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functionc-identify (C, T, Q[T])

INPUT: T, C C T are both are C-components,

Q|[T) a probability distribution

OUTPUT: Expression fo@[C] in terms ofQ[T] or FAIL

let A = An(C)g,

1ift A=C,retum) p o P functioncond-identify(y, x, z, P, G)
2 if A=T, returnFAIL INPL_JT: Xy, value assign_ments, P a probability
distribution, G a causal diagram (an I-map of P).
3if C ¢ A C T, there exists a C-componefit such  OUTPUT: Expression fof%(y|z) in terms of P ofFAIL .
thatC' C T' C A. returnc-identify(C, 77, Q[T"])
(Q[T") is known to be computable frodt ., , Q[T)) 1letD = An(YUZ)gy, F =D\ (YUZ)

2 assum&’ (D) = {Dy, ..., Dy}
Figure 1. A C-component identification algorithm from

[Tian, 2003, 3 let N = {D;|c-identify(D;,Cp,,Q[Cp,]) = FAIL }

>o5 11, QID:]
Zy,f l_L Q[DT]

5 letFy = F 1 (Up,c Pa(Dy)), T = C(D)\ N

4 if N =(, return

The following algorithm cond-identify, appears i Tian,
2004. A proof in [Shpitser & Pearl, 2006alaims this al-
gorithm is not sound, but was based on a misunderstanding 6 remove the sefD;|Pa(D;) N Fy # 0} from I and
of notation. In fact, this algorithm can be shown to be com- add it tol, (which is initially empty)

plete.
7 letB = (F\ Fo) NUp,c;, Pa(Di)

Theorem 1 cond-identify is complete. 8 if B # (), add all nodes irB to Fy, and go to line 6

Proof: We want to show that whenever the algorithm 9 if Y N (Up,c(nvury) Pa(Di)) # 0, returnFAIL ,
fails, the corresponding effect is not identifiable. The op-

eration of the algorithm can be thought of as follows else returngfl I}_[Di“l Qq[zﬁ;]»]

— it starts with a set of 'bad’ C-components (contain- v S Ebeeh R

ing a non-identifiable effect). These 'bad’ C-components
'infect’ other C-components which were initially 'good’
(identifiable). The ’infection’ proceeds until no more C-
components can be ‘infected” or until we encounter the sefOr €achDi,
Y of effect variables. In the latter case the algorithm fails.

Figure 2: An identification algorithm froniTian, 2004.
we denot&'p, € C(G) such thatD; C Cp,.

Our proof is by induction.

A known result in[Shpitser & Pearl, 2004bis that if
identify fails to identify D; from C; thenD; is not identifi-
able. If the algorithm fails, such®; is guaranteed to exist,
and is in the ancestor set ¥fU Z. Fix such aD;,.
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Fix the minimal seW C YUZ such thatD; € An(W)g,,.
Our base case will be that "W # ). Note that because
D; is a C-component, every elementdm W has a back-
door path toyY N W. Then our conclusion follows by the
backdoor hedge criteridiShpitser & Pearl, 2006a

AssumeY NW = (). Since the algorithm failedy inter-
sects the set of 'infected’ C-components. We want to show
thatW has a backdoor path 86, which follows the 'in-
fected’ C-components. Our conclusion will then follow by
the backdoor hedge criterion.

Without loss of generality, assume all variables outgitle

are observable. That means all C-components that are not
C; contain one variable. We prove inductively that all ’in-
fected’ nodes are d-connected. The base case is nodes in
in D;. Note that each node i; has a descendant in.
Since D; is a C-component, each pair of nodeslim are
d-connected by a bidirected path.

For the inductive hypothesis, consider a set of infected
nodesN which are in the ancestor set 6f(but notY) and
which are pairwise d-connected. A new nddean become
'infected’ in one of three ways:

If I andN share a parent which is notihu Y, that means
some node inV has a d-connected path fothrough the
common parent. Since this nodeMis an ancestor of,

this path can be extended to a d-connected path to any node
in N. If I is a parent of some node iN, that node has

a d-connected path tb. Moreover, since that node is an
ancestor o¥Z, that path can be extended to a d-connected
path to any node iV. If some node inV is a parent of,

the reasoning is the same.

I itself can either be ifY, an ancestor oY, or an ancestor

of Z. In the first case, we are done since we constructed a
d-connected path from a parentoto a node inY, which
translates into a backdoor path frérto Y. In the second
case, the d-connected path from a pareizt tf an ancestor

of Y easily extends to a backdoor path fr@hto Y. In the

last case, we simply continue the induction until we reach
either of the first two cases. We know we reach these cases
eventually since the algorithm failed. o
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