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functionc-identify(C, T, Q[T])
INPUT: T, C ⊆ T are both are C-components,
Q[T ] a probability distribution
OUTPUT: Expression forQ[C] in terms ofQ[T ] or FAIL

let A = An(C)GT

1 if A = C, return
∑

T\C P

2 if A = T , returnFAIL

3 if C ⊂ A ⊂ T , there exists a C-componentT ′ such
thatC ⊂ T ′ ⊂ A. returnc-identify(C, T ′, Q[T ′])
(Q[T ′] is known to be computable from

∑
T\A Q[T ])

Figure 1: A C-component identification algorithm from
[Tian, 2004].

The following algorithm,cond-identify, appears in[Tian,
2004]. A proof in [Shpitser & Pearl, 2006a] claims this al-
gorithm is not sound, but was based on a misunderstanding
of notation. In fact, this algorithm can be shown to be com-
plete.

Theorem 1 cond-identify is complete.

Proof: We want to show that whenever the algorithm
fails, the corresponding effect is not identifiable. The op-
eration of the algorithm can be thought of as follows
– it starts with a set of ’bad’ C-components (contain-
ing a non-identifiable effect). These ’bad’ C-components
’infect’ other C-components which were initially ’good’
(identifiable). The ’infection’ proceeds until no more C-
components can be ’infected’ or until we encounter the set
Y of effect variables. In the latter case the algorithm fails.

Our proof is by induction.

A known result in [Shpitser & Pearl, 2006b] is that if
identify fails to identifyDi from Ci thenDi is not identifi-
able. If the algorithm fails, such aDi is guaranteed to exist,
and is in the ancestor set ofY ∪ Z. Fix such aDi.

functioncond-identify(y, x, z, P, G)
INPUT: x,y,z value assignments, P a probability
distribution, G a causal diagram (an I-map of P).
OUTPUT: Expression forPx(y|z) in terms of P orFAIL .

1 letD = An(Y ∪ Z)GX , F = D \ (Y ∪ Z)

2 assumeC(D) = {D1, ..., Dk}

3 letN = {Di|c-identify(Di, CDi
, Q[CDi

]) = FAIL }

4 if N = ∅, return
P

f

Q

i Q[Di]
P

y,f

Q

i Q[Di]

5 letF0 = F ∩ (
⋃

Di∈N Pa(Di)), I = C(D) \ N

6 remove the set{Di|Pa(Di) ∩ F0 6= ∅} from I and
add it toI0 (which is initially empty)

7 letB = (F \ F0) ∩
⋃

Di∈I0
Pa(Di)

8 if B 6= ∅, add all nodes inB to F0, and go to line 6

9 if Y ∩ (
⋃

Di∈(N∪I0)
Pa(Di)) 6= ∅, returnFAIL ,

else return
P

f1

Q

Di∈I1
Q[Di]
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Figure 2: An identification algorithm from[Tian, 2004].
For eachDi, we denoteCDi

∈ C(G) such thatDi ⊆ CDi
.
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Fix the minimal setW ⊆ Y∪Z such thatDi ∈ An(W)Gy,z.
Our base case will be thatY ∩ W 6= ∅. Note that because
Di is a C-component, every element inZ ∩ W has a back-
door path toY ∩ W. Then our conclusion follows by the
backdoor hedge criterion[Shpitser & Pearl, 2006a].

AssumeY ∩ W = ∅. Since the algorithm failed,Y inter-
sects the set of ’infected’ C-components. We want to show
that W has a backdoor path toY, which follows the ’in-
fected’ C-components. Our conclusion will then follow by
the backdoor hedge criterion.

Without loss of generality, assume all variables outsideCi

are observable. That means all C-components that are not
Ci contain one variable. We prove inductively that all ’in-
fected’ nodes are d-connected. The base case is nodes in
in Di. Note that each node inDi has a descendant inZ.
SinceDi is a C-component, each pair of nodes inDi are
d-connected by a bidirected path.

For the inductive hypothesis, consider a set of infected
nodesN which are in the ancestor set ofZ (but notY) and
which are pairwise d-connected. A new nodeI can become
’infected’ in one of three ways:

If I andN share a parent which is not inZ ∪Y, that means
some node inN has a d-connected path toI through the
common parent. Since this node inN is an ancestor ofZ,
this path can be extended to a d-connected path to any node
in N . If I is a parent of some node inN , that node has
a d-connected path toI. Moreover, since that node is an
ancestor ofZ, that path can be extended to a d-connected
path to any node inN . If some node inN is a parent ofI,
the reasoning is the same.

I itself can either be inY, an ancestor ofY, or an ancestor
of Z. In the first case, we are done since we constructed a
d-connected path from a parent ofZ to a node inY, which
translates into a backdoor path fromZ to Y. In the second
case, the d-connected path from a parent ofZ to an ancestor
of Y easily extends to a backdoor path fromZ to Y. In the
last case, we simply continue the induction until we reach
either of the first two cases. We know we reach these cases
eventually since the algorithm failed. 2
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