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The usefulness of graphical models in reasoning and decision making stems from facilitating four main com-
putational features: (1) modular representation of probabilities, (2) systematic construction methods, (3) explicit
encoding of independencies, and (4) efficient inference procedures. This note explains why the original intro-
duction of influence diagrams, lacking formal underpinning of these features, has had only mild influence on
automated reasoning research, and how Bayesian belief networks, which were formulated and defined directly
by these features, became the focus of graphical modeling research.
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Inﬂuence Diagrams (IDs) command a unique posi-
tion in the history of graphical models. On the one
hand, they can be seen as an extension of path dia-
grams (Wright 1921) a tradition in which qualitative
domain knowledge and assumptions are expressed
(often unwittingly) in graphical form, while quanti-
tative statistical information is obtained from empiri-
cal data. On the other hand, IDs can also be viewed
as informal precursors to belief networks (later called
Bayesian networks), which currently serve as the
main computational tool for automated reasoning.

Oddly, however, the introduction of influence dia-
grams have had only mild influence on both the path
diagrams and the automated reasoning communities;
this note attempts to explain why.

From path-diagrammatic perspectives, IDs per-
mit researchers to break away from the confines
of functional linear models and express any rela-
tionships whatsoever between variables of interest.
However, econometricians and social scientists, the
main users of path diagrams, were not ready to put
this extension into use, since IDs, as presented in
(Howard and Matheson 1984/2005) required subjec-
tive assessment of conditional probabilities, and sta-
tistically trained researchers were conditioned to mis-
trust and avoid such assessments at all cost. In con-
trast, these researchers were accustomed to infer the
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parameters of path diagrams from the data itself,
sometimes even in the presence of unmeasured con-
founders. The respective learning techniques for non-
linear IDs, which correspond to identification tech-
niques in causal Bayesian networks (Pearl 2000), were
tackled only in the mid 1990s, more than a decade
after the inception of IDs.

From an automated reasoning perspective, IDs
came into being when the field was preoccupied with
a fierce debate between rule-based and probabilis-
tic inference systems—the former offering computa-
tional efficiency and the latter providing coherence
and theoretical underpinning (Pearl 1993). While the
representational economy offered by IDs could well
have assisted the probabilistic side in that debate—it
did not, because IDs were not accompanied with the
computational tools that would render them competi-
tive to rule-based systems. Such tools were uncovered
later on, once the conditional independence semantics
of Bayesian networks was established (i.e., through
the d-separation criterion)

There was little interaction in the early 1980s
between Al and decision analysis researchers. When
I presented belief propagation on trees (Pearl 1982)
before Ron Howard’s group at Stanford, the audi-
ence could not understand why I emphasized compu-
tational features such as autonomous, asynchronous
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propagation when the most difficult task in decision
problems was that of knowledge elicitation. On my
part, I could not appreciate why the Stanford group
was excited about IDs when they did not compute
anything interesting with those diagrams, and did not
even use the diagram to infer independencies that
were not already assumed in its construction.

Motivated by problems of parallel processing in
visual perception, I was influenced primarily by
works on hierarchical inference (Kelly and Barklay
1973) and reading comprehension (Rumelhart and
McClelland 1982), and came to view graphical repre-
sentations from a different perspective. I understood
a graph to be an approximate representation of the
conditional independence relations that are embed-
ded in a given distribution (Pearl 1986). A DAG that
captures a maximal number of such independencies
was defined as a Bayesian network of P (Pear]l 1988,
P 119). Note that causal Bayesian networks represent
a marked departure from this view; they should be
understood as collections of stable mechanisms in the
domain, bombarded by independent perturbations of
those mechanisms (Pearl 2000, p. 21).

In retrospect, I believe there were four main fac-
tors that prevented the formulation of Howard and
Matheson (1984/2005) from having a more significant
impact on automated reasoning research in the 1980s.

First, the formulation was laden with informal,
nontechnical jargon that left ample room for ambigu-
ities. For example, “[An arrow pointing from A to B]
means that the outcome of A can influence the prob-
abilities associated with B”! (p. 103), or “the states of
information upon which independence assertions are
made” (p. 131), or “An arrow ... may be reversed pro-
vided that all probability assignments are based on
the same set of information” (p. 132), or “the prob-
ability assignment of variable g is in principle con-
ditioned on all variables...” (p. 135). Today, armed
with the notions of conditional independence, I-maps,
minimal I-maps and colliders, one can perhaps find
consistent interpretations of these informal phrases.
Yet, in 1981, they deterred researchers from even try-
ing and drove them, this writer included, to first seek

! This interpretation of an arrow in a diagram could not be complete
or consistent, for it applies as well to an arrow pointing from B to
A, and in fact to any two nodes A and B that are connected via an
unblocked path.

a basic, formal understanding of the relationships
between graphs and probabilities.

Second, the presentation of IDs was not construc-
tional. In other words, although the defining equa-
tions

{x|N,,E}={x]|D,, E} forall x

turn out to be adequate for testing whether a given
diagram is an [-map of a given distribution P, they
do not permit a step by step construction of a graph
that is an I-map of P. The reason is that when the set
of parents D, is selected (using the equations above),
we do not know which variables are in the set N, and
which are descendants of x. A constructive definition
should allow us to select x’s parents by considering
only x’s predecessors in a given construction order.
The validity and equivalence of ordered constructions
follow from the graphoid axioms (Pearl 1988, p. 120).

Third, the initial presentation of IDs was not inter-
pretational, namely, it did not instruct us how to read
from the diagram conditional independencies that are
implied by the defining equations above, although not
by any one such equation in isolation. For example,
all variables that are d-separated from x by a sub-
set of x’s parents represent a valid independency that
is not explicitly recognized by the defining equation
for x. The d-separation criterion (Pearl 1986) provides
the needed interpretation of a diagram in terms of the
conditional independencies it imposes.

Finally, the introduction of IDs was not accom-
panied with computational procedures that utilize
the structure of the diagram to facilitate probabilis-
tic inferences. Such procedures were developed later,
mostly in the framework of Bayes networks? for
which the semantics of conditional independencies
was made explicit. The task proposed by Howard and
Matheson, that of converting an ID into a decision
tree, requires the computation of posterior probabili-
ties conditioned on all evidence available at decision
time. This computation can be accomplished by any
of the standard methods developed for probabilis-
tic inference, e.g., clustering, conditioning, bucket-
elimination, or belief propagation.

?Olmsted (1983) and Shachter (1986) developed procedures for
probabilistic inference in the framework of influence diagrams but,
lacking conditional independence semantics, were unable to pro-
vide performance estimates.
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Despite these shortcomings, however, the publica-
tion of Howard and Matheson’s paper has had a sig-
nificant impact on decision analytic practices, for it
promised to liberate the analyst from the impossible
task of mentally estimating the conditional probabil-
ities that decorate the links of decision trees. It also
had a catalytic effect on the development of graphi-
cal models in general for it intensified the urge to gain
formal and conceptual understanding of the then mys-
tical relationships between graphs and probabilities.
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