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Abstract
We offer a complete characterization of the set of distribu-
tions that could be induced by local interventions on variables
governed by a causal Bayesian network of unknown struc-
ture, in which some of the variables remain unmeasured. We
show that such distributions are constrained by a simply for-
mulated set of inequalities, from which bounds can be derived
on causal effects that are not directly measured in randomized
experiments.

Introduction
The use of graphical models for encoding distributional
and causal information is now fairly standard (Pearl 1988;
Spirtes, Glymour, & Scheines 1993; Heckerman & Shachter
1995; Lauritzen 2000; Pearl 2000; Dawid 2002). The most
common such representation involves a causal Bayesian
network (BN), namely, a directed acyclic graph (DAG) G
which, in addition to the usual conditional independence in-
terpretation, is also given a causal interpretation. This addi-
tional feature permits one to infer the effects of interventions
or actions, called causal effects, such as those encountered in
policy analysis, treatment management, or planning. Specif-
ically, if an external intervention fixes any set T of variables
to some constants t, the DAG permits us to infer the result-
ing post-intervention distribution, denoted by Pt(v),1 from
the pre-intervention distribution P (v). A complete charac-
terization of the set of interventional distributions induced
by a causal BN of a known structure has been given in (Pearl
2000, pp.23-4) when all variables are observed.

If we do not possess the structure of the underlying causal
BN, can we still reason about causal effects? One approach
is to identify a set of properties or axioms that characterize
causal relations in general, and use those properties as sym-
bolic inferential rules. Assuming deterministic functional
relationships between variables, complete axiomatizations
of causal relations using counterfactuals are given in (Galles
& Pearl 1998; Halpern 2000). The resulting axioms, how-
ever, cannot be directly applied to probabilistic domains in
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1(Pearl 1995; 2000) used the notation P (v|set(t)), P (v|do(t)),
or P (v|t̂) for the post-intervention distribution, while (Lauritzen
2000) used P (v||t).

their deterministic setting, prior to deriving their probabilis-
tic implications. Additionally, statisticians and philosophers
have expressed suspicion of deterministic models as a ba-
sis for causal analysis (Dawid 2002), partly because such
models stand contrary to statistical tradition and partly be-
cause they do not apply to quantum mechanical systems.
The causal models treated in this paper are purely stochastic.

We seek a characterization for the set of interventional
distributions, Pt(v), that could be induced by some causal
BN of unknown structure. The motivation is two-fold. As-
sume that we have obtained a collection of experimental dis-
tributions by manipulating various sets of variables and ob-
serving others. We may ask several questions: (1) Is this col-
lection compatible with the predictions of some underlying
causal BN? That is, can this collection indeed be generated
by some causal BN? (2) If we assume that the collection was
generated by some underlying causal BN (even if we do not
know its structure), what can we predict about new inter-
ventions that were not tried experimentally? (that is, about
interventional distributions that are not in the given collec-
tion.)

These questions can be answered by an axiomatization of
interventional distributions generated by causal BNs. When
all variables are observed, a complete characterization of the
set of interventional distributions inducible by some causal
BN is given in (Tian & Pearl 2002). In this paper, we
will seek a characterization of interventional distributions
inducible by Semi-Markovian BNs, a class of Bayesian net-
works in which some of the variables are unobserved. We
identify four properties that are both necessary and sufficient
for the existence of a semi-Markovian BN capable of gener-
ating any given set of interventional distributions.

Causal Bayesian Networks and Interventions
A causal Bayesian network, also known as a Markovian
model, consists of two mathematical objects: (i) a DAG
G, called a causal graph, over a set V = {V1, . . . , Vn}
of vertices, and (ii) a probability distribution P (v), over
the set V of discrete variables that correspond to the ver-
tices in G.2 The interpretation of such a graph has two

2We only consider discrete random variables in this paper.
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components, probabilistic and causal.3 The probabilistic in-
terpretation views G as representing conditional indepen-
dence restrictions on P : Each variable is independent of
all its non-descendants given its direct parents in the graph.
These restrictions imply that the joint probability function
P (v) = P (v1, . . . , vn) factorizes according to the product

P (v) =
∏

i

P (vi|pai) (1)

where pai are (values of) the parents of variable Vi in G.
The causal interpretation views the arrows in G as repre-

senting causal influences between the corresponding vari-
ables. In this interpretation, the factorization of (1) still
holds, but the factors are further assumed to represent au-
tonomous data-generation processes, that is, each condi-
tional probability P (vi|pai) represents a stochastic process
by which the values of Vi are assigned4 in response to
the values pai (previously chosen for Vi’s parents), and
the stochastic variation of this assignment is assumed in-
dependent of the variations in all other assignments in the
model. Moreover, each assignment process remains invari-
ant to possible changes in the assignment processes that gov-
ern other variables in the system. This modularity assump-
tion enables us to predict the effects of interventions, when-
ever interventions are described as specific modifications of
some factors in the product of (1). The simplest such inter-
vention, called atomic, involves fixing a set T of variables
to some constants T = t, which yields the post-intervention
distribution

Pt(v) =

{ ∏

{i|Vi 6∈T} P (vi|pai) v consistent with t.

0 v inconsistent with t.
(2)

Eq. (2) represents a truncated factorization of (1), with fac-
tors corresponding to the manipulated variables removed.
This truncation follows immediately from (1) since, assum-
ing modularity, the post-intervention probabilities P (vi|pai)
corresponding to variables in T are either 1 or 0, while those
corresponding to unmanipulated variables remain unaltered.
If T stands for a set of treatment variables and Y for an
outcome variable in V \ T , then Eq. (2) permits us to calcu-
late the probability Pt(y) that event Y = y would occur if
treatment condition T = t were enforced uniformly over the
population. This quantity, often called the “causal effect” of
T on Y , is what we normally assess in a controlled experi-
ment with T randomized, in which the distribution of Y is
estimated for each level t of T .

When some variables in a Markovian model are unob-
served, the probability distribution over the observed vari-
ables may no longer be decomposed as in Eq. (1). Let

3A more refined interpretation, called functional, is also com-
mon (Pearl 2000), which, in addition to interventions, supports
counterfactual readings. The functional interpretation assumes
strictly deterministic, functional relationships between variables in
the model, some of which may be unobserved.

4In contrast with functional models, here the probability of each
Vi, not its precise value, is determined by the other variables in the
model.

V = {V1, . . . , Vn} and U = {U1, . . . , Un′} stand for the
sets of observed and unobserved variables respectively. If
no U variable is a descendant of any V variable, then the
corresponding model is called a semi-Markovian model. In
a semi-Markovian model, the observed probability distribu-
tion, P (v), becomes a mixture of products:

P (v) =
∑

u

∏

i

P (vi|pai, u
i)P (u) (3)

where PAi and U i stand for the sets of the observed and
unobserved parents of Vi, and the summation ranges over all
the U variables. The post-intervention distribution, likewise,
will be given as a mixture of truncated products

Pt(v)

=

8

<

:

X

u

Y

{i|Vi 6∈T}

P (vi|pai, u
i)P (u) v consistent with t.

0 v inconsistent with t.
(4)

Characterizing Interventional Distributions
Let P∗P∗P∗ denote the set of all interventional distributions

P∗P∗P∗ = {Pt(v)|T ⊆ V, t ∈ Dm(T ), v ∈ Dm(V )} (5)

where Dm(T ) represents the domain of T . The set of inter-
ventional distributions induced by a given causal BN must
satisfy some properties. For example the following property

Ppai
(vi) = P (vi|pai), for all i, (6)

must hold in all Markovian models, but may not hold in
semi-Markovian models. A complete characterization of the
set of interventional distributions induced by a given Marko-
vian model is given in (Pearl 2000, pp.23-4).

Now assume that we are given a collection of interven-
tional distributions, but the underlying causal BN, if such
exists, is unknown. We ask whether the collection is com-
patible with the predictions of some underlying causal BN.
As an example, assume that V consists of two binary vari-
ables X and Y with the domain of X being {x0, x1} and
the domain of Y being {y0, y1}. Then P∗P∗P∗ consists of the
following distributions

P∗P∗P∗ = {P (x, y), Px0
(x, y), Px1

(x, y), Py0
(x, y), Py1

(x, y),

Px0,y0
(x, y), Px0,y1

(x, y), Px1,y0
(x, y), Px1,y1

(x, y)},

where each Pt(x, y) is an arbitrary probability distribution
over X,Y with an index t. For this set of distributions to
be induced by some underlying causal BN such that each
Pt(x, y) corresponds to the distribution of X,Y under the
intervention do(T = t) to the causal BN, they have to satisfy
some norms of coherence. For example, it must be true that
Px0

(x0) = 1. For another example, if the causal graph is
X −→ Y then Py0

(x0) = P (x0), and if the causal graph is
X ←− Y then Px0

(y0) = P (y0), therefore, it must be true
that either Py0

(x0) = P (x0) or Px0
(y0) = P (y0), which

reflects the constraints that we are considering acyclic mod-
els.



Assume that each Pt(v) in P∗P∗P∗ is a (indexed) probability
distribution over V . We would like to know what proper-
ties the set of distributions in P∗P∗P∗ must satisfy such that P∗P∗P∗ is
compatible with some underlying causal BN in the sense that
each Pt(v) corresponds to the post-intervention distribution
of V under the intervention do(T = t) to the causal BN.
(Tian & Pearl 2002) has shown that the following three prop-
erties: effectiveness, Markov, and recursiveness, are both
necessary and sufficient for a P∗P∗P∗ set to be induced from a
Markovian causal model.
Property 1 (Effectiveness) For any set of variables T ,

Pt(t) = 1. (7)
Property 2 (Markov) For any two disjoint sets of variables
S1 and S2,

Pv\(s1∪s2)(s1, s2) = Pv\s1
(s1)Pv\s2

(s2). (8)
Definition 1 For two single variables X and Y , define “X
affects Y ”, denoted by X ; Y , as ∃W ⊂ V,w, x, y, such
that Px,w(y) 6= Pw(y). That is, X affects Y if, under some
setting w, intervening on X changes the distribution of Y .
Property 3 (Recursiveness) For any set of variables
{X0, . . . , Xk} ⊆ V ,
(X0 ; X1) ∧ . . . ∧ (Xk−1 ; Xk)⇒ ¬(Xk ; X0). (9)
These three properties impose constraints on the interven-

tional space P∗P∗P∗ such that this vast space can be encoded suc-
cinctly, in the form of a single Markovian model. In this
paper, we seek a characterization of P∗P∗P∗ set induced from
semi-Markovian causal models. The effectiveness and re-
cursiveness properties still hold in semi-Markovian models
but the Markov property does not. First some discussions
about the effectiveness and recursiveness properties.

Effectiveness states that, if we force a set of variables T to
have the value t, then the probability of T taking that value
t is one. We give some corollaries of effectiveness that are
very useful during future discussions. For any set of vari-
ables S disjoint with T , an immediate corollary of effective-
ness reads:

Pt,s(t) = 1, (10)
which follows from

Pt,s(t) ≥ Pt,s(t, s) = 1. (11)
Equivalently, if T1 ⊆ T , then

Pt(t1) =

{

1 if t1 is consistent with t.
0 if t1 is inconsistent with t. (12)

We further have that, for T1 ⊆ T and S disjoint of T ,

Pt(s, t1) =

{

Pt(s) if t1 is consistent with t.
0 if t1 is inconsistent with t. (13)

Recursiveness is a stochastic version of the (determinis-
tic) recursiveness axiom given in (Halpern 2000). It comes
from restricting the causal models under study to those hav-
ing acyclic causal graphs. For example, for k = 1 we have
X ; Y ⇒ ¬(Y ; X), saying that for any two variables
X and Y , either X does not affect Y or Y does not affect

X . (Halpern 2000) pointed out that, recursiveness can be
viewed as a collection of axioms, one for each k, and that
the case of k = 1 alone is not enough to characterize a re-
cursive model.

Recursiveness defines an order over the set of variables.
Define a relation “≺” as: X ≺ Y if X ; Y . The transi-
tive closure of ≺, ≺∗, is a partial order over the set of vari-
ables V from the recursiveness property. Then the following
property holds in semi-Markovian models. (Note that since
a Markovian model is a special type of semi-Markovian
model, all properties that hold in semi-Markovian models
also hold in Markovian models.)
Property 4 (Directionality) There exists a total order,
“<”, consistent with ≺∗, such that

Pvi,w(s) = Pw(s) if ∀X ∈ S,X < Vi, (14)
for any set of variables W disjoint of S.
Intuitively, directionality implies that an intervention on any
variable Vi cannot affect earlier variables. If S contains
a single variable X , this property is implied by the re-
cursiveness property, because if Pvi,w(x) 6= Pw(x), then
Vi ; X , and therefore Vi ≺ X , which contradicts the fact
that X < Vi is consistent with ≺∗. In Markovian models,
the directionality property can be derived from the recursive-
ness and Markov properties.
Property 5 (Inclusion-Exclusion Inequalities) For any
subset S1 ⊆ V ,

∑

S2⊆V \S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, ∀v ∈ Dm(V ),

(15)
where |S2| represents the number of variables in S2.
The inclusion-exclusion inequalities specify 2|V | number
of inequalities (including the trivial one P (v) ≥ 0), each
hold for all possible instantiations of V . For example, if
V = {X,Y, Z}, then the inclusion-exclusion inequalities
specify the following: for all x ∈ Dm(X), y ∈ Dm(Y ),
z ∈ Dm(Z),

1− Pyz(x)− Pxz(y)− Pxy(z) + Pz(xy) + Py(xz)

+ Px(yz)− P (xyz) ≥ 0 (16)
Pyz(x)− Pz(xy)− Py(xz) + P (xyz) ≥ 0 (17)
Pxz(y)− Pz(xy)− Px(yz) + P (xyz) ≥ 0 (18)
Pxy(z)− Py(xz)− Px(yz) + P (xyz) ≥ 0 (19)
Pz(xy)− P (xyz) ≥ 0 (20)
Py(xz)− P (xyz) ≥ 0 (21)
Px(yz)− P (xyz) ≥ 0 (22)

If we assume that a causal order V1 < V2 . . . < Vn is
given such that Eq. (14) is satisfied, then some of the in-
equalities in Eq. (15) can be derived from others. More ex-
actly, we only need the following set of inequalities.
Property 6 (Inclusion-Exclusion Inequalities with Order)
Let V ′ = V \ {Vn}. For any subset S1 ⊆ V ′,

X

S2⊆V ′\S1

(−1)|S2|Pv′\(s1∪s2)(s1, s2, vn) ≥ 0, ∀v ∈ Dm(V ),

(23)



Eq. (23) specifies 2|V |−1 number of inequalities. The other
half of the inequalities in Eq. (15) can be derived from
Eq. (23) and the following equation

Pvns(v
′ \ s) = Ps(v

′ \ s) (24)
which follows from Eq. (14). Summing the left hand side of
Eq. (23) over all the instantiation of Vn except v′

n, we have
∑

S2⊆V ′\S1

(−1)|S2|[Pv′\(s1∪s2)(s1, s2)

− Pv′\(s1∪s2)(s1, s2, v
′
n)]

=
∑

S2⊆V ′\S1

(−1)|S2|[Pv′\(s1∪s2),v′
n
(s1, s2)

− Pv′\(s1∪s2)(s1, s2, v
′
n)] (from Eq. (24))

=
∑

S2⊆V \S1

(−1)|S2|Pv\(s1∪s2)(s1, s2). (25)

Therefore, we obtain that, for any subset S1 ⊆ V ′,
∑

S2⊆V \S1

(−1)|S2|Pv\(s1∪s2)(v) ≥ 0, (26)

which are the other half of the inequalities in Eq. (15) be-
sides those in Eq. (23).

As an example, assuming that V = {X,Y, Z}, and we
are given a causal order X < Y < Z, then Directionality
and inclusion-exclusion inequalities specify the following

Py(x) = P (x) (27)
Pz(x, y) = P (x, y) (28)
Pzx(y) = Px(y) (29)
Pzy(x) = Py(x) (30)
Pxy(z)− Py(xz)− Px(yz) + P (xyz) ≥ 0 (31)
Py(xz)− P (xyz) ≥ 0 (32)
Px(yz)− P (xyz) ≥ 0 (33)

Theorem 1 (Soundness) Effectiveness, recursiveness, di-
rectionality, and inclusion-exclusion inequalities hold in all
semi-Markovian models.
See the Appendix A for the proof of soundness.
Theorem 2 (Completeness) If a P∗P∗P∗ set satisfies effective-
ness, recursiveness, directionality, and inclusion-exclusion
inequalities, then there exists a semi-Markovian model that
can generate this P∗P∗P∗ set.
See the Appendix B for the proof sketch of completeness.
The full proof is given in (Tian, Kang, & Pearl 2006).

Conclusion
We have shown that the experimental implications of an un-
derlying semi-Markovian causal model with unknown struc-
ture are fully characterized by four properties. The key ele-
ment in our characterization is the set of inclusion-exclusion
inequalities Eq. (15). One practical application of this char-
acterization is that any empirical violation of the inequalities
in Eq. (15) would permit us to conclude that the underly-
ing model is not semi-Markovian; this means that feedback

loops may operate in data generating process, or that the in-
terventions in the experiments are not conducted properly.
(e.g., the intervention may not be properly randomized or
they may have side effects). Another application permits
us to bound the effects of untried interventions from exper-
iments involving auxiliary interventions that are easier or
cheaper to implement. For example, if we have performed
experiments in which X and Y are randomized separately,
yielding the distributions Py(xz) and Px(yz) respectively,
then Eq. (19) bounds the experimental distribution Pxy(z)
that would obtain under a new experimental design where X
and Y are randomized simultaneously. The resulting bound,
given by Pxy(z) ≥ Py(xz) + Px(yz) − P (xyz), makes no
assumption on the structure of the underlying model, or the
temporal order of the variable, or the absence of confound-
ing variables in the domain.

The fact that our proof constructs a complete graph does
not mean, of course, that one cannot attempt to extract a
more informative graph from P∗P∗P∗. For example, the set of
directed edges can be reduced noting that, in every semi-
Markovian model, the parents of each Vi are a minimal set
Si satisfying Psi

(vi) = Pv\vi
(vi). In words, once we hold

fixed the parents of Vi, no additional intervention may in-
fluence the probability of Vi. Likewise, the set of bidirected
arcs can be reduced by removing all arcs between a node Vi

and a maximal set Ti of non-descendants of Vi satisfying

Pv\vi
(vi) = P(v\vi)\ti

(vi|ti). (34)

Indeed, intervening on variables to which Vi is not con-
nected by an arc or observing those variables gives us the
same information on Vi (once we hold fixed all other vari-
ables). The question remains however whether the removal
of these edges from the complete graph induces additional
inequalities and equalities that need be checked against P∗P∗P∗.
We leave this question for future work.
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Appendix A: Proof of Soundness
Theorem (Soundness) Effectiveness, recursiveness, direc-
tionality, and inclusion-exclusion inequalities hold in all
semi-Markovian models.

Proof: All four properties follow from Eq. (4).
Effectiveness From Eq. (4), we have

Pt(T = t′) = 0 for t′ 6= t, (35)

and since
∑

t′∈Dm(T )

Pt(t
′) = 1, (36)

we obtain the effectiveness property of Eq. (7).
Recursiveness Assume that a total order over V that is con-

sistent with the causal graph is V1 < · · · < Vn, such that



Vi is a nondescendant of Vj if Vi < Vj . Consider a vari-
able Vj and any set of variables S ⊆ V which does not
contain Vj . Let Bj = {Vi|Vi < Vj , Vi ∈ V \ S} be the
set of variables not in S and ordered before Vj , and let
Aj = {Vi|Vj < Vi, Vi ∈ V \ S} be the set of variables
not in S and ordered after Vj . Then

Ps(bj , vj , aj) =
∑

u

∏

{i|Vi∈Bj}

P (vi|pai, u
i)P (vj |paj , u

j)

·
∏

{i|Vi∈Aj}

P (vi|pai, u
i)P (u) (37)

and

Pvj ,s(bj , aj) =
∑

u

∏

{i|Vi∈Bj}

P (vi|pai, u
i)

·
∏

{i|Vi∈Aj}

P (vi|pai, u
i)P (u) (38)

Summing both sides of Eq. (37) over all the instantiations
of variables in Aj and Vj , such that the variable ordered
last is summed first, we obtain

Ps(bj) =
∑

u

∏

{i|Vi∈Bj}

P (vi|pai, u
i)P (u). (39)

Similarly, summing both sides of Eq. (38) over all the in-
stantiations of variables in Aj , we obtain that

Pvj ,s(bj) = Ps(bj). (40)

Since Bj is the set of variables ordered before Vj , we have
that, for any two variables Vi < Vj and any set of vari-
ables S,

Pvj ,s(vi) = Ps(vi), (41)

which states that if Vi is ordered before Vj then Vj does
not affect Vi, based on our definition of “X affects Y ”.
Therefore, we have that if Vj affects Vi then Vj is ordered
before Vi, or

Vj ; Vi ⇒ Vj < Vi. (42)

Recursive property (9) then follows from (42) because the
relation “<” is a total order.

Directionality Let < be a total order consistent with the
causal graph. In the above proof for recursiveness, we
have shown that Eq. (40) and (42) hold. (42) means that
the total order < is consistent with ≺∗. And Eq. (14) fol-
lows immediately from Eq. (40).

Inclusion-Exclusion Inequalities We use the following
equation

k
∏

i=1

(1− ai)

= 1−
∑

i

ai +
∑

i,j

aiaj − · · ·+ (−1)ka1 · · · ak. (43)

Take aj = P (vj |paj , u
j), we have that

X

u

Y

{i|Vi∈S1}

P (vi|pai, u
i)

·
Y

{j|Vj∈V \S1}

(1 − P (vj |paj , u
j))P (u)

=
X

S2⊆V \S1

(−1)|S2|Pv\(s1∪s2)(s1, s2) ≥ 0 (44)

since for all Vi ∈ V

0 ≤ P (vi|pai, u
i) ≤ 1. (45)
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Appendix B: Proof Sketch of Completeness
From directionality property, there exists a total order on V ,
V1 < V2 < · · · < Vn, such that

Pvi,w(s) = Pw(s) if ∀X ∈ S,X < Vi, (46)
We will construct a causal model consistent with this order.
Let the domain of each variable Vj be

Dm(Vj) = {v1
j , . . . , v

dj

j }

where dj is the number of values Vj can take. We will con-
struct a functional model in the form of

vj = fj(v1, . . . , vj−1, rj), j = 1, . . . , n. (47)
For discrete variables, the number of possible functions is
finite. We will use the “response” variable representation
(Balke & Pearl 1994b; 1994a) (called “mapping” variable in
(Heckerman & Shachter 1995)). Let the domain of rj be

Dm(rj) = {1, 2, . . . , |Dm(rj)|}

where |Dm(rj)| = d
d1···dj−1

j .
We will construct a model of the form

P (v) =
∑

r1,...,rn

∏

j

P (vj |v1, . . . , vj−1, rj)P (r1, . . . , rn)

(48)
For a functional model, each of the probabilities
P (vj |v1, . . . , vj−1, rj) would be either 0 or 1, and
only non-zero values contribute to the summation in
Eq. (48). For a fixed value of v1, . . . , vj , let
Dj(vj |v1, . . . , vj−1) ⊂ Dm(rj) be the set of values of rj

such that P (vj |v1, . . . , vj−1, rj) = 1. Then

P (v) =
∑

r1∈D1

· · ·
∑

rn∈Dn

P (r1, . . . , rn), (49)

and for any T ⊆ V

Pv\t(v) =
∑

ri∈Dm(ri)

{i|Vi 6∈T}

∑

ri∈Di
{i|Vi∈T}

P (r1, . . . , rn). (50)

If we can construct a distribution P (r1, . . . , rn) such that
Eq. (50) holds for any T ⊆ V and v ∈ Dm(V ), then we
have a semi-Markovian model that can induce the P∗ set.



Given a distribution P (r1, . . . , rn), we will define
an event A

ij |i1,...,ij−1

j as the event that rj is in
Dj(v

ij

j |v
i1
1 , . . . , v

ij−1

j−1 ), and we will think of the event
A

ij |i1,...,ij−1

j as a set in the space Dm(r1)× · · · ×Dm(rn).
Then Eqs. (49) and (50) become

P (vi1
1 , . . . , vin

n ) = P (Ai1
1 ∩A

i2|i1
2 ∩ · · · ∩Ain|i1,...,in−1

n ),
(51)

and
Pv\t(v) = P (

⋂

{k|Vk∈T}

A
ik|i1,...,ik−1

k ). (52)

For a fixed i1, . . . , in−1, the set of events
A

jn|i1,...,in−1
n , jn = 1, . . . , dn are mutually exclusive

and exhaustive. For a fixed i1, . . . , in−1, letting Ak be
a shorthand notation for A

ik|i1,...,ik−1

k and letting Ak

represent the event not Ak, the set of events
\

k∈I

Ak

\

k 6∈I

Ak

\

A
jn
n , ∀I ⊆ {1, . . . , n − 1}, jn = 1, . . . , dn

(53)
are mutually exclusive and exhaustive, and thus form a par-
tition of the space Dm(r1)× · · · ×Dm(rn). The probabili-
ties of these events can be computed from Eq. (52) using the
inclusion-exclusion principle, and we obtain

P (
⋂

k∈I

Ak

⋂

k 6∈I

Ak

⋂

Ajn
n )

=
∑

S2⊆V ′\S1

(−1)|S2|Pv′\(s1∪s2)(s1, s2, vn), (54)

where V ′ = V \ {Vn}, and S1 = {Vi|i ∈ I}. From
the Inclusion-Exclusion Inequalities with Order given in
Eq. (23), we have a valid assignment of probabilities to each
of the mutually exclusive and exhaustive events in (53).

It is not hard to see that the equations (52) for Vn ∈ V \T
lead to constraints in the form of, for each S ⊂ V ′,

Pvns(v
′ \ s) = Ps(v

′ \ s). (55)
These constraints are satisfied by the P∗ set since Eq.(46)
holds.

For each fixed value i1, . . . , in−1, we have a probabil-
ity assignment to the set of mutually exclusive and ex-
haustive events

⋂

k∈I Ak

⋂

k 6∈I Ak

⋂

Ajn
n given by Eq.(54).

Are these assignments consistent for different values of
i1, . . . , in−1? In other words, does there exist a distribution
P (r1, . . . , rn) that satisfies the assignments in Eq.(54) for
i1 = 1, . . . , d1, . . . , in−1 = 1, . . . , dn−1? If the answer is
yes, then there exists a distribution P (r1, . . . , rn) such that
Eq. (52) holds for any T ⊆ V and v ∈ Dm(V ), and there-
fore there exists a semi-Markovian model that can induce
the P∗ set.

For a fixed value i1, . . . , in−1, we consider another (finer)
partition of the space Dm(r1)× · · · ×Dm(rn), denoted by
Ki1,...,in−1

,

A
j1
1 ∩A

j2|i1
2 ∩ · · · ∩Ajn|i1,...,in−1

n ,

j1 = 1, . . . , d1, . . . , jn = 1, . . . , dn. (56)

We use P (Ki1,...,in−1
) to denote a probability assignment

that assigns a probability value to each set in Ki1,...,in−1
.

We can show the following
Lemma 1 Given the probability assignments in Eq. (54),
there exist probability assignments P (Ki1,...,in−1

) for i1 =
1, . . . , d1, . . . , in−1 = 1, . . . , dn−1, such that, for two
different partitions Ki1,...,in−1

and Ki′1,...,i′
n−1

, if i1 =

i′1, . . . , ik = i′k, then P (Ki1,...,in−1
) and P (Ki′1,...,i′

n−1
)

induce the same probabilities P (Aj1
1 ∩ A

j2|i1
2 ∩ · · · ∩

A
jk+1|i1,...,ik

k+1 ).
Then we can show that

Lemma 2 There exists a distribution P (r1, . . . , rn) such
that all the probability assignments P (Ki1,...,in−1

) in
Lemma 1 are satisfied for i1 = 1, . . . , d1, . . . , in−1 =
1, . . . , dn−1.

The completeness Theorem 2 follows from Lemma 2.
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