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Abstract

A causal claim is any assertion that invokes
causal relationships between variables� for ex�
ample� that a drug has a certain e�ect on
preventing a disease� Causal claims are es�
tablished through a combination of data and
a set of causal assumptions called a �causal
model�	 A claim is robust when it is insen�
sitive to violations of some of the causal as�
sumptions embodied in the model� This pa�
per gives a formal de
nition of this notion of
robustness� and establishes a graphical con�
dition for quantifying the degree of robust�
ness of a given causal claim� Algorithms for
computing the degree of robustness are also
presented�

� INTRODUCTION

A major issue in causal modeling is the problem of as�
sessing whether a conclusion derived from a given data
and a given model is in fact correct� namely� whether
the causal assumptions that support a given conclu�
sion actually hold in the real world� Since such as�
sumptions are based primarily on human judgment� it
is important to formally assess to what degree the tar�
get conclusions are sensitive to those assumptions or�
conversely� to what degree the conclusions are robust
to violations of those assumptions�

This paper gives a formal characterization of this prob�
lem and reduces it to the �inverse of� the identi
cation
problem� In dealing with identi
cation� we ask are
the model�s assumptions su�cient for uniquely sub�
stantiating a given claim� In dealing with robustness
�to model misspeci
cation�� we ask what conditions
must hold in the real world before we can guarantee
that a given conclusion� established from real data� is
in fact correct� Our conclusion is then said to be ro�
bust to any assumption outside that set of conditions�

To solve the robustness problems� we need techniques
for quickly verifying whether a given model permits
the identi
cation of the claim in question� Graphical
methods were proven uniquely e�ective in performing
such veri
cation� and this paper generalizes these tech�
niques to handle the problem of robustness�

Our analysis is presented in the context of linear mod�
els� where causal claims are simply functions of the
parameters of the model� However� the concepts� de
�
nition and some of the methods are easily generalizable
to non parametric models� where a claim is any func�
tion computable from a �fully speci
ed� causal model�

Section � introduces terminology and basic de
nitions
associated with the notion of model identi
cation and
demonstrates di�culties associated with the conven�
tional de
nition of parameter over�identi
cation� Sec�
tion � demonstrates these di�culties in the context of a
simple example� Section � resolves these di�culties by
introducing a re
ned de
nition of over�identi
cation in
terms of �minimal assumption sets�	 Section � estab�
lish graphical conditions and algorithms for determin�
ing the degree of robustness �or� over�identi
cation� of
a causal parameter� Section � recasts the analysis in
terms of the notion of relevance�

� PRELIMINARIES� LINEAR

MODELS AND PARAMETER

IDENTIFICATION

A linear modelM is a set of linear equations with �zero
or more� free parameters� p� q� r� � � �� that is� unknown
parameters whose values are to be estimated from a
combination of assumptions and data� The assump�
tions embedded in such a model are of several kinds
��� zero �or 
xed� coe�cients in some equations� ���
equality or inequality constraints among some of the
parameters and ��� zero covariance relations among
error terms �also called disturbances�� Some of these
assumptions are encoded implicitly in the equations
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�e�g�� the absence of certain variables in an equation��
while others are speci
ed explicitly� using expressions
such as p � q or cov�ei� ej� � ��

An instantiation of a modelM is an assignment of val�
ues to the model�s parameters� such instantiations will
be denoted as m��m� etc� The value of parameter p in
instantiation m� of M will be denoted as p�m��� Ev�
ery instantiation mi of model M gives rise to a unique
covariance matrix ��mi�� where � is the population
covariance matrix of the observed variables�

De�nition � �Parameter identi�cation�
A parameter p in model M is identi�ed if for any two
instantiations of M�m� and m�� we have�

p�m�� � p�m�� whenever ��m�� � ��m��

In other words� p is uniquely determined by �� two
distinct values of p imply two distinct values of �� one
of which must clash with observations�

De�nition � �Model identi�cation�
A model M is identi�ed i� all parameters of M are
identi�ed�

De�nition � �Model over�identi�cation and just�
identi�cation�
A model M is over�identi
ed if �	� M is identi�ed and
�
� M imposes some constraints on �� that is� there
exists a covariance matrix �� such that ��mi� �� ��

for every instantiation mi of M � M is just�identi
ed
if it is identi�ed and not over�identi�ed� that is� for
every �� we can �nd an instantiation mi such that
��mi� � ���

De
nition � highlights the desirable aspect of over�
identi
cation � testability� It is only by violating its
implied constraints that we can falsify a model� and it
is only by escaping the threat of such violation that a
model attains our con
dence� and we can then state
that the model and some of its implications �or claims�
are corroborated by the data�

Traditionally� model over�identi
cation has rarely been
determined by direct examination of the model�s con�
straints but� rather indirectly� by attempting to solve
for the model parameters and discovering parameters
that can be expressed as two or more distinct� func�
tions of �� for example� p � f���� and p � f�����
This immediately leads to a constraint f���� � f����
which� according to De
nition �� renders the model
over�identi
ed� since every �� for which f���

�� �� f���
��

must be excluded by the model�

�Two functions f���� and f���� are distinct if there ex�
ists a �� such that f���

�� �� f���
���

In most cases� however� researchers are not interested
in corroborating the model in its entirety� but rather
in a small set of claims that the model implies� For
example� a researcher may be interested in the value
of one single parameter� while ignoring the rest of the
parameters as irrelevant� The question then emerges of

nding an appropriate de
nition of �parameter over�
identi
cation�	 namely� a condition ensuring that the
parameter estimated is corroborated by the data� and
is not totally a product of the assumption embedded
in the model�

This indirect method of determining model over�
identi
cation �hence model testability� has led to a
similar method of labeling the parameters themselves
as over�identi
ed or just�identi
ed� parameters that
were found to have more than one solution were labeled
over�identi
ed� those that were not found to have more
than one solution were labeled just�identi
ed� and the
model as a whole was classi
ed according to its param�
eters� In the words of Bollen ������ p� ��� �A model is
over�identi
ed when each parameter is identi
ed and
at least one parameter is over�identi
ed� A model is
exactly identi
ed when each parameter is identi
ed
but none is over�identi
ed�	

Although no formal de
nition of parameter over�
identi
cation has been formulated in the literature�
save for the informal requirement of having �more than
one solution	 �MacCallum� ����� p� ��� or of being �de�
termined from � in di�erent ways	 �Joreskog� �����
p� ����� the idea that parameters themselves carry
the desirable feature of being over�identi
ed� and that
this desirable feature may vary from parameter to pa�
rameter became deeply entrenched in the literature�
Paralleling the desirability of over�identi
ed models�
most researchers expect over�identi
ed parameters to
be more robust than just�identi
ed parameters� Typi�
cal of this expectation is the economists� search for two
or more instrumental variables for a given parameter
�Bowden and Turkington� ������

The intuition behind this expectation is compelling�
Indeed� if two distinct sets of assumptions yields two
methods of estimating a parameter and if the two es�
timates happen to coincide in data at hand� it stands
to reason that the estimates are correct� or� at least
robust to the assumptions themselves� This intuition
is the guiding principle of this paper and� as we shall
see� requires a careful de
nition before it can be ap�
plied formally�

If we take literally the criterion that a parameter is
over�identi
ed when it can be expressed as two or
more distinct functions of the covariance matrix �� we
get the untenable conclusion that� if one parameter is
over�identi
ed� then every other �identi
ed� parame�
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ter in the model must also be over�identi
ed� Indeed�
whenever an over�identi
ed model induces a constraint
g��� � �� it also yields �at least� two solutions for
any identi
ed parameter p � f���� because we can
always obtain a second� distinct solution for p by writ�
ing p � f���� g���t���� with arbitrary t���� Thus� to
capture the intuition above� additional quali
cations
must be formulated to re
ne the notion of �two dis�
tinct functions�	 Such quali
cations will be formulated
in Section �� But before delving into this formulation
we present the di�culties in de
ning robustness �or
over�identi
cation� in the context of simple examples�

� EXAMPLES

Example � Consider a structural model M given by
the chain in Figure 	�

y zx
b c

xe ye ze

Figure �

which stands for the equations�

x � ex

y � bx� ey

z � cy � ez

together with the assumptions cov�ei� ej� � �� i ��
j�� This model is identi�ed because the model equa�
tions are regression equations� e�g�� E�yey� � � and
E�zez� � �� hence b � Ryx and c � Rzy� where Ryx is
the regression coe�cient of y on x�

Moreover� this model is over�identi�ed� because it im�
plies the conditional independence of x and z� given y�
which translates to the constraint� Rzx � RyxRzy�

If we express the elements of � in terms of the struc�
tural parameters� we obtain

Ryx � b

Rzx � bc

Rzy � c

where Ryx is the regression coe�cient of y on x� b and
c can each be derived in two di�erent ways

b � Ryx b � Rzx�Rzy ���

�Throughout this paper we assume recursivity and that
the variables are correctly ordered� If non�recursive models
are deemed feasible� additional assumptions need be stated
explicitly� to rule out cycles� e�g�� no arrow from z to y�

and

c � Rzy c � Rzx�Ryx ���

which leads to the constraint

Rzx � RyxRzy ���

If we take literally the criterion that a parameter is
over�identi
ed when it can be expressed as two or more
distinct functions of the covariance matrix �� we get
the untenable conclusion that both b and c are over�
identi
ed� However� this conclusion clashes violently
with intuition�

To see why� imagine a situation in which z is not mea�
sured� The model reduces then to a single link x� y�
in which parameter b can be derived in only one way�
giving

b � Ryx

and b would be classi
ed as just�identi
ed� In other
words� the data does not corroborate the claim b �
Ryx because this claims depends critically on the
untestable assumption cov�ex� ey� � � and there is
nothing in the data to tell us when this assumption
is violated�

The addition of variable z to the model merely intro�
duces a noisy measurement of y� and we can not allow
a parameter �b� to turn over�identi
ed �hence more
robust� by simply adding a noisy measurement �z� to
a precise measurement of y� We cannot gain any in�
formation �about b� from such measurement� once we
have a precise measurement of y�

This argument cannot be applied to parameter c� be�
cause x is not a noisy measurement of y� it is a cause
of y� The capacity to measure new causes of a vari�
able often leads to more robust estimation of causal
parameters� �This is precisely the role of instrumen�
tal variables�� Thus we see that� despite the apparent
symmetry between parameters b and c� there is a basic
di�erence between the two� c is over�identi
ed while b
is just�identi
ed� Evidently� the two ways of deriving
b �Eq� �� are not independent� while the two ways of
deriving c �Eq� �� are�

Our next section makes this distinction formal�

� ASSUMPTION�BASED OVER�

IDENTIFICATION

De�nition � �Parameter over�identi�cation�
A parameter p is over�identi�ed if there are two or
more distinct sets of logically independent assumptions
in M such that�
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	� each set is su�cient for deriving the value of p as
a function of �� p � f����


� each set induces a distinct function p � f����

� each assumption set is minimal� that is� no proper
subset of those assumptions is su�cient for the
derivation of p�

De
nition � di�ers from the standard criterion in two
important aspects� First� it interprets multiplicity of
solutions in terms of distinct sets of assumptions un�
derlying those solutions� rather than distinct functions
from � to p� Second� De
nition � insists on the sets of
assumptions being minimal� thus ruling out redundant
assumptions that do not contribute to the derivation
of p�

De�nition � �Degree of over�identi�cation�
A parameter p �of model M� is identi�ed to degree
k �read� k�identi�ed� if there are k distinct sets of
assumptions in M that satisfy the conditions of Def�
inition �� p is said to be m�corroborated if there are
m distinct sets of assumptions in M that satisfy con�
ditions �	� and �� of De�nition �� possibly yielding
k � m distinct estimands for p�

De�nition � A parameter p �of model M� is said to
be just�identi
ed if it is identi�ed to the degree 	 �see
De�nition �� that is� there is only one set of assump�
tions in M that meets the conditions of De�nition ��

Generalization to non�linear� non�Gaussian systems
is straightforward� Parameters are replaced with
�claims	 and � is replaced with the density function
over the observed variables�

We shall now apply De
nition � to the example of Fig�
ure � and show that it classi
es b as just�identi
ed and
c as over�identi
ed� The complete list of assumptions
in this model �assuming a known causal order� reads

��� x � ex

��� y � bx� ey

��� z � cy � dx� ez

��� cov�ez � ex� � �

��� cov�ez � ey� � �

��� cov�ex� ey� � �

��� d � �

There are three distinct minimal sets of assumptions
capable of yielding a unique solution for c� we will
denote them by A�� A�� and A��

Assumption set A�

��� x � ex

��� y � bx� ey

��� z � cy � dx� ez

��� cov�ez � ey� � �

��� cov�ex� ey� � �

This set yields the estimand c � Rzy�x � �Rzy �
RzxRyx�����R�

yx��

Assumption set A�

��� x � ex

��� y � bx� ey

��� z � cy � dx� ez

��� cov�ez � ex� � �

��� cov�ez � ey� � �

also yielding the estimand c � Rzy�x � �Rzy �
RzxRyx�����R�

yx��

Assumption set A�

��� x � ex

��� y � bx� ey

��� z � cy � dx� ez

��� cov�ez � ex� � �

��� d � �

This set yields the instrumental�variable �IV� esti�
mand c � Rzx�Ryx�

Figure � provides a graphic illustration of these as�
sumption sets� where each missing edge represents an
assumption and each edge �i�e�� an arrow or a bi�
directed arc� represents a relaxation of an assumption
�since it permits the corresponding parameter to re�
main free�� We see that c is corroborated by three
distinct set of assumptions� yielding two distinct esti�
mands� the 
rst two sets are degenerate� leading to the
same estimand� hence c is classi
ed as ��identi
ed and
��corroborated �see De
nition ���

Note that assumption ���� d � �� is not needed for
deriving c � Rzy�x� Moreover� we cannot relax both
assumption ��� and ���� as this would render c non�
identi
able� Finally� had we not separated ��� from
���� we would not be able to detect that A� is minimal�
because it would appear as a superset of A��

UAI 2004 PEARL 449



yx zyx zyx z
b c

d d

b cb c

G1 G2 G3

Figure � Graphs representing assumption sets A�� A��
and A�� respectively�

It is also interesting to note that the natural esti�
mand c � Rzy is not selected as appropriate for
c� because its derivation rests on the assumptions
f���� ���� ���� ���� ���� ���g� which is a superset of each
of A�� A� and A�� The implication is that Rzy is not as
robust to misspeci
cation errors as the conditional re�
gression coe�cient Rzy�x or the instrumental variable
estimand Rzx�Ryx� The conditional regression coe��
cient Rzy�x is robust to violation of assumptions ���
and ��� �see G� in Fig� �� or assumptions ��� and ���
�see G� in Fig� ��� while the instrumental variable es�
timand Rzx�Ryx is robust to violations of assumption
��� and ���� �see G�� Fig� ��� The estimand c � Rzy�
on the other hand� is robust to violation of assump�
tion ��� alone� hence it is �dominated	 by each of the
other two estimands� there exists no data generating
model that would render c � Rzy unbiased and the
c � Rzx�Ryx �or c � Rzy�x� biased� In contrast� there
exist models in which c � Rzx�Ryx �or c � Rzy�x� is
unbiased and c � Rzy is biased� the graphs depicted
in Fig� � represent in fact such models�

We now attend to the analysis of b� If we restrict the
model to be recursive �i�e�� feedback�less� and examine
the set of assumptions embodied in the model of Fig�
�� we 
nd that parameter b is corroborated by only
one minimal set of assumptions� given by

��� x � ex

��� y � bx� ey

��� cov�ex� ey� � �

These assumptions yield the regression estimand� b �
Ryx� Since any other derivation of b must rest on these
three assumptions� we conclude that no other set of as�
sumptions can satisfy the minimality condition of Def�
inition �� Therefore� using De
nition �� b is classi
ed
as just�identi
ed�

Attempts to attribute to b a second estimand� b �
Rzx�Rzy� fail to recognize the fact that the second
estimand is merely a noisy version of the 
rst� for it
relies on the same assumptions as the 
rst� plus more�
Therefore� if the two estimates of b happen to disagree
in a speci
c study� we can conclude that the disagree�
ment must originates with violation of those extra as�

sumptions that are needed for the second� and we can
safely discard the second in favor of the 
rst� Not so
with c� If the two estimates of c disagree� we have no
reason to discard one in favor of the other� because the
two rest on two distinct sets of assumptions� and it is
always possible that either one of the two sets is valid�
Conversely� if the two estimates of c happen to coincide
in a speci
c study� c obtains a greater con
rmation
from the data since� for c to be false� the coincidence
of the two estimates can only be explained by an un�
likely miracle� Not so with b� The coincidence of its
two estimates might well be attributed to the validity
of only those extra assumptions needed for the second
estimate� but the basic common assumption needed
for deriving b �namely� assumption ���� may well be
violated�

� GRAPHICAL TESTS FOR

OVER�IDENTIFICATION

In this section we restrict our attention to parameters
in the form of path coe�cients� excluding variances
and covariances of unmeasured variables� and we de�
vise a graphical test for the over�identi
cation of such
parameters� The test rests on the following lemma�
which generalizes Theorem ����� in �Pearl� ����� p�
����� and embraces both instrumental variables and
regression methods in one graphical criterion� �See
also ibid� De
nition ������ p� �����

Lemma � �Graphical identi�cation of direct e�ects�
Let c stand for the path coe�cient assigned to the ar�
row X � Y in a causal graph G� Parameter c is
identi�ed if there exists a pair �W�Z�� where W is a
node in G and Z is a �possibly empty� set of nodes in
G� such that�

	� Z consists of nondescendants of Y �


� Z d�separates W from Y in the graph Gc formed
by removing X � Y from G�

� W and X are d�connected given Z� in Gc� or W �
X�

Moreover� the estimand induced by the pair �W�Z� is
given by�

c �
cov�Y�W jZ�

cov�X�W jZ�
�

The graphical test o�ered by Lemma � is su�cient
but not necessary� that is� some parameters are identi�

able� though no identifying �W�Z� pair can be found
in G �see ibid� Fig� ����� p� ����� The test applies
nevertheless to a large set of identi
cation problems�
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and it can be improved to include several instrumental
variables W � We now apply Lemma � to De
nition ��
and associate the absence of a link with an �assump�
tion�	

De�nition � �Maximal IV�pairs��

A pair �W�Z� is said to be an IV�pair for X � Y � if
it satis�es conditions �	�� of Lemma 	� �IV connotes
�instrumental variable��� An IV�pair �W�Z� for X �
Y is said to be maximal in G� if it is an IV�pair for
X � Y in some graph G� that contains G� and any
edge�supergraph of G� admits no IV�pair �for X � Y ��
not even collectively��

Theorem � �Graphical test for over�identi�cation�
A path parameter c on arrow X � Y is over�identi�ed
if there exist two or more distinct maximal IV�pairs for
X � Y �

Corollary � �Test for k�identi�ability�
A path parameter c on arrow X � Y is at least k�
identi�ed if there exist k distinct maximal IV�pairs for
X � Y �

Example � Consider the chain in Fig� �a�� In this

b cb c
X22X1X X3

(a)

X3X1

(b)

Figure �

example� c is 
�identi�ed� because the pairs �W �
X�� Z � X�� and �W � X�� Z � �� are maximal IV�
pairs for X� � X�� The former yields the estimand
c � R����� the latter yields c � R���R���

Note that the robust estimand of c is R����� not R���
This is because the pair �W � X�� Z � ��� which yields
R��� is not maximal� there exists an edge�supergraph
of G �shown in Fig� ��b�� in which Z � � fails to d�
separate X� from X�� while Z � X� does d�separate
X� from X�� The latter separation quali
es �W �
X�� Z � X�� as an IV�pair for X� � X�� and yields
c � R�����

�Carlos Brito was instrumental in formulating this def�
inition �Brito and Pearl� ����ab	�

�The quali
cation �not even collectively� aims to ex�
clude graphs that admit no IV�pair for X � Y � yet permit�
nevertheless� the identi
cation of c through the collective
action of k IV�pairs for k parameters �see �Pearl� ����� Fig�
���	 for examples�� The precise graphical characterization
of this class of graphs is currently under formulation� but
will not be needed for the examples discussed in this paper�

The question remains how we can perform the test
without constructing all possible supergraphs�

Every �W�Z� pair has a set S�W�Z� of maximally 
lled
graphs� namely supergraphs of G to which we cannot
add any edge without spoiling condition ��� of Lemma
�� To test whether �W�Z� leads to robust estimand�
we need to test each member of S�W�Z� so that no
edge can be added without spoiling the identi
cation
of c� Thus� the complexity of the test rests on the size
of S�W�Z��

Graphs G� and G� in Fig� � constitute two maximally

lled graphs for the IV�pair �W � y� Z � x��G� is
maximally 
lled for �W � x� Z � ���

� RELEVANCE�BASED

FORMULATION

The preceding analysis shows ways of overcoming two
major de
ciencies in current methods of parameter es�
timation� The 
rst� illustrated in Example �� is the
problem of irrelevant over�identi�cation� certain as�
sumptions in a model may render the model over�
identi
ed while playing no role whatsoever in the es�
timation of the parameters of interest� It is often the
case that only selected portions of a model gather sup�
port through confrontation with the data� while others
do not� and it is important to separate the former from
the latter� The second is the problem of irrelevant
misspeci�cations� If one or two of the model assump�
tions are incorrect� the model as a whole would be
rejected as misspeci
ed� though the incorrect assump�
tions may be totally irrelevant to the parameters of in�
terest� For instance� if the assumption cov�ey� ez� � �
in Example � �Figure �� was incorrect� the constraint
Rzx � RyxRzy would clash with the data� and the
model would be rejected� though the regression esti�
mate b � Ryx remains perfectly valid� The o�ending
assumption in this case is irrelevant to the identi
ca�
tion of the target quantity�

This section reformulates the notion of over�
identi
cation as a condition that renders a set of rele�
vant assumptions �for a given quantity� testable�

If the target of analysis is a parameter p �or a set of
parameters�� and if we wish to assess the degree of
support that the estimation of p earns through con�
frontation with the data� we need to assess the dis�
parity between the data and the model assumptions�
but we need to consider only those assumptions that
are relevant to the identi
cation of p� all other assump�
tions should be ignored� Thus� the basic notion needed
for our analysis is that of �irrelevance	� when can we
declare a certain assumption irrelevant to a given pa�
rameter p�
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One simplistic de
nition would be to classify as rel�
evant assumptions that are absolutely necessary for
the identi
cation of p� In the model of Figure ��
since b can be identi
ed even if we violate the as�
sumptions cov�ez � ey� � cov�ez� ex� � �� we declare
these assumptions irrelevant to b� and we can ignore
variable z altogether� However� this de
nition would
not work in general� because no assumption is abso�
lutely necessary� any assumption can be disposed with
if we enforce the model with additional assumptions�
Taking again the model in Figure �� the assumption
cov�ey� ez� � � is not absolutely necessary for the iden�
ti
cation of c� because c can be identi
ed even when
ey and ez are correlated �see G� in Figure ��� yet we
cannot label this assumption irrelevant to c�

The following de
nition provides a more re
ned char�
acterization of irrelevance�

De�nition 	 Let A be an assumption embodied in
model M � and p a parameter inM � A is said to be rele�
vant to p if and only if there exists a set of assumptions
S in M such that S and A sustain the identi�cation
of p but S alone does not sustain such identi�cation�

Theorem � An assumption A is relevant to p if and
only if A is a member of a minimal set of assumptions
su�cient for identifying p�

Proof


Let msa abbreviate �minimal set of assumptions suf�

cient for identifying p	 and let the symbol �j� p	
denote the relation �su�cient for identifying p	 ��j� p�
its negation�� If A is a member of some msa then� by
de
nition� it is relevant� Conversely� if A is relevant�
we will construct a msa of which A is a member� If
A is relevant to p� then there exists a set S such that
S � A j� p and S �j� p� Consider any minimal subset
S� of S that satis
es the properties above� namely

S� �A j� p and S� �j� p�

and� for every proper subset S�� of S�� we have �from
minimality�

S�� �A �j� p and S�� �j� p�

�we use monotonicity here� removing assumptions can�
not entail any conclusion that is not entailed before
removal�� The three properties S� � A j� p� S� �j� p�
and S�� � A �j� p �for all S�� � S�� qualify S� � A as
msa� and completes the proof of Theorem �� QED�

Thus� if we wish to prune from M all assumptions
that are irrelevant to p� we ought to retain only the
union of all minimal sets of assumptions su�cient for
identifying p� This union constitutes another model�
in which all assumptions are relevant to p� We call this

new model the p�relevant submodel of M � Mp which
we formalize by a de
nition�

De�nition � Let AM be the set of assumptions em�
bodied in model M � and let p be an identi�able param�
eter in M � The p�relevant submodel of M � denoted
Mp is a model consisting of the union of all minimal
subsets of AM su�cient for identifying p�

We can naturally generalize this de
nition to any
quantity of interest� not necessarily a single param�
eter�

De�nition �� Let AM be the set of assumptions em�
bodied in model M � and let q be any quantity identi�
�able in M � The q�relevant submodel of M � denoted
Mq is a model consisting of the union of all minimal
subsets of AM su�cient for identifying q�

We can now associate with any quantity q in a model
properties that are normally associated with models�
for example� 
t indices� degree of 
tness� degrees of
freedom �df� and so on� we simply compute these prop�
erties for Mq� and attribute the results to q� For ex�
ample� if Dq measures the 
tness of Mq to a body of
data� we can say that quantity q has disparity Dq with
df�q� degrees of freedom�

Consider the model of Figure �� If q � b�Mb would
consist of one assumption� cov�ex� ey� � �� since this
assumption is minimally su�cient for the identi
ca�
tion of b� Discarding all other assumptions of A is
equivalent to considering the arrow x� y alone� while
discarding the portions of the model associated with
z� Since Mb is saturated �that is� just identi
ed� it
has zero degrees of freedom� and we can say that b
has zero degrees of freedom� or df�b� � �� If q � c�
Mc would be the entire model M � because the union
of assumption sets A�� A� and A� span all the seven
assumptions of M � We can therefore say that c has
one degree of freedom� or df�c� � �� This means that
the claim c � c� constrains the covariance matrix by
a one�dimensional manifold�

cb
x y z

yx z

(b)(a)

cb

d

Figure �

Now assume that the quantity of interest� q� stands for
the total e�ects of x on z� denoted TE�x� z�� There
are two minimal subsets of assumptions in M that are
su�cient for identifying q� Figure � represents these
subsets through their respective �maximal� subgraphs�
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model ��a� yields the estimand TE�x� z� � Rzx� while
��b� yields TE�x� z� � RyxRzy�x� Note that although
c is not identi
ed in the model of Figure ��a�� the total
e�ect of x of on z� TE�x� z� � d � bc� is nevertheless
identi
ed� The union of the two assumption sets co�
incides with the original model M �as can be seen by
taking the intersection of the corresponding arcs in the
two subgraphs� Thus� M �Mq� and we conclude that
TE�x� z� is ��identi
ed� and has one degree of freedom�

For all three quantities� b� c and TE�x� z� we obtained
degrees of freedom that are one less than the corre�
sponding degrees of identi
cation� k�q� � df�q�� This
is a general relationship� as shown in the next Theo�
rem�

Theorem � The degrees of freedom associated with
any quantity q computable from model M is given by
df�q� � k�q� � �� where k�q� stands for the degree of
identi�ability �De�nition ���

Proof

df�q� is given by the number of independent equality
constraints that model Mq imposes on the covariance
matrix� Mq consists of m distinct msa�s� which yield
m estimands for q� q � qi���� i � �� � � � �m� k of which
are distinct� Since all these k functions must yield
the same value for q� they induce k � � independent
equality constraints

qi��� � qi������ i � �� �� � � � � k � �

This amounts to k�� degrees of freedom forMq� hence�
df�q� � k�q�� �� QED�

We thus obtain another interpretation of k� the degree
of identi
ability� k equals one plus the degrees of free�
dom associated with the q�relevant submodel of M �

� CONCLUSIONS

This paper gives a formal de
nition to the notion of
robustness� or over�identi
cation of causal parameters�
This de
nition resolves long standing di�culties in
rendering the notion of robustness operational� We
also established a graphical method of quantifying the
degree of robustness� The method requires the con�
struction of maximal supergraphs su�cient for render�
ing a parameter identi
able and counting the number
of such supergraphs with distinct estimands�

The qualitative approach of this paper assumes that
all modeling assumptions have equal weight� and does
not account for the case where a modeler can express
di�erent degrees of belief in the validity of the various
assumptions� A Bayesian approach would be natural
for incorporating this extra knowledge� when available�
but would encounter the problem of computing the

posterior probability of the causal claim� integrated
over all assumption sets that have a non�zero prior
probability�
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