Appendum to Identification of Conditional Interventional Distributions

Ilya Shpitser

Cognitive Systems Laboratory Department of Computer Science University of California, Los Angeles Los Angeles, CA. 90095 *ilyas@cs.ucla.edu*

function **c-identify**(C, T, Q[T]) INPUT: $T, C \subseteq T$ are both are C-components, Q[T] a probability distribution OUTPUT: Expression for Q[C] in terms of Q[T] or **FAIL**

let $A = An(C)_{G_T}$

- 1 if A = C, return $\sum_{T \setminus C} P$
- 2 if A = T, return **FAIL**
- 3 if $C \subset A \subset T$, there exists a C-component T' such that $C \subset T' \subset A$. return **c-identify**(C, T', Q[T'])(Q[T'] is known to be computable from $\sum_{T \setminus A} Q[T])$

Figure 1: A C-component identification algorithm from [Tian, 2004].

The following algorithm, **cond-identify**, appears in [Tian, 2004]. A proof in [Shpitser & Pearl, 2006a] claims this algorithm is not sound, but was based on a misunderstanding of notation. In fact, this algorithm can be shown to be complete.

Theorem 1 cond-identify is complete.

Proof: We want to show that whenever the algorithm fails, the corresponding effect is not identifiable. The operation of the algorithm can be thought of as follows – it starts with a set of 'bad' C-components (containing a non-identifiable effect). These 'bad' C-components 'infect' other C-components which were initially 'good' (identifiable). The 'infection' proceeds until no more C-components can be 'infected' or until we encounter the set **Y** of effect variables. In the latter case the algorithm fails.

Our proof is by induction.

A known result in [Shpitser & Pearl, 2006b] is that if **identify** fails to identify D_i from C_i then D_i is not identifiable. If the algorithm fails, such a D_i is guaranteed to exist, and is in the ancestor set of $\mathbf{Y} \cup \mathbf{Z}$. Fix such a D_i .

function **cond-identify**(**y**, **x**, **z**, P, G)

INPUT: **x**,**y**,**z** value assignments, P a probability distribution, G a causal diagram (an I-map of P). OUTPUT: Expression for $P_x(\mathbf{y}|\mathbf{z})$ in terms of P or **FAIL**.

- 1 let $D = An(\mathbf{Y} \cup \mathbf{Z})_{G_{\mathbf{X}}}, F = D \setminus (\mathbf{Y} \cup \mathbf{Z})$
- 2 assume $C(D) = \{D_1, ..., D_k\}$
- 3 let $N = \{D_i | \mathbf{c}\text{-identify}(D_i, C_{D_i}, Q[C_{D_i}]) = \mathbf{FAIL}\}$

4 if
$$N = \emptyset$$
, return $\frac{\sum_{f} \prod_{i} Q[D_i]}{\sum_{y,f} \prod_{i} Q[D_i]}$

5 let
$$F_0 = F \cap (\bigcup_{D_i \in N} Pa(D_i)), I = C(D) \setminus N$$

- 6 remove the set $\{D_i | Pa(D_i) \cap F_0 \neq \emptyset\}$ from *I* and add it to I_0 (which is initially empty)
- 7 let $B = (F \setminus F_0) \cap \bigcup_{D_i \in I_0} Pa(D_i)$
- 8 if $B \neq \emptyset$, add all nodes in B to F_0 , and go to line 6
- 9 if $\mathbf{Y} \cap (\bigcup_{D_i \in (N \cup I_0)} Pa(D_i)) \neq \emptyset$, return **FAIL**,

else return
$$\frac{\sum_{f_1} \prod_{D_i \in I_1} Q[D_i]}{\sum_{y, f_1} \prod_{D_i \in I_1} Q[D_i]}$$

Figure 2: An identification algorithm from [Tian, 2004]. For each D_i , we denote $C_{D_i} \in C(G)$ such that $D_i \subseteq C_{D_i}$. Fix the minimal set $\mathbf{W} \subseteq \mathbf{Y} \cup \mathbf{Z}$ such that $D_i \in An(\mathbf{W})_{G_{\underline{y},\underline{x}}}$. Our base case will be that $\mathbf{Y} \cap \mathbf{W} \neq \emptyset$. Note that because D_i is a C-component, every element in $\mathbf{Z} \cap \mathbf{W}$ has a backdoor path to $\mathbf{Y} \cap \mathbf{W}$. Then our conclusion follows by the backdoor hedge criterion [Shpitser & Pearl, 2006a].

Assume $\mathbf{Y} \cap \mathbf{W} = \emptyset$. Since the algorithm failed, \mathbf{Y} intersects the set of 'infected' C-components. We want to show that \mathbf{W} has a backdoor path to \mathbf{Y} , which follows the 'infected' C-components. Our conclusion will then follow by the backdoor hedge criterion.

Without loss of generality, assume all variables outside C_i are observable. That means all C-components that are not C_i contain one variable. We prove inductively that all 'infected' nodes are d-connected. The base case is nodes in in D_i . Note that each node in D_i has a descendant in \mathbf{Z} . Since D_i is a C-component, each pair of nodes in D_i are d-connected by a bidirected path.

For the inductive hypothesis, consider a set of infected nodes N which are in the ancestor set of \mathbf{Z} (but not \mathbf{Y}) and which are pairwise d-connected. A new node I can become 'infected' in one of three ways:

If I and N share a parent which is not in $\mathbb{Z} \cup \mathbb{Y}$, that means some node in N has a d-connected path to I through the common parent. Since this node in N is an ancestor of \mathbb{Z} , this path can be extended to a d-connected path to any node in N. If I is a parent of some node in N, that node has a d-connected path to I. Moreover, since that node is an ancestor of \mathbb{Z} , that path can be extended to a d-connected path to any node in N. If some node in N is a parent of I, the reasoning is the same.

I itself can either be in **Y**, an ancestor of **Y**, or an ancestor of **Z**. In the first case, we are done since we constructed a d-connected path from a parent of **Z** to a node in **Y**, which translates into a backdoor path from **Z** to **Y**. In the second case, the d-connected path from a parent of **Z** to an ancestor of **Y** easily extends to a backdoor path from **Z** to **Y**. In the last case, we simply continue the induction until we reach either of the first two cases. We know we reach these cases eventually since the algorithm failed.

References

- [Shpitser & Pearl, 2006a] Shpitser, I., and Pearl, J. 2006a. Identification of conditional interventional distributions. In *Uncertainty in Artificial Intelligence*, volume 22.
- [Shpitser & Pearl, 2006b] Shpitser, I., and Pearl, J. 2006b. Identification of joint interventional distributions in recursive semimarkovian causal models. In *Twenty-First National Conference on Artificial Intelligence*.
- [Tian, 2004] Tian, J. 2004. Identifying conditional causal effects. In *Conference on Uncertainty in Artificial Intelligence (UAI)*.