths that are

not part of the X − Y effect, and thus create new

bias. For example, biasing paths can be created when

one conditions on a descendant Z of both X and Y .

The resulting bias is called Berksonian bias, after its

discoverer, Joseph Berkson.

Informally, confounding is a source of bias arising

from causes of Y that are associated with but not

affected by X. Thus, we say an open nondirected path

from X to Y is a confounding path if it ends with an

arrow into Y . Variables that intercept confounding

paths between X and Y are confounders. If a confound-

ing path is present, we say confounding is present and

C

DE

BA

Figure 3 Graph Resulting From Figure 1 After
Conditioning on F
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that the dependence of Y on X is confounded. If no

confounding path is present, we say the dependence is

unconfounded, in which case the only open paths from

X to Y through a parent of Y are directed paths. Note

that an unconfounded dependency may still be biased

due to nondirected open paths that do not end in an

arrow into Y (e.g., if Berksonian bias is present).

The dependence of Y on X is unconfounded given

S if, after conditioning on S, the only open paths

between X and Y through a parent of Y are the

directed paths. Consider again a set of variables S

that contains no descendant of X. S is sufficient to

block confounding if the dependence of Y on X is

unconfounded given S. ‘‘No confounding’’ thus cor-

responds to sufficiency of the empty set. A sufficient

S is called minimally sufficient to block confounding

if no proper subset of S is sufficient.

A backdoor path from X to Y is a path that begins

with a parent of X (i.e., leaves X from a ‘‘backdoor’’)

and ends at Y . A set S then satisfies the backdoor

criterion with respect to X and Y if S contains no

descendant of X and there are no open backdoor

paths from X to Y after conditioning on S. In a DAG,

the following simplifications occur:

1. All biasing paths are backdoor paths; hence, the

dependence of Y on X is unbiased whenever there

is no open backdoor path from X to Y :

2. If X is exogenous, the dependence of any Y on X is

unbiased.

3. All confounders are ancestors of either X or of Y .

4. A backdoor path is open if and only if it contains

a common ancestor of X and Y .

5. If S satisfies the backdoor criterion, then S is suffi-

cient to block X − Y confounding.

These conditions do not extend to non-DAGs

such as Figure 2. Also, although pa[X] always satis-

fies the backdoor criterion and hence is sufficient in

a DAG, it may be far from minimal sufficient. For

example, in a DAG there is no confounding and

hence no need for conditioning whenever X separates

pa[X] from Y (i.e., whenever the only open paths

from pa[X] to Y are through X).

The terms confounding and selection bias have

somewhat varying and overlapping usage. Epidemiol-

ogists typically refer to Berksonian bias as selection

bias, and some call any bias created by conditioning

selection bias. Nonetheless, some writers (especially in

econometrics) use selection bias to refer to what epide-

miologists call confounding. Indeed, Figures 1 and 3

show how selection on a nonconfounder (F) can gener-

ate confounding. As a final caution, we note that the

biases dealt with by the above concepts are only con-

founding and selection biases. Biases due to measure-

ment error and model-form misspecification require

further structure to describe.

Statistical Interpretations

A joint probability distribution for the variables in

a graph is compatible with the graph if two sets of

variables are independent given S whenever S sepa-

rates them. For such distributions, two sets of vari-

ables will be statistically unassociated if there is no

open path between them. Many special results follow

for distributions compatible with a DAG. For exam-

ple, if in a DAG, X is not an ancestor of any variable

in a set T , then T and X will be independent given

pa[X]. A distribution compatible with a DAG thus

can be reduced to a product of factors Prðx|pa[X])

with one factor for each variable X in the DAG; this

is sometimes called the ‘‘Markov factorization’’ for

the DAG. When X is a treatment, this condition

implies the probability of treatment is fully deter-

mined by the parents of X, pa[X].

Suppose now we are interested in the effect of X

on Y in a DAG, and we assume a probability model

compatible with the DAG. Then, given a sufficient

conditioning set S, the only source of association

between X and Y within strata of S will be the

directed paths from X to Y . Hence the net effect of

X = x1 versus X = x0 on Y when S= s is defined as

Prðy|x1, s)−Prðy|x0, s), the difference in risks of

Y = y at X = x1 and X = x0. Alternatively, one may

use another effect measure such as the risk ratio

Pr(y|x1, s)=Pr(y|x0, s). A standardized effect is a dif-

ference or ratio of weighted averages of these stra-

tum-specific Pr(y|x, s) over S, using a common

weighting distribution. The latter definition can be

generalized to include intermediate variables in S by

allowing the weighting distribution to causally

depend on X. Furthermore, given a set Z of inter-

mediates along all directed paths from X to Y with

X − Z and Z − Y unbiased, one can produce formulas

for the X − Y effect as a function of the X � Z and

Z � Y effects (‘‘front-door adjustment’’).

The above form of standardized effect is identical

to the forms derived under other causal models.
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When S is sufficient, some authors go so far as to

identify the Pr(y|x, s) with the distribution of poten-

tial outcomes given S. There have been objections to

this identification on the grounds that not all vari-

ables in the graph can be manipulated and that

potential-outcome models do not apply to nonmanip-

ulable variables. The objection loses force when X is

an intervention variable, however. In that case, suffi-

ciency of a set S implies that the potential-

outcome distribution equals
P

s Pr(y|x, s)Pr(s), the

risk of Y = y given X = x standardized to the S

distribution.

Some Epidemiologic Applications

To check sufficiency and identify minimally suffi-

cient sets of variables given a graph of the causal

structure, one need to only see whether the open

paths from X to Y after conditioning are exactly the

directed paths from X to Y in the starting graph.

Mental effort may then be shifted to evaluating the

reasonableness of the causal independencies encoded

by the graph, some of which are reflected in condi-

tional independence relations. This property of

graphical analysis facilitates the articulation of nec-

essary background knowledge and eases teaching

nonstatisticians algebraically difficult concepts.

As an example, spurious sample associations

may arise if each variable affects selection into the

study, even if those selection effects are independent.

This phenomenon is a special case of the collider-

stratification effect illustrated earlier. Its presence is

easily seen by starting with a DAG that includes

a selection indicator F = 1 for those selected, 0 other-

wise, as well as the study variables, then noting that

we are always forced to examine associations within

the F = 1 stratum (i.e., by definition, our observations

stratify on selection). Thus, if selection (F) is affected

by multiple causal pathways, we should expect selec-

tion to create or alter associations among the variables.

Figure 4 displays a situation common in random-

ized trials, in which the net effect of E on D is

unconfounded, despite the presence of an unmea-

sured cause U of D. Unfortunately, a common prac-

tice in health and social sciences is to stratify on (or

otherwise adjust for) an intermediate variable F

between a cause E and an effect D, and then claim

that the estimated (F residual) association represents

that portion of the effect of E on D not mediated

through F. In Figure 4, this would be a claim that on

stratifying on F, the E −D association represents the

direct effect of E on D. Figure 5, however, shows the

graph conditional on F, in which we see that there is

now an open path from E to D through U, and hence

the residual E−D association is confounded for the

direct effect of E on D.

The E −D confounding by U in Figure 5 can be

seen as arising from the confounding of the F −D

association by U in Figure 4. In a similar fashion,

conditioning on C in Figure 1 opens the confounding

path through A and B in Figure 2; this path can be

seen as arising from the confounding of the C −E

association by A and the C −D association by B in

Figure 1. In both examples, further stratification on

either A or B blocks the created path and thus

removes the new confounding.

F

D

(U)E

Figure 4 Graph in Which Net (Total) Effect of E on
D Is Unconfounded but the Direct Effect Is
Confounded by U

D

(U)E

Figure 5 Graph Resulting From Figure 2 After
Conditioning on F
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The generation of biasing paths by conditioning

on a collider or its descendant has been called ‘‘col-

lider bias.’’ Starting from a DAG, there are two dis-

tinct forms of this bias: confounding induced in the

conditional graph (Figures 2, 3, and 5) and Berkso-

nian bias from conditioning on an effect of X and Y .

Both biases can in principle be removed by further

conditioning on variables along the biasing paths

from X to Y in the conditional graph. Nonetheless,

the starting DAG will always display ancestors of X

or Y that, if known, could be used remove confound-

ing; in contrast, no variable need appear that could

be used to remove Berksonian bias.

Figure 4 also provides a schematic for estimating

the F −D effect, as in randomized trials in which E

represents assignment to or encouragement toward

treatment F. Subject to additional assumptions, one

can put bounds on confounding of the F −D associa-

tion (and with more assumptions remove it entirely)

through use of E as an instrumental variable (a vari-

able associated with X and separated from Y by X).

Questions of Discovery

While deriving statistical implications of graphical

models is uncontroversial, algorithms that claim to

discover causal (graphical) structures from observa-

tional data have been subject to strong criticism. A

key assumption in certain ‘‘discovery’’ algorithms is

a converse of compatibility called faithfulness.

A compatible distribution is faithful to or perfectly

compatible with a given graph if for all X, Y , and S, X

and Y are independent given S only when S separates

X and Y (i.e., the distribution contains no independen-

cies other than those implied by graphical separation).

A distribution is stable if there is a DAG to which it is

faithful. Methods exist for constructing a distribution

that is faithful to a given DAG. Methods also exist for

constructing a minimal DAG compatible with a given

distribution (minimal in that no arrow can be removed

from the DAG without violating compatibility). Faith-

fulness implies that minimal sufficient sets in the

graph will also be minimal for consistent estimation of

effects. Nonetheless, there are real examples of near

cancellation (e.g., when confounding obscures a real

effect), which make faithfulness questionable as a rou-

tine assumption. Fortunately, faithfulness is not needed

for the uses of graphical models discussed here.

Whether or not one assumes faithfulness, the gen-

erality of graphical models is purchased with

limitations on their informativeness. The nonparamet-

ric nature of the graphs implies that parametric con-

cepts such as effect modification cannot be displayed

by the graphs (although the graphs still show whether

the effects and hence their modification can be esti-

mated from the given information). Similarly, the

graphs may imply that several distinct conditionings

are minimal sufficient (e.g., both fA, Cg and fB, Cg
are sufficient for the E −D effect in Figure 1), but

offer no further guidance on which to use. Open paths

may suggest the presence of an association, but that

association may be negligible even if nonzero. For

example, bounds on the size of direct effects imply

more severe bounds on the size of effects mediated in

multiple steps (indirect effects), with the bounds

becoming more severe with each step. As a conse-

quence, there is often good reason to expect certain

phenomena (such as the conditional E −D confound-

ing shown in Figures 2, 3, and 5) to be small in epide-

miologic examples. Thus, when quantitative

information is used, graphical modeling becomes

more a schematic adjunct than an alternative to causal

modeling.

—Sander Greenland and Judea Pearl

Authors’ Note: Full technical details of causal diagrams and

their relation to causal inference can be found in Pearl (2000)

and Spirtes, Glymour, and Scheines (2001). Less technical

reviews geared toward health scientists include Greenland, Pearl,

and Robins (1999), Greenland and Brumback (2002), Jewell

(2004), and Glymour and Greenland (in press).
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CAUSATION AND CAUSAL INFERENCE

In the health sciences, definitions of cause and effect

have not been tightly bound with methods for study-

ing causation. Indeed, many approaches to causal

inference provide no definition, leaving users to imag-

ine causality however they prefer. Without a formal

definition of causation, an association is distinguished

as causal only by having been identified as such based

on external and largely contextual considerations.

Because they have historical precedence and are still

widely used, this entry first reviews such methods. It

then discusses definitions and methods based on for-

mal models of causation, especially those based on

counterfactuals or potential outcomes.

Canonical Inference

The oldest and most common systematic approach to

causal inference in epidemiology was the compari-

son of observations to characteristics expected of

causal relations. The characteristics might derive

from subject-matter judgments or from consideration

of causal models, and the comparisons might employ

formal statistical methods to estimate and test those

characteristics. Perhaps the most widely cited of

such an approach is based on the considerations of

Sir Austin Bradford Hill, which are discussed criti-

cally in numerous sources as well as by Hill himself.

The canonical approach usually leaves terms such

as cause and effect as undefined concepts around

which the self-evident canons are built, much like

axioms are built around concepts such as set and is

an element of in mathematics. In his famous 1965

article on association and causation, Hill noted that

he did not want to undertake a philosophical discus-

sion of causation. Only proper temporal sequence

(cause must precede effect) is a necessary condition

for a cause-effect relation to hold. The remaining

considerations are more akin to diagnostic symptoms

or signs of causation—that is, they are properties an

association is assumed more likely to exhibit if it

is causal than if it is not. Furthermore, some of these

properties (such as specificity and dose response)

apply only under specific causal models. Thus, the

canonical approach makes causal inference most

closely resemble clinical judgment than experimental

science, although experimental evidence is listed

among the considerations. Some of the considerations

(such as temporal sequence, association, dose-response

or predicted gradient, and specificity) are empirical

signs and thus subject to conventional statistical analy-

sis. Others (such as plausibility) refer to prior belief,

and thus (as with disease symptoms) require elicitation

from experts, the same process used to construct prior

distributions for Bayesian analysis.

The canonical approach is widely accepted in

epidemiology, subject to many variations in detail.

Nonetheless, it has been criticized for its incom-

pleteness and informality, and the consequent poor

fit it affords to the deductive or mathematical

approaches familiar to classic science and statistics.
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