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ABSTRACT OF THE DISSERTATION

Graphical Methods for Identification in Structural
Equation Models

by

Carlos Eduardo Fisch de Brito
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Professor Judea Pearl, Chair

Structural Equation Models (SEM) is one of the most important tools for causal anal-

ysis in the social and behavioral sciences (e.g., Economics, Sociology, etc). A central

problem in the application of SEM models is the analysis of Identification. Succintly,

a model is identified if it only admits a unique parametrization to be compatible with

a given covariance matrix (i.e., observed data). The identification of a model is im-

portant because, in general, no reliable quantitative conclusion can be derived from

non-identified models.

In this work, we develop a new approach for the analysis of identification in SEM,

based on graph theoretic techniques. Our main result is a general sufficient criterion

for model identification. The criterion consists of a number of graphical conditions

on the causal diagram of the model. We also develop a new method for computing

correlation constraints imposed by the structural assumptions, that can be used for

model testing. Finally, we also provide a generalization to the traditional method of

Instrumental Variables, through the concept of Instrumental Sets.
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CHAPTER 1

Introduction

Structural Equation Models (SEM) is one of the most important tools for causal anal-

ysis in the social and behavioral sciences [Bol89, Dun75, McD97, BW80, Fis66,

KKB98]. Although most developments in SEM have been done by scientists in these

areas, the theoretical aspects of the model provide interesting problems that can benefit

from techniques developed in computer science.

In a structural equation model, the relationships among a set of observed variables

are expressed by linear equations. Each equation describes the dependence of one

variable in terms of the others, and contains a stochastic error term accounting for the

influence of unobserved factors. Independence assumptions on pairs of error terms are

also specified in the model.

An attractive characteristic of SEM models is their simple causal interpretation.

Specifically, the linear equation � � �� � � encodes two distinct assumptions: (1)

the possible existence of (direct) causal influence of � on � ; and, (2) the absence of

(direct) causal influence on � of any variable that does not appear on the right-hand

side of the equation. The parameter � quantifies the (direct) causal effect of � on � .

That is, the equation claims that a unit increase in � would result in � units increase

of � , assuming that everything else remains the same.

Let us consider a simple example taken from [Pea00a]. This model investigates

the relations between smoking (�) and lung cancer (� ), taking into consideration the

1



amount of tar (�) deposited in a person’s lungs, and allowing for unobserved factors to

affect both smoking ��� and cancer �� �. This situation is represented by the following

equations:

� � ��

� � �� � ��

� � �� � ��

������	 ��� � ������	 ��� � �

������	 ��� � 


The first three equations claim, respectively, that the level of smoking of a person

depends only on factors not included in the model, the amount of tar deposited in the

lungs depends on the level of smoking as well as external factors, and the level of

cancer depends on the amount of tar in the lungs and external factors. The remaining

equations say that the external factors that cause tar to be accumulated in the lungs

are independent of the external factors that affect the other variables, but the external

factors that have influence on smoking and cancer may be correlated.

All the information contained in the equations can be expressed by a graphical

representation, called causal diagram, as illustrated in Figure 1.1. We formally define

the model and its graphical representation in section 2.1.

Figure 1.2 shows a more elaborate model used to study correlations between rela-

tives for systolic and diastolic blood pressures [TEM93]. The squares represent blood

pressures for each type of individual, and the circles represent genetic and environ-

mental causes of variation: � the additive genetic contribution of the polygenes; D

the dominance genetic contributions; � all the environmental factors; and  those

environmental components only shared by siblings of the same sex.

2



X Z Y

a b

γ

(smoking) (tar) (cancer)

Figure 1.1: Smoking and lung cancer example

1.1 Data Analysis with SEM and the Identification Problem

The process of data analysis using Structural Equation Models consists of four steps

[KKB98]:

1. Specification: Description of the structure of the model. That is, the qualitative

relations among the variables are specified by linear equations. Quantitative infor-

mation is generally not specified and is represented by parameters.

2. Identification: Analysis to decide if there is a unique valuation for the parameters

that make the model compatible with the observed data. The identification of a

SEM model is formally defined in Section 2.1.

3. Estimation: Actual estimation of the parameters from statistical information on the

observed variables.

4. Evaluation of fit: Assessment of the quality of the model as a description of the

data.

In this work, we will concentrate on the problem of Identification. That is, we

leave the task of model specification to other investigators, and develop conditions

to decide if these models are identified or not. The identification of a model is im-

portant because, in general, no reliable quantitative conclusion can be derived from a

3



Figure 1.2: Model for correlations between blood pressures of relatives
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non-identified model. The question of identification has been the object of extensive

research [Fis66], [Dun75], [Pea00a], [McD97], [Rig95]. Despite all this effort, the

problem still remains open. That is, we do not have a necessary and sufficient condi-

tion for model identification in SEM. Some results are available for special classes of

models, and will be reviewed in Section 1.3.

In our approach to the problem, we state Identification as an intrinsic property of

the model, depending only on its structural assumptions. Since all such assumptions

are captured in the graphical representation of the model, we can apply graph theoretic

techniques to study the problem of Identification in SEM. Thus, our main results con-

sist of graphical conditions for identification, to be applied on the causal diagram of

the model.

As a byproduct of our analysis, estimation methods will also be provided, as well

as methods to obtain constraints imposed by the model on the distribution over the

observed variables, thus addressing questions in steps 3 and 4 above.

1.2 Overview of Results

The central question studied in this work is the problem of identification in recursive

SEM models, that is, models that do not contain feedbacks (see Section 2.1 for more

details). The basic tool used in the analysis is Wright’s decomposition, which allows

us to express correlation coefficients as polynomials on the parameters of the model.

The important fact about this decomposition is that each term in the polynomial corre-

sponds to a path in the causal diagram.

Based on the observation that these polynomials are linear on specific subsets of

parameters, we reduce the problem of Identification to the analysis of simple systems

of linear equations. As one should expect, conditions for linear independence of those

5



systems (which imply a unique solution and thus identification of the parameters),

translate into graphical conditions on the paths of the causal diagram.

Hence, the fundamental step in our method of Auxiliary Sets for model identifica-

tion (see Chapter 3) consists in finding, for each variable � , a set of variables�� with

specific restrictions on the paths between � and each variable in �� .

As it turns out, the restrictions that allow us to obtain the maximum generality

from the method are not so easy to verify by visual inspection of the causal diagram.

To overcome this problem, we developed an algorithm that searches for an Auxiliary

Set for a given variable � (see Chapter 4). We also provide the Bow-free condition

and the Instrumental condition (Section 3.5), which are special cases of the general

method, but have straightforward application.

The machinery developed for the method of Auxiliary Sets can also be used to

compute correlation constraints. These constraints are implied by the structural as-

sumptions, and allow us to test the model [McD97]. The basic idea is very simple.

While in the case of Identification we take advantage of linearly independent equa-

tions, it follows that correlation constraints are immediately obtained from linearly

dependent equations (see Chapter 5). Despite its simplicity, this is a very powerfull

method for computing correlation constraints.

The main goal of this research is to solve the problem of Identification for recursive

models. Namely, to obtain a necessary and sufficient condition for model identifica-

tion. The sufficient condition provided by the method of Auxiliary Sets is very general,

and in Chapter 6 we present our initial efforts on our attempt to prove that it is also

necessary for identification.

Finally, in Chapter 7, we consider the problem of parameter identification. This

problem is motivated by the observation that even on non-identified models there may

exist some parameters whose value is uniquely determined by the structural assump-

6



tions and data. We provide a solution based on the concept of Instrumental Sets, which

generalizes the traditional method of Instrumental Variables [BT84]. The criterion for

parameter identification involves d-separation conditions, and the proofs required the

development of new techniques of independent interest.

1.3 Related Work

The use of graphical models to represent and reason about probability distributions has

been extensively studied [WL83, CCK83, Pea88]. In many areas such models have be-

come the standard representation, e.g., Bayesian networks for dealing with uncertainty

in Artificial Intelligence [Pea88], and Markov random fields for speech recognition

and coding [KS80]. Some reasons for the success of the language of graphs in many

domains are: it provides a compact representation for a large class of probability dis-

tributions; it is convenient to describe dependencies among variables; and it consists

of a natural language for causal modeling. Besides these advantages, many methods

and techniques were developed to reason about probability distributions directly at the

level of the graphical representation [LS88, HD96]. An example of such a technique

is the d-separation criterion [Pea00a], which allows us to read off conditional indepen-

dencies among variables by inspecting the graphical representation of the model.

The Identification problem has been tackled in the past half century, primarily by

econometricians and social scientists [Fis66, Dun75]. It is still unsolved. In other

words, we are not in possession of a necessary and sufficient criterion for deciding

whether the parameters in a structural model can be determined uniquely from the

covariance matrix of the observed variables.

Certain restricted classes of models are nevertheless known to be identifiable, and

these are often assumed by social scientists as a matter of convenience or convention

7



(1) (2) (3)

Figure 1.3: McDonald’s regressional hierarchy examples

[Dun75]. McDonald [1997] characterizes a hierarchy of three such classes (see Figure

1.3): (1) uncorrelated errors, (2) correlated errors restricted to exogenous variables,

and (3) correlated errors restricted to pairs of causally unordered variables (i.e., vari-

ables that are not connected by uni-directed paths.). The structural equations in all

three classes are regressional (i.e., the error term in each equation is uncorrelated with

the explanatory variables of that same equation) hence the parameters can be estimated

uniquely using Ordinary Least Squares techniques.

Traditional approaches to the Identification problem are based on algebraic manip-

ulation of the equations defining the model. Powerful algebraic methods have been

developed for testing whether a specific parameter, or a specific equation in a model

is identifiable . However, such methods are often too complicated for investigators to

apply in the pre-analytic phase of model construction. Additionally, those specialized

methods are limited in scope. The rank and order criteria [Fis66], for example, do

not exploit restrictions on the error covariances (if such are available). The rank cri-

terion further requires precise estimate of the covariance matrix before identifiability

can be decided. Identification methods based on block recursive models [Fisher, 1966;

Rigdon, 1995], for another example, insist on uncorrelated errors between any pair of

ordered blocks.

Recently, some advances have been achieved on graphical conditions for identi-

8



fication [Pea98, Pea00a, SRM98]. Examples of such conditions are the “back-door”

and “single-door” criteria [Pea00a, pp. 150–2]. The backdoor criterion consists of a d-

separation test applied to the causal diagram, and provides a sufficient condition for the

identification of specific causal effects in the model. A problem with such conditions is

that they are applicable only in sparse models, that is, models rich in conditional inde-

pendence. The same holds for criteria based on instrumental variables (IV) (Bowden

and Turkington, 1984), since these require search for variables (called instruments)

that are uncorrelated with the error terms in specific equations.

9



CHAPTER 2

Problem Definition and Background

2.1 Structural Equation Models and Identification

A structural equation model � for a vector of observed variables� � ���� � � � � ���
� is

defined by a set of linear equations of the form

�� �
�

�

����� � �� � for � � �� � � � � �.

Or, in matrix form

� � � �� � 	

where � � ����� and 	 � ���� � � � � ���
�.

The term �� in each equation corresponds to an stochastic error, assumed to have

normal distribution with zero mean. The model also specifies independence assump-

tions for those error terms, by the indication of which entries in the matrix � � �
��� �

������� ��� have value zero.

In this work, we consider only recursive models, which are characterized by the

fact that the matrix � is lower triangular. This assumption is reasonable in many

domains, since it basically forbids feedback causation. That is, a sequence of variables

��� � � � � �� where each �� appears in the right-hand side of the equation for ����, and

variable � appears in the equation for �.

10



The structural assumptions encoded in a model � consist of:

(1) the set of variables omitted in the right-hand side of each equation (i.e., the zero

entries in matrix �); and,

(2) the pairs of independent error terms (i.e., zero entries in �).

The set of parameters of model � , denoted by �, is composed by the (possibly)

non-zero entries of matrices � and �.

A parametrization � for model � is a function � � � � � that assigns a real

value to each parameter of the model. The pair ����� determines a unique covariance

matrix over the observed variables, given by [Bol89]:

�� ��� �
�
� � ����

���

����
��
� � ����

���
�
�

(2.1)

where ���� and ���� are obtained by replacing each non-zero entry of � and � by

the respective value assigned by �.

Now, we are ready to define formally the problem of Identification in SEM.

Definition 1 (Model Identification) A structural equation model� is said to be iden-

tified if, for almost every parametrization � for � , the following condition holds:

����� � ����
�� �� � � �� (2.2)

That is, if we view parametrization � as a point in ����, then the set of points in which

condition (2.2) does not hold has Lebesgue measure zero.

The identification status of simple models can be determined by explicitly calcu-

lating the covariances between the observed variables, and analyzing if the resulting

11



expressions imply a unique solution for the parameters. This method is illustrated in

the following examples.

Consider the model defined by the equations:

�����������
����������

� � ��

� � ��

� � �� � ��

� � �� � �� � ��

���
��

�	
��� � �� � � �

�	
��� � �� � � 
(2.3)

where the covariances of pairs of error terms not listed above are assumed to be zero.

We also make the assumption that each of the observed variables has zero mean and

is standardized (i.e., has variance 1). This assumption is not important because, if this

is not the case, a simple transformation can put the variables in this form. Immediate

consequences of this last assumption are: �	
��� � � � ��� � � � and � ����� �

�����.

Calculating the covariances between observed variables, we obtain:

�	
��� � � � ��� � � �

� ��� � ��� � �� ��

� �� ����� � �	
��� � �� �

� �

(2.4)

and, by similar derivations,

�	
���� � � �

�	
���� � � �� � 

�	
��� �� � �� �

�	
����� � � � �

�	
����� � �� � ��

(2.5)
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Now, it is easy to see that the values of parameters �� �� � are uniquely deter-

mined by the covariances ������ � �, ������	 � and ������	 �. Parameters 
 and

� are obtained by solving the system formed by the expressions for ������ �� and

����	���. Hence, if two parametrizations  and � induce the same covariance ma-

trix they must be identical, and the model is identified.

Note, however, that this argument does not hold if parameter � is exactly 1. In this

case, the equations for ������ �� and ����	��� do not allow us to obtain a unique

solution for parameters 
 and �. A unique solution can still be obtained from the

expression for ��������, but if we also have � � � � �, then the parameters 
 and �

are not uniquely determined by the covariance matrix of the observed variables. This

explains why we only require condition (2.2) to hold for almost every parametrization,

and allow it to fail in a set of measure zero.

The simplest example of a non-identified model corresponds to:

�������
������

�� � ��

�� � ��� � ��

������� ��� � �

In this case, the covariance matrix for the observed variables ��, �� contains only

one entry, whose value is given by:

������� ��� � ���� � ���� ����� � �����

� ���� � ���� � ����

� �� ������ � ������� ���

� �� �

Now, given any parametrization , it is easy to construct another one parametriza-

tion � �� , with ������� � ���������. But this implies that �� �� � ���
��,

and so the model is non-identified.

13



W

YX Z

� � ��

� � ��

� � �� � ��

� � �� � �� � ��

������� �� � � �

������ � �� � � �

α
β

a c

b

Figure 2.1: A simple structural model and its causal diagram

In general, if a model � is non-identified, for each parametrization � there exists

an infinite number of distinct parametrizations � � such that �� ��� � �� ��
��. How-

ever, it is also possible that for most parametrizations � only a finite number of distinct

parametrizations generate the same covariance matrix. We will return to this issue in

Chapter 6, where we study sufficient conditions for non-identification, and will provide

an example of this situation.

A few other algebraic methods, like algebra of expectations [Dun75], have been

proposed in the literature. However, those techniques are too complicated to analyze

complex models. Here, we pursue a different strategy, and study the identification

status of SEM models using graphical methods. For this purpose, we introduce the

graphical representation of the model, called a causal diagram [Pea00a].

The causal diagram of a model � consists of a directed graph whose nodes corre-

spond to the observed variables ��� � � � � �� in the model. A directed edge from �� to

�� indicates that �� appears on the right-hand side of the equation for �� with a non-

zero coefficient. A bidirected arc between �� and �� indicates that the corresponding

error terms, �� and ��, have non-zero correlation. The graphical representation can be

completed by labeling the directed edges with the respective coefficients of the linear

equations, and the bidirected arcs with the non-zero entries of the covariance matrix

14
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Figure 2.2: A causal diagram

�. Figure 2.1 shows the causal diagram for the example given in Eq. (2.3). Note that

the causal diagram of a recursive model does not have any cycle composed only of

directed edges.

The next section presents some basic definitions and facts about the type of directed

graphs considered here. Then, in section 2.3 we establish the connection between the

Identification problem and the graphical representation of the model.

2.2 Graph Background

A path between variables � and � in a causal diagram consists of a sequence of edges

���� ��� � � � � ��� such that �� is incident to � , �� is incident to � , and every pair of

consecutive edges in the sequence has a common variable. Variables � and � are

called the extreme points of the path, and every other variable appearing in some edge

�� is said to be an intermediate variable in the path. We say that the path points to

extreme point � (� ) if the edge �� (��) has an arrow head pointing to � (� ).

For example, the following are some of the paths between � and � in the causal

diagram of Figure 2.2:

15



� � � � � � � �

� � � � � � � �

� � � � � � � � � �

� � � � � � � � � � �� � �

Note that only the third path points to variable � , but all of them point to � .

A path � � ���� 	 	 	 � ��� between � and � is valid if variable � only appears in

��, variable � only appears in ��, and every intermediate variable appears in exactly

two edges in the path. Among the examples above, only the first three are valid. The

last one is invalid because variable � appears in more than two edges.

The special case of a path composed only by directed edges, all of which oriented

in the same direction, is called a chain. The first example above corresponds to a chain

from � to � .

We will also make use of a few family terms to refer to variables in particular

topological relationships. Specifically, if the edge � � � is present in the causal

diagram, then we say that � is a parent of � . Similarly, if there exists a chain from

� to � , then � is said to be an ancestor of � , and � is a descendant of � . Clearly,

in a recursive model, we cannot have the situation where � is both an ancestor and a

descendant of some other variable � . In the causal diagram of Figure 2.2, � and �

are the parents of variable � , and � is an ancestor of both � and � .

Given a path � between � and � , and an intermediate variable � in �, we denote

by ���		�� the path consisting of the edges of � that appear between � and �. 1

Variable � is a collider in path a � between � and � , if both ���		�� and ���		� �

�Here, and in most of the following, we are only concerned about valid paths, so this concept is
well-defined
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point to �. A path that does not contain any collider is said to be unblocked. Next, we

consider a few important facts about unblocked paths.

Define the depth of a node � in a causal diagram as the length (i.e., number of

edges) of the longest chain from any ancestor of � to � . Nodes with no ancestors

have depth 0.

Lemma 1 Let � and � be nodes in the causal diagram of a recursive model such that

depth(X) � depth(Y). Then, every path between � and � which includes a node �

with depth(Z) � depth(X) must have a collider.

Proof: Consider a path � between � and � and node � satisfying the conditions

above. We observe that � cannot be an ancestor of either � or � , otherwise we would

have depth��� � depth��� or depth��� � depth�� �.

Now, consider the subpath of � between � and � . If this subpath has the form

� � � � � � , then it must contain a collider, since it cannot be a directed path from �

to � . Similarly, if the subpath of � between � and � has the form � � � �� �, then it

must contain a collider.

In all the remaining cases � is a collider blocking the path. �

If � is a path between � and � , and � is a path between � and �, then ��� denotes

the path obtained by the concatenation of the sequences of edges corresponding to �

and �.

Lemma 2 Let � be an unblocked path between � and � , and let � be an unblocked

path between � and �. Then, �� � is a valid unblocked path between � and � if and

only if:

(i) � and � do not have any intermediate variable in common;
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Figure 2.3: A causal diagram

(ii) either � is a chain from � to � , or � is a chain from � to �.

Definition 2 ��-separation�

A set of nodes � �-separates � from � in a graph, if � closes every path between �

and � . A path � is closed by a set � (possibly empty) if one of the following holds:

(i) � contains at least one non-collider that is in �;

(ii) � contains at least one collider that is outside � and has no descendant in �.

For example, consider the path � � � � � � � in Figure 2.3. This path is

closed by any set containing variables � or � . On the other hand, the path � � � �

� � � � � is closed by the empty set ��, but is not closed by any set containing

� or � but not � or � . It is easy to verify by inspection that the set ��	�� closes

every path between � and � , and so ��	�� d-separates � from � .

2.3 Wright’s Method of Path Analysis

The method of path analysis [Wri34] for identification is based on a decomposition of

the correlations between observed variables into polynomials on the parameters of the
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Figure 2.4: Wright’s equations.

model. More precisely, for variables � and � in a recursive model, the correlation

coefficient of � and � , denoted by ��� , can be expressed as:

���� �
�

paths ��

� ���� (2.6)

where the term � ���� represents the product of the parameters of the edges along path

��, and the summation ranges over all unblocked paths between � and � . For this

equality to hold, the variables in the model must be standardized (i.e., variance equal

to 1) and have zero mean. We refer to Eq.(2.6) as Wright’s decomposition for ��� .

Figure 2.4 shows a simple model and the decompositions of the correlations for each

pair of variables.

The set of equations obtained from Wright’s decompositions summarizes all the

statistical information encoded in the model. Therefore, any question about identifica-

tion can be decided by studying the solutions for this system of equations. However,

since this is a system of non-linear equations, it can be very difficult to analyze the

identification of large models by directly studying the solutions for these equations.
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CHAPTER 3

Auxiliary Sets for Model Identification

3.1 Introduction

In this chapter we investigate sufficient conditions for model identification. Specifi-

cally, we want to find graphical conditions on the causal diagram that guarantee the

identification of every parameter in the model. One example of the type of result ob-

tained here is the Bow-Free Condition, which states that every model whose causal

diagram has at most one edge connecting any pair of variables is identified.

The starting point for our analysis of identification is the set of equations provided

by Wright’s decompositions of correlations. Then, we make the following important

observation.

For an arbitrary variable � , let � be a set of incoming edges to � (i.e., edges with

an arrow head pointing to � ). Then, any unblocked path in the causal diagram can

include at most one edge from �. This follows because if two such edges appear in

a valid path, then they must be consecutive. But since both edges point to � (e.g.,

� � �� � � � � �), the path must be blocked.

Now, recall that each term in the polynomial of Wright’s decomposition corre-

sponds to an unblocked path in the causal diagram. Thus, the observation above im-

plies that such polynomials are linear in the parameters of the edges in �.

Hence, our approach to the problem of Identification in SEM can be summarized
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as follows. First, we partition all the edges in the causal diagram into sets of incoming

edges. Then, we study the identification of the parameters associated with each set by

analyzing the solution of a system of linear equations.

Two conditions must be satisfied to obtain the identification of the parameters cor-

responding to a set of edges �. First, there must exist a sufficient number of linearly

independent equations. Second, the coefficients of these equations, which are func-

tions of other parameters in the model, must be identified.

To address the first issue, we developed a graphical characterization for linear in-

dependence, called the G Criterion. That is, for a fixed variable � , if a set of variables

���� � � � � ��� satisfies the graphical conditions established by the G criterion, then the

decompositions of ����
� � � � � ���� are linearly independent (with respect to the param-

eters of edges in �). These conditions are based on the existence of specific unblocked

paths between � and each of the ��’s.

The second point is addressed by establishing an appropriate order to solve the

systems of equations.

The following sections will formally develop this graphical analysis of identifica-

tion.

3.2 Basic Systems of Linear Equations

We begin by partitioning the set of edges in the causal diagram into sets of incoming

edges.

Fix an ordering � for the variables in the model, with the only restriction that if

���	
��� � ���	
�� �, then � must appear before � in �. For each variable � , we

define ���� � as the set of edges in the causal diagram that connect � to any variable

appearing before � in the ordering �.
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It easily follows from this definition that, for each variable � , ����� � contains all

directed edges pointing to � (i.e., � � � ).

Lemma 3 Any unblocked path between � and some variable � can include at most

one edge from ����� �. Moreover, if ���	
��� � ���	
�� �, then any such path must

include exactly one edge from ����� �.

Proof: The first part of the lemma follows from the argument given in Section 3.1. For

the second part, assume that � is an unblocked path between � and � , which does not

contain any edge from ����� �. Let � be the variable adjacent to � in path �. Clearly,

���	
�� � � ���	
�� � (otherwise edge ���� � would belong to ����� �). But then

Lemma 1 saysays that � contains a collider, which is a contradiction. �

Now, fix an arbitrary variable � , and let �� � � � � � denote the parameters of the

edges in ����� �. Then, Lemma 3 allows us to express Wright’s decomposition of the

correlation between � and � as a linear equation on the �’s:

���� � �� �
��

���

�� � �

where �� � � if ���	
��� � ���	
�� �.

Figure 3.1 shows the linear equations obtained from the correlations between �

and every other variable in a model.

Now, given a set of variables � � ���� � � � � ���, we let ���� 1 denote the system

of equations corresponding to the decompositions of correlations ���� � � � � � ���� :

����������
���������

���� � ��� �
��
���

��� � �

� � �

���� � ��� �
��
���

��� � �

�Whenever clear from the context, we drop the reference to � and simply write � �.

22



����
� ��� � ���

����
� ��� � ���

����
� �� � �� � ��� � �� ���

����
� ��� � �� ��� � �� � ��

Z1

Y

X2X1

Z2

a

bf

e

λ2 λ3
λ1 λ4

Figure 3.1: Wright’s equations.

3.3 Auxiliary Sets and Linear Independence

Following the ideas presented in Section 3.1, we would like to find a set of variables

that provides a system of linearly independent equations. This motivates the following

definition:

Definition 3 (Auxiliary Sets) A set of variables � � ���� � � � � ��� is said to be an

Auxiliary Set with respect to � if and only if the system of equations ���� is linearly

independent.

Next, we obtain sufficient graphical conditions for a given set of variables to be

an auxiliary set for � . Since the terms in Wright’s decompositions correspond to

unblocked paths, it is natural to expect that linear independence between equations

translate into properties of such paths. In the following, we explore this connection by

analyzing a few examples, and then we introduce the G criterion.

For each of the models in Figure 3.2 we will verify if the set � � ���� ��� qualifies

as an Auxiliary Set for � . In model ��, the system of equations �� is given by:
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Figure 3.2: Figure

���
��
���� � ��� � ���

���� � ��� � ���

It is easy to see that the equations are linearly independent 2, and so � is an Auxiliary

Set for � . We also call attention to the fact that unblocked paths �� � �� � 	� � �

and �� � �� � 	� � � have no intermediate variables in common.

In model 
�, system �� is formed by:

���
��
���� � ��� � ���

���� � ���� � ���� � � � ���� � ����

Clearly, the equations are not linearly independent in this case. This occurs because

every unblocked path between �� and � in 
� can be extended by the edge �� � ��

to give an unblocked path between �� and � .

Finally, in model 
�, the system �� is given by:
�This is not true if ad = bc, but this condition only holds on a set of measure zero (see discussion in

Section 2.1)
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Figure 3.3: Example illustrating condition ���� in the G criterion

���
��

���� � ��� � ���

���� � ����

and again we obtain a pair of linearly independent equations. The important fact to

note here is that, if we extend path �� � �� � � by edge �� � ��, we obtain a path

blocked by ��.

In general, the situation can become much more complicated, with one equation

being a linear combination of several others. However, as we will see in the following,

the examples discussed above illustrate the essential graphical properties that charac-

terize linear independence.

G Criterion: A set of variables� � ���	 
 
 
 	 ��� satisfies the G criterion with respect

to � if there exist paths ��	 
 
 
 	 �� such that:

(i) �� is an unblocked path between �� and � including some edge from ���� �;

(ii) for � � �, �� is the only possible common variable in paths �� and �� (other than

� ), and in this case, both �� and �����

��� must point to �� (see Figure 3.3 for

an example).
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Next, we prove a technical lemma, and then establish the main result of this Chap-

ter.

Let � � ���� � � � � ��� be a set of variables, and assume that paths ��� � � � � ��

witness the fact that � satisfies the G criterion with respect to � . Let ��� � � � � ��

denote the parameters of the edges in ����� �, and, without loss of generality, assume

that, for � � 	 � 
, path �� contains the edge with parameter ��. (It is easy to see

that condition �		� of the G criterion does not allow paths �� and �� to have a common

edge.)

Lemma 4 For � � 	, let � be an unblocked path between �� and � including the

edge with parameter ��. Then, � must contain an edge that does not appear in any of

��� � � � � ��.

Proof: Without loss of generality, we may assume that, for all � � � � � 
, if both

variables ��� �� appear in path ��, and �� is an intermediate variable in ����������, then

 � �. If this is not the case, then we can always rename the variables such that this

condition holds, and condition �		� of the G criterion is not violated.

Now, let � be a path satisfying the conditions of the lemma, and assume that �

contains only edges appearing in ��� � � � � ��. In the following we show that � must be

blocked by a collider.

Clearly, we can divide the path � into segments ��� � � � � �� such that all the edges in

each segment belong to the same path ��.

Now, note that variable �� can appear only in a path �� for � � � (from condition

�		� of the G criterion). On the other hand, the edges of the last segment �� belong to

path ��.

Since � � 	, there must exist two consecutive segments ��, ���� and indices � �

� � �, such that the edges in �� belong to �	 and the edges in ���� belong to �
.
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The common variable of �� and ���� appear in both �� and ��. Since � � �, it must

be ��, and ���� must point to it.

If the edges in �� belong to subpath ����������, then �� also points to ��. In this

case, �� is a collider in path � and the lemma follows.

In the other case, �� cannot be the first segment of path �, and we consider segment

���� whose edges belong to, say, path ��. Since we assumed that ���� is the first

segment with edges from a path �� with � � 	, we conclude that 
 � �.

But we also have that �� appears in subpath ����������, and the initial assumption

is that � � 
. Thus, we have a contradiction, and the lemma follows. �

Theorem 1 If the set of variables � � ���� � � � � ��� satisfies the G criterion with

respect to � , then � is an Auxiliary Set for � .

Proof: The system of equations �� can be written in matrix form as:

 � � � �

where  � ����� � ���� � � � ���� � �����
�, � � ���	� is a � by � matrix, and � �

��� � � � �
�
�.

Let �� denote the submatrix corresponding to the first � columns of �. We will

show that ������� �� �, which implies that ������� � � and the equations in �� are

linearly independent with respect to the ��’s.

Applying the definition of determinant, we obtain

������� �
�

�

�������
��

	��

�	��	� (3.1)

where the summation ranges over all permutations of ��� � � � � ��, and ��� denotes the

parity of permutation �.
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First, observe that entry ��� corresponds to unblocked paths between �� and �

including the edge from ����� � with parameter ��. In particular, �� is one of these

paths, and we can write ��� �
�
� ����
��

���

��

�
. This implies that the term � � �

��
�

� ����
��

�

appears in the summand corresponding to permutation 	 � ��
 � � � 
 ��. Also, note that

every factor in � � is the parameter of an edge in some ��.

On the other hand, any term in the summand of a permutation distinct from 	

must contain a factor from some entry ���, with  � �. Such an entry corresponds to

unblocked paths between �� and � including the edge from ����� � with parameter

��. But lemma 4 says that those paths must have at least one edge that does not appear

in any of ��
 � � � 
 ��. This implies that � � is not cancelled out by any other term in 3.1,

and so ������� does not vanish, completing the proof of the theorem. �

3.4 Model Identification Using Auxiliary Sets

Assume that for each variable � there is an Auxiliary Set �� , with ��� � � ������ ��.

This implies that for each � there exists a system of linear equations ���
that

can be solved uniquely for the parameters ��
 � � � 
 �� of the edges in ����� �. This

fact, however, does not guarantee the identification of the ��’s, because the solution for

each �� is a function of the coefficients in the linear equations, which may depend on

non-identified parameters.

To prove identification we need to find an appropriate order to solve the systems

of equations. This order will depend on the variables that compose each auxiliary set.

The following theorem gives a simple sufficient condition for identification:

Theorem 2 Assume that the Auxiliary Set �� of each variable � satisfies:

(i) ��� � � ������ ��;
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(ii) ��������� � ������� �, for all �� � �� .

Then, the model is identified.

Proof: We prove the theorem by induction on the depth of the variables.

Let � be a variable at depth 0.

Note that �	
�� � can only contain bidirected edges connecting � to another vari-

able at depth 0. Let ���� � � �	
�� �. Observing that the only unblocked path be-

tween � and � consists precisely of edge ���� �, we get that the parameter of edge

���� � is identified and given by �� .

Now, assume that, for every variable � at depth smaller than �, the parameters of

the edges in �	
��� are identified.

Let � be a variable at depth �, and let �� � �� . Lemma 1 implies that every

intermediate variable of an unblocked path between �� and � has depth smaller than

�. The inductive hypothesis then implies that the coefficient of the linear equations in

��� are identified. Hence, the parameters of the edges in �	
�� � are identified. �

In the general case, however, the auxiliary set for some variable � may contain

variables at greater depths than � , or even descendants of � . This would force us to

solve the systems of equations in a different order than the one established by the depth

of the variables.

In the following, we provide two rules that impose restrictions on the order in

which the linear systems must be solved. We will see that if these restrictions do not

generate a cycle, then the model is identified.

R1: If, for every bidirected edge ���� � � in �	
�� �, variable �� is not an ancestor of

any �� � �� , then ��� can be solved at any time.

R2: Otherwise,
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Figure 3.4: Example illustrating rule R����.

a) For every � � �� , ��� must be solved before ��� is solved.
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b) If � � �� is a descendant of � , and ����� is a bidirected edge with � an

ancestor of � , then for every� lying on a chain from � to � (see Figure 3.4),

��� must be solved before ��� .

For a model � and a given choice of Auxiliary Sets, the restrictions above can be

represented by a directed graph, called the dependence graph �� , as follows:

� Each node in �� corresponds to a variable in the model;

� There exists a directed edge from � to � in �� if rule R1 does not apply to � ,

and rule R2 imposes that ��� must be solved before ��� .

The next theorem states our general sufficient condition for model identification:

Theorem 3 Assume that there exist Auxiliary Sets for each variable in model� , such

that the associated dependence graph �� has no directed cycles. Then, model � is

identified.

The proof of the theorem is given in appendix A.

Figure 3.5 shows an example that illustrates the method just described. Apparently,

this is a very simple model. However, it actually requires the full generality of Theorem

3. The Figure also shows the auxiliary sets for each variable, and the corresponding

dependence graph �� . The fact that rule �� can be applied to variable � avoids a

dependence of � on � and eliminates the possibility of a cycle.

3.5 Simpler Conditions for Identification

The sufficient condition for identification presented in the previous section is very

general, but complicated to verify by visual inspection of the causal diagram. The
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Figure 3.5: Example illustrating Auxiliary Sets method.

main difficulty resides in finding the required unblocked paths witnessing that a set

of variables is an Auxiliary Set. A solution for this problem is provided in Chapter 4,

where we develop an algorithm to find an appropriate Auxiliary Set for a fixed variable

� . However, simple conditions for identification still seem to be useful, and this is the

subject of this section.

3.5.1 Bow-free Models

A bow-free model is characterized by the property that no pair of variables is connected

by more than one edge. Actually, this represents the simplest situation for our method

of identification.

Corollary 1 Every bow-free model is identified.
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Proof: Fix an arbitrary variable � , and let � � ���� � � � � ��� be the set of variables

such that, for � � �� � � � � �, edge ���� � � belongs to ����� �. Since the model is bow-

free, it follows that ��� � ������ ��. Moreover, the set of paths �	�� � � � � 	��, where

each 	� is the trivial path consisting of the single edge ���� � �, witnesses that � is an

Auxiliary Set for � .

Now, let � be the ordering used in th construction of the sets of incoming edges

����� �. Then, for every � , all the variables in �� appear before � in �. This implies

that the dependence graph 
� is acyclic, and the corollary follows. �

Figure 3.6 shows an interesting example. A brief examination of this causal dia-

gram will reveal that no conditional independence holds among the variables � , � ,

� and � . As a consequence, most traditional methods for Identification (e.g., Instru-

mental Variables, Back-door criterion) would fail to classify this model as identified.

However, as can be easily verified, this model is bow-free and hence identified.

3.5.2 Instrumental Condition

From the preceding result, it is clear that all the problems for identification arise from

the existence of bow-arcs in the causal diagram (i.e., pairs of variables connected by

both a directed and a bidirected edge). Let us examine this structure in more detail and

try to understand why it represents a problem for identification.
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Assume that there is a bow-arc between variables � and � , and let Æ, � denote

the parameters of the directed and bidirected edges in the bow, respectively. Then,

Wright’s decomposition for correlation ��� gives 3:

��� � Æ � �

Now, if this is the only constraint on the values of Æ and �, then there exists an infinite

number of solutions for Æ and � that are consistent with the observed correlation ��� .

This situation occurs, for example, when both edges in the bow point to � , and there is

no other edge in the model with an arrow head pointing to � . In this case, by analyzing

the decomposition of the correlations between any pair of variables, we observe that

either they do not depend on the values of Æ, � at all, or they only depend on their

sum (See Figure 3.7(a) for an example). From this observation it is possible to derive

a proof that any such model is non-identified. Similar techniques will be explored in

Chapter 6 to obtain graphical conditions for non-identification.

Now, consider the situation where there exists a third variable � with a directed

edge pointing to � . A variable � with such properties is sometimes called an Instru-

mental Variable. Figure 3.7(b) shows an example of this situation, with the respective

decompositions of correlations. It is easy to verify that there exists a unique solution

for parameters �� Æ� � in terms of the observed correlations.

Hence, the basic idea for our next sufficient condition for identification is to find,

for each bow-arc between �� and � , a distinct variable �� with an edge pointing to ��.

The condition is precisely stated as follows.

For a fixed variable � let ��	�� � � ���� 
 
 
 � ��� be the set of variables that are

connected to � by a directed and a bidirected edges, both pointing to � .
�Here, we are assuming that there is no other unblocked path between � and � .
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Figure 3.7: Examples illustrating the instrumental condition.

Instrumental Condition: We say that a variable � satisfies the Instrumental Condi-

tion if, for each variable �� � ����� �, there exists a unique variable �� satisfying:

(i) ���	
���� � ���	
�� �;

(ii) �� is not connected to � by any edge;

(iii) there exists an edge between �� and �� that points to ��.

Corollary 2 Assume that the Instrumental Condition holds for every variable in model

� . Then model � is identified.
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CHAPTER 4

Algorithm

In some elaborate models, it is not an easy task to check if a set of variables satisfies

the GAV criterion. Moreover, the criterion itself does not provide any guidance to find

a set of variables satisfying its conditions. In this chapter we present an algorithm that,

finds an Auxiliary Set �� for a fixed variable � , if any such set exists.

The basic idea is to reduce the problem to an instance of the maximum flow prob-

lem in a network.

Cormen et al [CCR90] define the maximum flow problem as follows. A flow

network � � ����� is a directed graph in which each edge ��� �� � � has a non-

negative capacity ���� �� � �. We distinguish two vertices in the flow network: a

source � and a sink �. A flow in � is a real-valued function 	 � � �� � �, satisfying:

� 	 ��� �� � ���� ��, for all �� � � � ;

� 	 ��� �� � �	 ��� ��, for all �� � � � ;

�
�

��� 	 ��� �� � �, for all � � � � ��� �	.

That is, condition �
� states that the amount of flow on any edge cannot exceed its

capacity; condition �

� says that the amount of flow running on one direction of an

edge is the same as the flow in the other direction, but with opposite sign; and condition

�


� establishes that the amount of flow entering any vertex must be the same as the

amount of flow leaving the vertex.
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Intuitively, the value of a flow � is the amount of flow that is transfered from the

source � to the sink �, and can be formally defined as

�� � �
�

���

� ��� ��

In the maximum flow problem, we are given a flow network �, with source � and

sink �, and we wish to find a flow of maximum value from � to �.

Before describing the construction of the flow network, we make a few observa-

tions. Fix an arbitrary variable � .

Lemma 5 Assume that the set of variables � satisfies the conditions of the GAV crite-

rion with respect to � . Then, there exists a set of variables �� and paths ��� � � � � ����

such that

(i) ��� � ����

(ii) ��� � � � � ���� witness that �� satisfies the GAV criterion;

(iii) for 	 � �� � � � � ���, every intermediate variable in �� belongs to ��.

Proof: Let � � �
�� � � � � 
��, and let ��� � � � � �� be paths witnessing that � satisfies

the GAV criterion. The lemma follows from the next observation.

Let � �� � be an intermediate variable in the path �� associated with variable


� � �. Then the paths ��� � � � � ����� ������� �� ����� � � � � �� witness that �
�, � � �,


���,� ,
���, � � �, 
�� satisfies the GAV criterion with respect to � . �

Let � be a set of variables, and ��� � � � � �� be paths satisfying the conditions of

Lemma 5. Then, it follows that each of the paths �� must be either a bidirected edge

�
� � � �, or a chain �
� � � � �� � �, or the concatenation of a bidirected edge with

a chain �
� � 
� � � � �� � �.
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From these observations we conclude that, in the search for an Auxiliary Set for

� , we only need to consider:

� ancestors of � ;

� variables connected by a bidirected edge to either � or an ancestor of � ;

Now, from condition ���� of the GAV criterion, we get that an ancestor �� of � can

appear in at most two paths: (1) the path �� between �� and � ; and (2) some path ��,

as an intermediate variable. To allow this possibility, for each ancestor of � , we create

two vertices in the flow network.

Since non-ancestors of � can appear in at most one path, there will be only one

vertex in the flow network corresponding to each such variable.

Directed edges between ancestors of � in the causal diagram are represented by

directed edges between the corresponding vertices in the flow network. Bidirected

edges incident to � and non-ancestors of � are also represented by directed edges.

Bidirected edges between ancestors �� and �� require special treatment, because they

can appear as the first edge of either �� or ��, but not in both of them. To enforce this

restriction we make use of an extra vertex.

Next, we define the flow network �� that will be used to find an Auxiliary Set for

� .

The set of vertices of �� consists of:

� for each ancestor � of � , we include two vertices, denoted �� and �
�� ;

� for each non-ancestor � , we include vertex �� ;

� for each bidirected edge � � � connecting ancestors of � , we include the

vertex ��� ;
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� a source vertex �;

� a sink vertex �, corresponding to variable � .

The set of edges of �� is defined as follows:

� for each ancestor � of � , we include the edge �
�
� �

��
;

� for each directed edge � � � in the causal diagram, connecting ancestors of � ,

we include the edge �
�
� �

�
;

� for each directed edge � � � , we include the edge �
�
� �;

� for each bidirected edge � �, where � is an ancestor of � , we include the edge

�
��
� �;

� for each bidirected edge � � �, where � is a non-ancestor and � is an ances-

tor of � , we include the edge �� � �
�

;

� for each bidirected edge � � � , where � is a non-ancestor, we include the

edge �� � �;

� for each bidirected edge � � � , where both � and � are ancestors of � , we

include the edges: �
��
� ��� , �

��
� ��� , ��� � �

�
, ��� � �

�
;

� for each ancestor � of � , we include the edge �� �
��
;

� for each non-ancestor � , we include the edge �� �� .

To solve the maximum flow problem on the flow network �� defined above, we

assign capacity 1 to every edge in �� . We also impose the additional constraint of

maximum incoming flow capacity of 1 to every vertex in �� (this can be implemented
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by splitting each vertex into two and connecting them by an edge of capacity 1), except

for vertices � and �.

We solve the Max-flow problem using the Ford-Fulkerson algorithm. From the

integrality theorem ([CCR90], p.603), the computed flow � allocates a non-negative

integer amount of flow to each edge in �� . Since we assign capacity 1 to every edge,

this solution corresponds to disjoint directed paths from � to �. The Auxiliary Set

returned by the algorithm is simply the set of variables corresponding to the first vertex

in each path.

Theorem 4 The algorithm described above is sound and complete. That is, the set of

variables returned by the algorithm is an Auxiliary Set for � with maximum size.

Proof: Fix a variable � in model � , and let �� be the corresponding flow net-

work. Let � be the flow computed by the Ford-Fulkerson algorithm on �� , and let

� � �� �.

As described above, we interpret the flow solution � as a set of edge disjoint paths

� � ���	 
 
 
 	 ��� from the source � to the sink �.

First, we show that each such path corresponds to an unblocked path in the causal

diagram of � . Let �� � � � �� � �� � 
 
 
 � �� � � be one of the paths in � . We

make the following observations:

� �� is either a vertex � corresponding to a non-ancestor of � , or a vertex  ��

corresponding to an ancestor � of � in the causal diagram.

� for � � �	 
 
 
 	 �, each �� is either a vertex � corresponding to ancestor � of � ,

or a vertex �� corresponding to a bidirected edge between ancestors � and �

of � , but the later can only occur if � � � and  �� .
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Now, we establish a correspondence between the edges of �� and the edges of the

causal diagram.

1. The directed edge �� � � corresponds to the directed edge from the respective

ancestor �� to variable � .

2. If two vertices �� and ���� are both vertices of the type ���
and �����

, then the edge

�� � ���� in �� corresponds to the edge �� � ���� in the causal diagram.

3. If �� is a vertex of type �� , then the edge �� � �� corresponds to the edge� � ��,

and path �� corresponds to the path � � �� � � � � � �� � � in the causal

diagram.

4. If �� is a vertex of type � �� and �� is a vertex of type ��� , then the edge �� � ��

corresponds to the edge 	 � ��, and path �� corresponds to the path 	 � �� �

� � �� �� � � in the causal diagram.

5. If �� is a vertex of type � �� and �� is of type ��� , then the edge �� � �� corresponds

to the edge	 � ��, and path �� corresponds to the path	 � �� � � � �� �� � �

in the causal diagram.

Now, let ��
 � � � 
 �� be the first vertices in each of the paths in � , and let 	�
 � � � 
 	�

be the variables associated with those vertices in the causal diagram.

Note that the constraint of maximum incoming flow capacity of 1 on the vertices

of �� implies that the paths ��
 � � � 
 �� are vertex disjoint (and also implies that the

variables 	�
 � � � 
 	� are all distinct). However, this constraint does not imply that the

corresponding paths in the causal diagram are vertex disjoint.

For an ancestor 	 of � , it is possible that vertices �� and � �� appear in distinct

paths �� and ��, and so 	 would appear in two of the corresponding paths on the causal
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Figure 4.1: A causal diagram and the corresponding flow network

diagram. In fact, this is the only possibility for a variable to appear in more than one

such paths, and in this case it is easy to verify that the conditions of the G criterion

hold. This proves that the algorithm is sound.

Completeness easily follows from the construction of the flow network, and the

optimality of Ford-Fulkerson algorithm �

Figure 4.1 shows an example of a simple causal diagram and the corresponding

flow network �� .

Theorem 5 The time complexity of the algorithm described above is �����.

Proof: The theorem easily follows from the facts that the number of vertices in

the flow network is proportional to the variables in the model, and that Ford-Fulkerson

algorithm runs in �����, where � is the size of the flow network. �
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CHAPTER 5

Correlation Constraints

It is a well-known fact that the set of structural assumptions defining a SEM model

may impose constraints on the covariance matrix of the observed variables [McD97].

That is, a given set of structural assumptions may imply that the value of a particular

entry in �� is a function of some other entries in this matrix.

An immediate consequence of this observation is that a model� may not be com-

patible with an observed covariance matrix ��, in the sense that for every parametriza-

tion � we have �� ��� �� ��. This allows to test the quality of the model. That is, by

verifying if the constraints imposed by the structural assumptions are satisfied in the

observed covariance matrix (at least approximately), we either increase our confidence

in the model, or decide to modify (or discard) it.

The first type of constraint imposed by a SEM model is associated with d-separation

conditions. Such condition is equivalent to a conditional independence statement

[Pea00a], and implies that a corresponding correlation coefficient (or partial corre-

lation) must be zero. Figure 5.1 shows two examples illustrating how we can obtain

correlation constraints from d-separation conditions. In the causal diagram ���, it is

easy to see that variables � and � are d-separated (the only path between them is

blocked by variable �). This immediately gives that ��� � �. For the model in ���, it

follows that variables � and � are d-separated when conditioning on �. This implies

that ����� � �. Applying the recursive formula for partial correlations, we get:

43



Z

YX

W

Z

X

(a) (b)

W

Z

(c)

YX

γ

α

a b

c

Figure 5.1: D-separation conditions and correlation constraints.

����� �
��� � ��� � ����

�� ������ �
�
�� ������

� �

and so, ��� � ��� � ��� .

The d-separation conditions, however, do not capture all the constraints imposed

by the structural assumptions. In the model of Figure 5.1��� no d-separation condition

holds, but the following algebraic analysis shows that there is a constraint involving

the correlations ��� � �� �� ��� and ��� .

Applying Wright’s decomposition to these correlation coefficients, we obtain the

following equations:
�����������
����������

��� � � � ��

�� � � ��� �

��� � ��� ���

��� � ���� ��

Observe that factoring � out in the right-hand side of the equation for ��� , we

obtain the expression for ��� . Thus, we can write
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��� � � � ���

Similarly, we obtain

��� � � � �� �

Now, it is easy to see that the following constraint is implied by the two equations

above

��� �
��� � ���

�� �

Clearly, this type of analysis is not appropriate for complex models. In the fol-

lowing we show how to use the concept of Auxiliary Sets to compute constraints in a

systematic way.

5.1 Obtaining Constraints Using Auxiliary Sets

The idea is simple, but gives a general method for computing correlation constraints.

Fix a variable � , and let ��� � � � � �� denote the parameters of the edges in ����� �.

Recall that if �� � ���� � � � � ��� is an Auxiliary Set for � , then the decomposition of

the correlations ���� � � � � � ���� gives a linearly independent system of equations, with

respect to the ��’s. Let us denote this system by ��� .

Now, if ��� � � ������ ��, then this system of equations is maximal, in the sense

that any linear equation on parameters ��� � � � � �� can be expressed as a linear com-

bination of the equations in ��� . Hence, computing this linear combination for the

decomposition of ��� , where 	 �� �� , gives a constraint involving the correlations

among ��� � ���� � � � � � ���� .
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In the following, we describe the method in more detail.

Let �� � ���� � � � � ��� be an Auxiliary Set for � , and assume that ��� � �

������ ��. The decomposition of the correlations ���� � � � � � ���� can be written as:

�������
������

���� �
�
�

���
��� � 	�

� � �

���� �
�
�

���
��� � 	�

(5.1)

Or, in matrix form,

� � 
 � �

Since �� is an Auxiliary Set and ��� � � ������ ��, it follows that 
 is an � by �

matrix with rank �.

Now, let � �� �� � �� �, and write the decomposition of ��� as

��� �
��
���

� � 	� (5.2)

Clearly, the vector � � �� � � � �� can be expressed as a linear combination of the

rows of matrix 
 as

� �
��
���

�� � 
�

where 
� denotes the ��� row of matrix 
, and the ��’s are the coefficients of the linear

combination.

But this implies that we can express the correlation ��� as

��� �
��
���

�� � ����

by considering the left-hand side of Equations 5.1 and 5.2.
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Figure 5.2: Example of a model that imposes correlation constraints

We also note that the coefficients �� are functions of the parameters of the model.

But if the model is identified, then each of these parameters can be expressed as a func-

tion of the correlations among the observed variables. Hence, we obtain an expression

only in terms of those correlations.

To illustrate the method, let us consider the model in Figure 5.2. It is not difficult to

check that �� � ������ ��� ��� is an Auxiliary Set for variable � . Next, we obtain

a constraint involving the correlations ��� � ���� ��� and ����
.

The decompositions of the correlations between � and each variable in �� gives

the following system of equations:

��� �

�����������
����������

��� � ��� � ��� � 	
��

����
� �� � ���� � �	
��

����
� ���� � ���� � �	
��

����
� �	
�� � �	
�� � ��

and the decomposition of ��� gives the equation

��� � 	��� � 	��� � 
��

The corresponding matrix � and vector � are then given by:
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� �

�
����������

� � � ��

� �� � ���

�� � � ���

��� ��� � �

�
����������

� � ��� �� � ��

After some calculations, one can verify that vector � can be expressed as a linear

combination of the first and fourth rows of � as:

� �

�
�� ���

�� ����

�
�� �

�
�� ���

�� ����

�
�� (5.3)

Since the model is identified, we can express the parameters � and � in terms of the

correlation coefficients. In this case, we obtain � � ����
and � � ��� . Substituting

these expressions in Equation 5.3 and performing some algebraic manipulations, we

obtain the following constraint:

��� ��� ��
���

� ��
��

� � ��� � ��� ��� ��
���

� � ����
� ����

��� ��
��

�
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CHAPTER 6

Sufficient Conditions For Non-Identification

The ultimate goal of this research is to solve the problem of identification in SEM.

That is, to obtain a necessary and sufficient condition for identification, based only on

the structural assumptions of the model.

In Chapter 3, we introduced our graphical approach for identification, and provided

a very general sufficient condition for model identification. Indeed, we are not aware of

any example of an identified model that cannot be proven to be so using the method of

auxiliary sets. Here, we present the results of our initial efforts on the other side of the

problem. That is, we investigate necessary graphical conditions for the identification

of a SEM model.

The method of auxiliary sets imposes two main conditions to classify a model �

as identified. First, for each variable � in� we must find a sufficiently large auxiliary

set. Second, given the choice of auxiliary sets, a precedence relation is established

among the variables, and represented by a dependence graph �� . This graph cannot

contain any directed cycle.

A natural strategy, then, is to assume that one of these conditions does not hold,

and try to prove that the model is non-identified. The proof of non-identification is

conceptually simple. We begin with an arbitrary parametrization � for model � .

Then, we show that, under the specified conditions, it is possible to construct another

parametrization �� �� � such that �� ��� � �� ��
��. This proves that the model is
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non-identified.

6.1 Violating the First Condition

In this section we analyze two sets of conditions that prevent the existence of a suffi-

ciently large Auxiliary Set for a given variable � . In both cases we can show that they

imply the non-identification of the underlying model. These conditions, however, do

not provide a complete characterization of the situation where the first condition of the

Auxiliary Sets method does not hold. At the end of this section, we give an example

that illustrates this fact. At this point, such a characterization is the major difficulty to

obtaining a more general condition for non-identification.

The simplest example of non-identification, briefly discussed in Section 3.5.2, con-

sists of a model in which a pair of variables �� � is connected by a directed and a

bidirected edge, both pointing to � , and there is no other edge pointing to � in the

causal diagram (see Figure 6.1(a)).

The next theorem provides a simple generalization of this situation. We assume

that, for a fixed variable � , there exists an Auxiliary Set�� , with not enough variables.
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We also assume that every edge connecting a variable � � �� and a variable outside

�� ��� � does not point to� (see Figure 6.1(b)). Under these conditions, it is possible

to show that there exists no Auxiliary Set for � which is larger than �� . The theorem

proves that any such model is non-identified.

Theorem 6 Let � be an arbitrary variable in model � , and let �� � ���� � � � � ���

be an Auxiliary Set for � . Assume that

(i) ��� � � ������ ��;

(ii) �� only contains non-descendants of � ;

(iii) There exists no edge between some �� � �� and a variable 	 �� �� � �� �

pointing to ��.

Then, model � is non-identified.

Proof: Let 
�� � � � � 
� denote the parameters of the edges in ����� �. First, we es-

tablish that, for every pair of variables �� � the correlation �� only depends on the

values of the 
�’s through the correlations ��� � � � � � ��� . That is, any modification

of the values of the 
�’s that does not change the values of ��� � � � � � ��� , also does

not change the value of �� . This is formally stated as follows:

Lemma 6 Let � and � be arbitrary variables in model � . Then, the correlation ��

can be expressed as

�� � �� �
��

���

�� � ���

where the independent term �� and the coefficients ��’s do not depend on the parame-

ters 
�� � � � � 
�.
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The proof of the lemma is given in Appendix B.

Now, fix an arbitrary parametrization � for model� . This parametrization induces

a unique correlation coefficient for each pair of variables �� � , that we denote by

��� ���.

According to Wright’s decomposition, the correlations ���� ���� � � � � ���� ��� de-

pend on the values of parameters ��’s through the linear equations:

�������
������

���� ��� �
�
�

���
������ � ��

� � �

���� ��� �
�
�

���
������ � ��

Since ��� � 	 �
��� ��, this system of equations has more variables than equa-

tions, and so there exists an infinite number of solutions for the ��’s. The values as-

signed to the ��’s by parametrization � corresponds to one of these solutions. Any

other solution gives a parametrization � � with �� ��� � ����
��. �

The next theorem considers a much weaker set of assumptions that still prevent the

existence of an Auxiliary Set for  with enough variables. The theorem shows that

any such model is non-identified.

Let  be an arbitrary variable in model � , and let �� � ���� � � � � ��� be an

Auxiliary Set for  . Define the boundary of variables of �� , denoted �� , as the

subset of variables �� in �� for which there exists a variable � �� �� � � � and an

edge ������ pointing to ��.

Theorem 7 Assume that for a given variable  in model � , the following conditions

hold:

(i) ��� � 	 �
��� ��;

(ii) For any � �� �� , there exists no edge ��� � pointing to  ;
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Figure 6.2: Figure

(iii) For any �� � �� and �� � ��� ��� ���� �, there is no edge ���� ��� pointing

to ��.

Then, model � is non-identified.

The proof of this theorem in given in Appendix B.

Figure 6.2(a) shows a causal diagram satisfying the conditions in Theorem 7. In

this model, the Auxiliary Set for � is given by �� � ���� ��� ��� ��, with boudary

�� � ���� ��. Note that�� � � and � � �� are the only edges between a variable

in �� and a variable in ��� ��� � � �� �, and they do not point to � and ��.

Figure 6.2(b) shows a causal diagram where the conditions of Theorem 7 do not

hold. In this case, the Auxiliary Set for � is given by�� � ���� ��� ��� ��� ���, with

boudary �� � ����. Note that edge �� � �� violates condition �����. However, it is

still possible to show that there is no Auxiliary Set for � with more than 5 variables.
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6.2 Violating the Second Condition

In the previous section we studied the problem of identification under two sets of

assumptions. In both cases we could show that, for every parametrization � for model

� , there exists an infinite number of distinct parametrizations for� that generate the

same covariance matrix �����. We conjecture that this will be the case whenever the

first condition of the method of Auxiliary Sets fails. Equivalently, we believe that the

conditions that characterize an Auxiliary Set are also necessary for linear independence

among the equations given by Wright’s decompositions.

Surprisingly, the situation seems to be very different when the second condition

fails. Next, we discuss an example in which every variable has a large enough auxiliary

set, but the corresponding dependence graph�� contains a cycle. A simple algebraic

analysis shows that, for almost every parametrization �, there exists exactly one other

distinct parametrization � � such that �� ��� � ����
��.

At this point, we still cannot provide conditions for the existence of only a finite

number of parametrizations generating the same covariance matrix. So, we leave the

problem open. However, this seems to be an important question. According to the

definition in section 2.1, any such model would be considered non-identified. On the

other hand, if there exists only a small number of parametrizations compatible with the

observed correlations, the investigator can decide to proceed with the SEM analysis,

and decide which parametrization is more appropriate for the case in hand, based on

domain knowledge.

Consider the model illustrated by Figure 6.3. Applying Wright’s decomposition to

the correlations between each pair of variables, we obtain the following equations:

54



W

Z

Y

αa

b

c

X

β

γ

Figure 6.3: Figure

������������������
�����������������

��� � �� �

��� � ��� ���� �

��� � ��� ����� ���

�� � � �� ��

��� � ��� ����� ��

��� � �� ���

Using the equations for ��� and �� � , we can express parameters � and � in terms

of �:

� �
�� � � � � ���

�� � � ���
� �

��� � ��� � �� �

�� � � ���

Similarly, we use the equations for ��� and ��� , to obtain expressions for pa-

rameters � and � in terms of �:

� �
��� � � � ���

�� � � � � ���
� �

�� � � ��� � ��� � ���

�� � � � � ���

Now, substituting the expressions for �� � and � in the equation for ��� , we get
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��� �
��� � ����

�� � � ����
� �

�
�� � � ����

�� ����

� �
�� ���� � ������

�� � � ����

�

After some algebraic manipulation, we obtain the following quadratic equation in

terms of �:

������������ � ��� ��� � ����� ���� � ��
��

�� � �

������ ��� � ��� � �� ������� � ����� ���� � ������ � ��
� �

��� �

������ � � ��� � �

where it is possible to show that the coefficient of the quadratic term does not vanish.

This implies that there exist exactly two distinct parametrizations for this model

that generate the same covariance matrix. For example, it is not hard to verify that the

following two parametrizations generate the same covariance matrix:

�������
������

� � �

� � �

� � �

�������
������

� � �

� � �

� � �

�������
������

� � ������

� � ������

� � ���

�������
������

� � 	�	

�

� � ���			

� � �
�
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CHAPTER 7

Instrumental Sets

So far we have concentrated our efforts on questions related to the entire model, such

as: ”Is the model identified?”, or ”Does the model impose any constraint on the corre-

lations among observed variables?”.

In this chapter we focus our attention on the identification of specific subsets of pa-

rameters of the model. This goal is based on the observation that, even when we cannot

prove the identification of the model (or, when the model is actually non-identified),

we may still be able to show that the value of some parameters is uniquely determined

by the structural assumptions in the model and the observed data.

This type of result may be valuable in situations where, even though a model is

specified for all the observed variables, the main object of study consists of the rela-

tions among a small subset of those variables.

We also restrict ourselves to the identification of parameters associated with di-

rected edges in the causal diagram. Those parameters represent the strength of (direct)

causal relationships, and are usually more important that the spurious correlations (as-

sociated with bidirected edges).

The main result of the chapter is a sufficient condition for the identification of the

parameters of a subset of directed incoming edges to a variable � (i.e., directed edges

with arrow head pointing to � ). An important characteristic of this condition is that it

does not depend on the identification of any other parameter in the model.
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This result actually generalizes the graphical version of the method of Instrumental

Variables [Pea00a]. According to this method, the parameter of edge � � � is

identified if we can find a variable � and a set of variables� satisfying specific d-

separation conditions. A more detailed explanation of this method is given in the next

section.

Our contribution is to extend this method to allow the use of multiple pairs �������� � � � � �������

to prove, simultaneously, the identification of the parameters of directed edges �� �

� , . . . , �� � � . As we will see later, there exist examples in which our method of In-

strumental Sets proves the identification of a subset of parameters, but the application

of the original method to the individual parameters would fail.

Before proceeding, we would like to call attention to a few aspects of the proof

technique developed in this chapter, which seem to be of independent interest. The

method imposes two main conditions for a set of variables to be an Instrumental Set.

First, we require the existence of a number of unblocked paths with specific properties.

This condition is very similar to the one in the GAV Criterion, and basically ensures

the linear independence of a system of equations. The second consists of d-separation

conditions between � and each ��, given the variables in��.

Now, to be able to take advantage of these d-separation conditions, we have to

work with partial correlations instead of the standard correlation coefficients used in

Chapter 3. The problem, however, is that no technique similar to Wright’s decomposi-

tion was available to express partial correlation as linear expressions on the parameters

of interest.

This difficulty is overcome by developing a new decomposition of the partial cor-

relation �����������
into a linear expression in terms of the correlations among the vari-

ables �� �� ��� � � � � ��. This leads to a linear equation on parameters of the model,

by applying Wright’s decomposition to each of the correlation coefficients. The d-
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separation conditions then imply that only the parameters under study appear in these

equations. The result finally follows by showing that all the coefficients in the linear

equations can be estimated from data.

7.1 Causal Influence and the Components of Correlation

This section introduces some concepts that will be used in the description of Instru-

mental Variables methods.

Intuitively, we say that variable � has causal influence on variable � , if changes

in the value of � lead to changes in the value of � . This notion is captured in the

graphical language as follows.

An observed variable � has causal influence on variable � if there exists at least

one path in the causal diagram, consisting only of directed edges, going from � to � .

This path reflects the existence of variables ��� � � � � �� such that

� � appears in the r.h.s. of the equation for ��;

� for � � �� � � � � � � �, each �� appears on the r.h.s. of the equation for ����;

� �� appears in the r.h.s. of the equation for � .

Now, it is easy to see that any change on the value of � would propagate through the

equations for the ��’s and affect the value of � .

Similarly, an error term �� has causal influence on variable � if either there ex-

ists a directed path from �� to � , or a path consisting of a bidirected edge ���� ��

concatenated with a directed path from � to � (the error term �� can be viewed as sit-

ting on the top of bidirected edge ���� ��). Note that observed variables do not have

causal influence on error terms, and the causal relationships among error terms are not

specified by the model.
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We also say that the causal influence of � (or some error term ��) on � is mediated

by a variable � , if � appears in every directed path from � to � (and the unblocked

paths starting with bidirected edges, in the case of error terms).

The correlation between two observed variables �� � can then be explained as the

sum of two components:

� the causal influence of � on � ; and,

� the correlation created by other variables (or error terms) which have causal

influence on both � and � (sometimes called spurious correlation).

The problem of identification consists in assessing the strength of the (direct)

causal influences of one variable on another, given the structure of the model and

the correlations between observed variables. This requires the ability to separate the

portions of the correlation contributed by each of the components above.

7.2 Instrumental Variable Methods

The traditional definition qualifies variable � as instrumental, relative to a cause �

and effect � if [Pea00a]:

1. Every error term with causal influence on � not mediated by � is independent

of � (i.e., uncorrelated);

2. � is not independent of � .

Property (1) implies that the correlation between � and � is created by the correla-

tion between � and � , and the causal influence of � on � , represented by parameter

�. This implies that ��� � � � ��� . Property ���, allows us to obtain the value of � by

writing � � ��� ��� . Hence, parameter � is identified.
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Figure 7.1: Typical Instrumental Variable

Figure 7.1 shows a typical example of the use of an instrumental variable. In this

model, it is easy to verify that variable � has properties ��� and ���. Note that this

causal diagram could be just a portion of a larger model. But, as long as properties ���

and ��� hold, variable � can be used to obtain the identification of parameter �.

A generalization of the method of Instrumental Variables (IV) is offered through

the use of conditional IV’s. A conditional IV is a variable � that does not have prop-

erties ��� and ��� above, but after conditioning on a set of variables� such properties

hold (with independence statements replaced by conditional independence). When

such a pair ����� is found, the causal influence of � on � is identified and given by

�����������.

Now, given the graphical interpretation of causal influence provided in Section 7.1,

we can express the properties of a conditional IV in graphical terms using d-separation

[Pea00b]:

Let � be a model, and let �� denote its causal diagram. Variable � is a condi-

tional IV relative to edge � � � if there exists a set of variables� (possibly empty)

satisfying:

1. � contains only non-descendents of � ;

2. � d-separates � from � in the subgraph � obtained from �� by removing edge

� � � ;

3. � does not d-separate � from � in �.
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As an example, let us verify if � is a conditional IV for the edge � � � in the

model of Figure 7.2(a). The first step consists in removing the edge � � � to obtain

the subgraph �, shown in Figure 7.2(b). Now, it is easy to see that, after conditioning

on variable � , � becomes d-separated from � but not from � in �.

7.3 Instrumental Sets

Before introducing our method of Instrumental Sets, let us analyze an example where

the procedure above fails.

Consider the model in Figure 7.3���. A visual inspection of this causal diagram

shows that variable �� does not qualify as a conditional IV for the edge �� � � . The

problem here is that �� cannot be d-separated from � , no matter how we choose the

set�. If� does not include variable ��, then the path �� � �� � � remains

open. However, including variable �� in� would open the path �� � �� � � .

By symmetry, we also conclude that �� does not qualify as a conditional IV for the

edge �� � � , and the situation is exactly the same for ��. Hence, the identification

of parameters �� and �� cannot be proved using the graphical criterion for the method

of conditional IV.

However, observe the subgraph in Figure 7.3���, obtained by deleting edges �� �
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Figure 7.3: Simultaneous use of two IVs

� and �� � � . It is easy to verify that properties ���� ��� hold for �� and �� in this

subgraph (by taking� � � for both �� and ��).

Thus, the idea is to let �� and �� form an Instrumental Set, and try to prove the

identification of parameters �� and �� simultaneously.

Note that the d-separation conditions are not sufficient to guarantee the identifica-

tion of the parameters. In the model of Figure 7.3���, variables �� and �� also become

d-separated from � after removing edges �� � � and �� � � . However, parame-

ters �� and �� are non-identified in this case. Similarly to the GAV criterion, we have

to require the existence of specific paths between each of the ��’s and � .

Next, we give a precise definition of Instrumental Sets, in terms of graphical con-

ditions, and state the main result of this chapter.

Definition 4 (Instrumental Sets) Let � � ���� � � � � ��� be an arbitrary subset of

parents of � . The set � � ���� � � � � ��� is said to be an Instrumental Set relative to

� and � if there exist triplets ������� ���, . . . , ������� ��� such that:

(i) for � � �� � � � � 	, variable �� and the elements of�� are non-descendents of � ;

(ii) Let 
 be the subgraph obtained by deleting edges �� � �� � � � � �� � � from
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Figure 7.4: More examples of Instrumental Sets

the causal diagram of the model. Then, for � � �� � � � � �, the set�� d-separates

�� from � in �; but�� does not block path ��;

(iii) for � � �� � � � � �, �� is an unblocked path between �� and � including the edge

�� � � .

(iv) for � 	 
, the only possible common variable in paths �� and �� (other than � ) is

variable ��, and, in this case, both �� and ���������� must point to � ;

Theorem 8 If � � ���� � � � � ��� is an Instrumental Set relative to variable � and set

of parents�, then the parameters of edges �� � �� � � � � �� � � are identified, and

can be computed by solving a system of linear equations.

The proof the theorem is given in Appendix C.

Figure 7.4 shows more examples in which the method of conditional IV’s fails, but

our new criterion is able to prove the identification of parameters ��’s. In particular,

model ��� is a bow-free model, and thus is completely identifiable. Model �� illus-

trates an interesting case in which variable �� is used as the instrument for �� � � ,

while � is the instrument for �� � � . Finally, in model ��� we have an example

64



in which the parameter of edge �� � � is nonidentifiable, and still the method can

prove the identification of �� and ��.
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CHAPTER 8

Discussion and Future Work

An important contribution of this work was to offer a new approach to the problem

of identification in SEM, based on the graphical analysis of the causal diagram of the

model. This approach allowed us to obtain powerful sufficient conditions for identifi-

cation, and a new method of computing correlation constraints.

This new approach has important advantages over existing techniques. Traditional

methods [Dun75, Fis66] are based on algebraic manipulation of the equations that

define the model. As a consequence, they have to handle the two types of structural

assumptions contained in the model (e.g., (a) which variables appear in each equation;

and, (b) how the error terms are correlated with each other) in different ways, which

makes the analysis more complicated. The language of graphs, on the other hand,

allows us to represent both types of assumptions in the same way, namely, by the

presence or absence of edges in the causal diagram. This permits a uniform treatment

in the analysis of identification.

Another important advantage of our approach relates to conditional independen-

cies implied by the model. Most existing methods [Fis66, BT84, Pea00b] strongly

rely on conditional independencies to prove that a model is identified. As a conse-

quence, such methods are not very informative when the model has few such relations.

Since we do not make direct us of conditional independencies in our derivations, we

can prove identification in many cases where most methods fail. Even the method of

instrumental sets, which involves a d-separation test, is not very sensitive to condi-
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tional independencies, because the tests are performed on a potentially much sparser

graph.

The sufficient conditions for identification obtained in this work correspond to the

most general criteria current available to SEM investigators. To the best of our knowl-

edge, this is also the first work that provides necessary conditions for identification.

Although these results answer many questions in practical applications of SEM, find-

ing a necessary and sufficient condition for identification is still an outstanding open

problem from a theoretical perspective.

Another important question that remains open is the application of our graphical

methods to non-recursive models. Since the basic tool for our analysis (i.e., Wright’s

decomposition of correlations) only applies to recursive models, this problem may

require the development of new techniques.
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APPENDIX A

(Proofs from Chapter 3)

Proof of Theorem 3:

Fix an arbitrary variable � with Auxiliary Set �� � ���� � � � � ���.

Let � � ���� � � � � ��� be the set of parents of � . For � � �� � � � � �, let Æ� denote

the parameter of edge �� � � .

Similarly, let � � ���� � � � � ��� be the set of variables such that bidirected edge

�� � � belongs to �	
�� �. For � � �� � � � � �, let � denote the parameter of edge

�� � � . [Note that we may have� �� �� �.]

Assume first that condition C1 can be applied to the pair ����� �. Let � be any

variable from �� . Then, we can write the decomposition of ��� as:

��� �
��

���


�Æ� �
��

���

���

and we show that coefficients 
�’s and ��’s are identified.

First, note that every unblocked path between � and � including and edge �� � �

can be decomposed into an unblocked path between � and �� and the edge �� � � .

Moreover, every unblocked path between � and �� can be extendend by edge �� � �

to give an unblocked path between � and � . These factes imply that 
� is identified

and given by ����
.

Now, let ���� � � be an arbitrary bidirected edge from �	
�� �. If � � �� then

�� � �, because there is only one unblocked path between � and � including ���� � �
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which consists precisely of this edge. In the other case, we have that �� � �, because

any unblocked path between � and � including ���� � � should consist of a chain

from �� to � concatenated to the edge ���� � �, but no such chain exists. Hence, �� is

identified.

Assume now that condition C2 is applied to ����� �. Let � � �� , and let

���� � � � ���� be the set of parents of �. For � � �� � � � � �, let 	� denote the parameter

of edge �� � �.

The idea is to replace the equation corresponding to the decomposition of 
�� in

��� �� , by the following linear combination:


�� �
��

���

	�
��� � �� �
��

���

��Æ� �
	�

���

����

This equation is also linearly independent of all the other ones in ��� �� (has to

show that). However, since many of the unblocked paths between � and � can be

obatined by concatenation of some edge �� � � and an unblocked path between ��

and � , many terms are cancelled out in the r.h.s.. We also observe that term �� in the

r.h.s. corresponds to pahts that do not included edges from ���� �, and is zero when

� is a non-descendant of � (?).

Next lemma proves the identification of coefficients ��’s.

Lemma 7 Each coefficient �� in the r.h.s. of (*) is identified and has value either 0 or

1.

Proof:

Fix a bidirected edge ���� � � with parameter �� . We consider a few separate cases:

��� � �� �� and � is a non-descendant of ��.

Any unblocked path beween � and � including edge ���� � � must consist of a

chain from �� to � concatenaed with the edge ���� � �. Since � is a non-descendant
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of �� , no such chain exists. Thus, the coefficient of �� in the decomposition of ��� is

zero. Since each parent �� of � is also a non-descendant of �� , the coefficient of ��

in the decomposition of ���� is also zero. Hence, �� � �.

��� � � ��

Note that, in this case, there is only one unblocked path between � and � including

���� � �, which consists precisely of the edge ���� � �. Thus, the coefficient of �� in the

decomposition of ��� is 1. Again, each parent �� of � is a non-descendant of � , so

the coefficient of �� in the decomposition of ���� is zero. Hence, �� � �.

��� � is a descendant of ��.

Let 	� denote the set of chains from �� to � that do not include � . (For non-

descendants of � this is the set of all chains from �� to �)

Clearly, each of these chains must include a parent of �. Thus, we can partition

the chains in 	� according to the last parent of � appearing in each of them. More

precisely, let 	����
denote the set of chains in 	� that include edge �� � �. Now,we

can write


 �	�� �
�

��

 �	����

�

�
�

��
���
 �	����

�����

Observing that 
 �	�� is the coefficient of �� in the decomposition of ��� , and that

�
 �	����
����� is the coefficient of �� in the decomposition of ���� , we conclude that

�� � �. �

Now, it just remain to analyze the coefficients ��’s. The next lemma takes care of

the case when � is a non-descendant of � .

Lemma 8 Let  be a non-descendant of � . Then, the coefficient of Æ� in the decom-

position of ��� is identified and given by ����
.
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Proof:

Recall that Æ� is th parameter of directed edge �� � � . Then, the lemma follows

from the facts that every unblocked path between � and �� can be extended by edge

�� � � to give an unblocked path between � and � , and those are all the unblocked

paths between � and � including edge �� � � . �

The identification of coefficients ��’s when � is a non-descendant of � , then fol-

lows from the identification of the ��’s.

Now, consider the identification of the ��’s when � is a descendant of � .

First, we observe that any unblocked path between � and � that contains a directed

edgepointing to � can be decomposed into an unblocked path between �� and � , and

edge �� � � (for some ��). Thus, all terms associated with such path are cancelled

out in (*).

This immediately gives that �� � �, since every unblocked path between � and �

must either end with a directed edge pointing to �, or be a bidirected edge between �

and �. However, in the later case, � would be in the Auxiliary Set for �, which would

create a cycle in the dependency graph.

For � � �� 	 	 	 � 
, each term in coefficient �� corresponds to a path consisting of

the concatenation of bidirected edge ����� and a chain from � to ��. Since ��� ��

and all ��� �� , where � is an intermediated variable in the chain from � to �, are

solved brfore ��� �� , all paramters in this path are identified. But this imples that �� is

identified. �

71



APPENDIX B

(Proofs from Chapter 6)

Proof of Lemma 6:

Let ��� � � � � �� denote the parameters of the edges in ����� �.

Let � denote the set of unblocked paths between � and 	 that do not include any

edge from ����� �. Then, �� is given by 
 ���, and clearly does not depend on the

values of the ��’s.

Now, let � denote the set of unblocked paths � between � and 	 that include

some edge from ����� �, with such edge appearing in subpath ������ � (the other case

is similar).

Let � be an arbitrary path from � . Then, it follows from assumption �� in the

theorem that ������ � must contain at least one variable from�� . We let �� denote the

first (i.e., closest to � ) variable from �� to appear in �, and divide the path into three

segments:

� �� � ��������;

� �� � ������� �;

� �� � �����	 �;

where both �� and �� can be null, if � � �� or � � 	 , respectively. We also note

that �� is a chain from �� to � (by assumption ��), and �� is a chain from � to 	 ,

because every edge from ����� � points to � and � is unblocked.
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Now, for each �� � �� , let �� denote the set of all chains from �� to � that do not

contain any variable from �� � �� �; and, let � denote the set of all chains from � to

� .

Also, for each �� � �� , let �� denote the set of unblocked paths between �� and

� .

Proposition 1 For any �� � �� , let �� � ��, let �� � ��, and let �� � �. Then, the

concatenation of ��� ��, and �� gives a valid unblocked path between � and � if and

only if �� and �� do not have any intermediate variable in common.

Proof: If �� and �� have a common variable, then clearly the concatenation gives an

invalid path.

In the other case, the proposition follows by observing that every intermediate

variable in �� belongs to �� (follows from assumption �			�), and that intermediate

variables in �� and �� cannot belong to �� (by definition, and by assumption �		�). �

The arguments above give that we can write


 �� � �
�

�

�� � 
 ����

where

�� �
�

������������������


 ���� � 
 ����

Clearly, each of the �� is independent of the values of parameters �’s. The lemma

follows by observing that 
 ���� � ���� . �
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Proof of Theorem 7:

For each variable �� � �� ��� , let �� denote the set composed by the following

unblocked paths between �� and � :

a) all chains from �� to � whose intermediate variables belong to �� ��� ;

b) all unblocked paths � that point to �� and do not have a variable � �� ��� ��� ��

�� � which is a descendant of �� and ������� � point to � .

For each variable �� � �� , let �� denote the set composed by all chains from ��

to � whose intermediate variables belong to �� ��� .

We first show that the correlations of each variable� � �� and � can be expressed

as a linear combination of the terms � ����’s and � ����’s.

Case 1: �� � �� ��� .

Let �� be the set of unblocked paths between �� and � , so that ���� � � ����.

Clearly, we can write ���� � � ������ �������. Thus, we just need to show that the

second term on the right-hand side is a linear combination of the � ����’s and � ����’s.

There are two types of paths in �� � ��:

1) chains from �� to � with some intermediate variable that does not belong to �� �

�� ;

2) unblocked paths � that include a variable � �� ��� � �� � � �� � which is a

descendant of �� and ������� � point to � .

Let us consider paths of type ��� first.

Proposition 2 Every path � � �� � �� of type ��� contains a variable from �� .
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Proof: Assume that the proposition does not hold for some path � of type ���. Then, �

must include at least one variable that does not belong to �� . Let � be the last such

variable in � (i.e., closest to � ), and let � be the variable adjacent to � in ������ �.

Since � is a chain from �� to � , it follows from condition ����� in the theorem that

� �� � , and so we must have � � �� . But then edge �� � � � witnesses that

� � �� , which contradicts the initial assumption. �

Fix a path � � �� � �� of type ���, and let �� be the last variable from �� in �.

Let � be an arbitrary path from ��.

Proposition 3 The concatenation ���������� � gives a valid chain from �� to � .

Proof: Since ��������� is a chain from�� to��, and � is a chain from�� to � , it follows

that the concatenation of ���������� � is a chain from �� to � . Now, such chain must

be a valid one, otherwise we would have a contradicion to the recursiveness of the

model. �

It follows from the two propositions above that 	 ����������� can be expressed as

a linear combination of the 	 ����’s.

Now, we consider the paths of type ���.

Proposition 4 Every path � � �� � �� of type ��� contains a variable �� � �� such

that

(i) �� is a descendant of ��;

(ii) ��������� points to ��.

Proof: Assume that the proposition does not hold for some path � of type ���. Then, �

must include at least one variable that does not belong to �� and satisfies ��� and ����

above. Let � be the last such variable in � (i.e., closest to � ), and let � be the variable
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adjacent to � in ������ �. Since � is unblocked and ������� � points to � , we get that

������ � must be a chain from � to � . This fact, together with condition ����� gives

that � �� � , and so we must have � � �� . But then edge �� � � � implies that

� � �� , which contradicts the initial assumption. �

Fix a path � � �� � �� of type ���, and let �� be the last variable from �� in �.

Proposition 5 Every intermediate variable in ��������� is an ancestor of ��.

Proof: Let �� be the last variable in ��������� such that ��������� is not a chain from ��

to ��. Clearly, any intermediate variable in ��������� is an ancestor of ��. Moreover,

subpath ��������� must point to ��. Since � is unblocked, it follows that ��������� must

be a chain from �� to ��. But this implies that �� and every intermediate variable in

��������� is an ancestor of �� . Since �� is an ancestor of �� the proposition holds. �

Let � be an arbitrary path from ��.

Proposition 6 The concatenation ���������� � gives a valid unblocked path between

�� and � .

Proof: Since � is a chain from �� to � , the path obtained from the concatenation is

unblocked. The validity of the path follows from the facts that every intermediate vari-

able in ��������� is an ancestor of ��, every intermediate variable in � is a descendant

of ��, and the recursiveness of the model. �

It follows from the two propositions above that 	 ����������� can be expressed as

a linear combination of the 	 ����’s.

Case 2: �� � �� .

Let �� be the set of unblocked paths between �� and � , so that 
��� � 	 ����.

Clearly, we can write 
��� � 	 ���� � 	 ��� � ���. Thus, we only need to show
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that the second term on the right-hand side is a linear combination of the � ����’s and

� ����’s.

There are two types of paths in �� ���:

1) chains from �� to � with some intermediate variable that does not belong to �� �

�� ;

2) unblocked paths between �� and � that point to ��.

Let us consider first paths of type ���.

Proposition 7 Every path � � �� � �� of type ��� contains an intermediate variable

from �� .

Proof: (same as proof of proposition 2) �

Fix a path � � ����� of type ���, and let �� be the last intermediate variable from

�� in �. Let � be an arbitrary path from ��.

Proposition 8 The concatenation of ���������� � gives a valid chain from �� to � .

Proof: (same as proof of proposition 3) �

It follows from the two propositions above that � ����������� can be expressed as

a linear combination of the � ����’s.

Now, we consider paths of type ���, and further divide them into:

a) paths � that have an intermediate variable �� from �� ��� , such that ��������� is

a chain from �� to ��;

b) all the remaining paths.
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Let � � �� � �� be of type ����, and let �� be the first variable from �� � �� in

� (i.e., closest to ��). Let � be an arbitrary path from �� .

Proposition 9 The concatenation ���������� � gives a valid unblocked path between

�� and � .

Proof: Since ��������� is a chain from �� to ��, the path obtained from the con-

catenation is unblocked. Now, let � be an intermediate variable in ���������. Then,

� �� ��� ��� �� �� � and � is a descendant of ��. But, by definition, no path in ��

contain such variables. Thus, it follows that the concatenation produces a valid path.

�

It follows from the two propositions above that � ��� � ��	����� can be expressed

as a linear combination of the � ����’s.

Now, consider paths � of type ��	�.

Proposition 10 Every path � � �� � �� be of type ��	� contains an intermediate

variable �� from �� such that ������� � is a chain from �� to � .

Proof: Let � be a path of type ��	�, and let 
 be the first variable in � such that

������
 � is not a chain. Clearly, such variable must exist, otherwise � would be a

chain from � to �� that does not include any edge from ���� �. Moreover, ������
 �

points to 
 , and so ��
��� � must be a chain from 
 to � .

If 
 � �� , then we are done. So, we consider the two remaining cases.

Assume that 
 �� �� . Then, the proposition easily follows from the facts that

��
��� � is a chain from 
 to � , and that there is no edge ����� pointing to �, where

� �� �� and � � ��� ��� � � �� �.

Finally, if 
 � ��� ��� �, then let � be the variable adjacent to 
 in ������
 �.

Since edge ���
 � points to 
 , it follows that � � �� . But � cannot belong to
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��� � �� �, because ������� � is a chain from � to ��, and then � would be of type

����. Thus, we must have � � �� , and condition ���� of the theorem gives that

������ � is a directed edge from � to � . Hence, ������ � is a chain from � to � . �

Fix a path � � �� � �� of type ��	�, and let �� be the last intermediate variable

from �� in �. Let 
 be an arbitrary path from ��.

Proposition 11 The concatenation ���������� 
 gives a valid unblocked path between

�� and � .

Proof: Since 
 is a chain from �� to � , the path obtained from the concatenation is

unblocked. Now, let � be the last variable in ��������� such that ������� � is a chain

from � to �� (if there is no such variable, we take � � ��). It follows that, since � is

of type ��	�, ������� � does not contain any variable from ��� ��� �. Moreover, every

intermediate variable in �������� is an ancestor of ��. But, by definition, intermediate

variables in any path from �� must belong to ��� � �� � and be descendants of ��.

Hence, the concatenation produces a valid path. �

It follows from the two propositions above that � ��� � �������� can be expressed

as a linear combination of the � ����’s.

Case 3: � �� �� .

Let�� denote the set of unblocked paths between� and � , so that ��� � � ����.

There are two types of paths in ��:

1) chains from � to � ;

2) unblocked paths between � and � that point to � .

Let us consider paths of type ��� first.
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Proposition 12 Every path � � �� of type ��� contains an intermediate variable from

�� .

Proof: Follows from the fact that there is no edge ����� pointing to �, where � �� ��

and � � ��� ��� � �� �. �

Fix a path � � �� of type ���, and let �� be the last intermediate variable from ��

in �. Let � be an arbitrary path from ��.

Proposition 13 The concatenation of ��������� � gives a valid chain from � to � .

Proof: (same as proof of proposition 3) �

It follows from the two propositions above that 	 ���	���� can be expressed as a

linear combination of the 	 ����’s.

Now, we consider paths of type ���, and further divide them into:

a) paths � that have an intermediate variable �� from ��� � �� � such that ��������

is a chain from �� to � ;

b) all the remaining paths.

Fix a path � � �� of type ��
�, and let �� be the first variable from ��� ��� � in

�. Let � be an arbitrary path from �� .

Proposition 14 The concatenation ��������� � gives a valid unblocked path between

� and � .

Proof: (same as proof of proposition 9) �

It follows from the two propositions above that 	 ���	����� can be expressed as a

linear combination of the 	 ����’s.

Now, we consider paths of type ����.
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Proposition 15 Every path � � �� of type ���� contains an intermediate variable ��

from �� such that ������� � is a chain from �� to � .

Proof: (same as proof of proposition 10) �

Fix a path � � �� of type ����, and let �� be the last intermediate variable from

�� in �. Let � be an arbitrary path from ��.

Proposition 16 The concatenation ��������� � gives a valid unblocked path between

� and � .

Proof: (same as proof of proposition 11) �

It follows from the two propositions above that � ��������� can be expressed as a

linear combination of the � ����’s. �
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APPENDIX C

(Proofs from Chapter 7)

C.1 Preliminary Results

C.1.1 Partial Correlation Lemma

Next lemma provides a convenient expression for the partial correlation coefficient of

�� and ��, given ��� � � � � ��, denoted ���������. The proof is given in Section C.3.

Lemma 9 The partial correlation ��������� can be expressed as the ratio:

��������� �
���� �� � � � � ��

���� �� � � � � �� � ���� �� � � � � ��
(C.1)

where � and � are functions of the correlations among ��� ��� � � � � ��, satisfying the

following conditions:

(i) ���� �� � � � � �� � ���� �� � � � � ��.

(ii) ���� �� � � � � �� is linear on the correlations ���� ���� � � � � ���, with no constant

term.

(iii) The coefficients of ���� ���� � � � � ���, in ���� �� � � � � �� are polynomials on the cor-

relations among the variables ��� ��� � � � � ��. Moreover, the coefficient of ��� has

the constant term equal to 1, and the coefficients of ���� � � � � ���, are linear on

the correlations ���� ���� � � � � ���, with no constant term.
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(iv) ������ � � � � ������
�, is a polynomial on the correlations among the variables � �� ,� � �,

����� , with constant term equal to 1.

C.1.2 Path Lemmas

The following lemmas explore some consequences of the conditions in the definition

of Instrumental Sets.

Lemma 10 W.l.o.g., we may assume that, for � � � � � � �, paths �� and �� do not

have any common variable other than (possibly) 	�.

Proof: Assume that paths �� and �� have some variables in common, different from 	�.

Let 
 be the closest variable to �� in path �� which also belongs to path �� .

We show that after replacing triple �	����� ��� by triple �
���� ���
��� ��, condi-

tions ���� ����� still hold.

It follows from condition ����� that subpath ���
��� � must point to 
 . Since �� is

unblocked, subpath ���	���
 � must be a directed path from 
 to 	�.

Now, variable 
 cannot be a descendent of � , because ���	���
 � is a directed path

from 
 to 	�, and 	� is a non-descendent of � . Thus, condition ��� still holds.

Consider the causal graph �. Assume that there exists a path � between 
 and �

witnessing that�� does not d-separate 
 from � in �. Since ���	���
 � is a directed

path from 
 to 	�, we can always find another path witnessing that�� does not d-

separate 	� from � in � (for example, if � and ���	���
 � do not have any variable

in common other than 
 , then we can just take their concatenation). But this is a

contradiction, and thus it is easy to see that condition ���� still holds.

Condition ����� follows from the fact that ���
��� � and ���	���
 � point to 
 . �

In the following, we assume that the conditions of lemma 10 hold.
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Lemma 11 For all � � � � �, there exists no unblocked path between �� and � ,

different from ��, which includes edge �� � � and is composed only by edges from

��� � � � � ��.

Proof: Let � be an unblocked path between �� and � , different from ��, and assume

that � is composed only by edges from ��� � � � � ��.

According to condition �����, if �� appears in some path ��, with � �� �, then it must

be that � 	 �. Thus, � must start with some edges of ��.

Since � is different from ��, it must contain at least one edge from ��� � � � � ����. Let

�
�� 
�� denote the first edge in � which does not belong to ��.

From lemma 10, it follows that variable 
� must be a �� for some � � �, and by

condition �����, both subpath ������
�� and edge �
�� 
�� must point to 
�. But this

implies that � is blocked by 
�, which contradicts our assumptions. �

The proofs for the next two lemmas are very similar to the previous one, and so are

omitted.

Lemma 12 For all � � � � �, there is no unblocked path between �� and some ��

composed only by edges from ��� � � � � ��.

Lemma 13 For all � � � � �, there is no unblocked path between �� and � including

edge �� � � , with � � �, composed only by edges from ��� � � � � ��.

C.2 Proof of Theorem 8

C.2.1 Notation and Basic Linear Equations

Fix a variable � in the model. Let� � ���� � � � � ��� be the set of all non-descendents

of � which are connected to � by an edge (directed, bidirected, or both). Define the
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following set of edges with an arrowhead at � :

����� � � ����� � � � �� � ��

Note that for some �� � � there may be more than one edge between �� and � (one

directed and one bidirected). Thus, ������ �� � ���. Let ��� � � � � ��, � � 	, denote

the parameters of the edges in ����� �.

It follows that edges�� � �� � � � � �� � � , belong to ����� �, because ��� � � � � ��,

are clearly non-descendents of � . W.l.o.g., let �� be the parameter of edge �� � � ,

� � 
 � �, and let ����� � � � � �� be the parameters of the remaining edges in ����� �.

Let � be any non-descendent of � . Wright’s equation for the pair ��� � �, is given

by

���� �
�

paths ��

 ���� (C.2)

where each term  ���� corresponds to an unblocked path between � and � . Next

lemma proves a property of such paths.

Lemma 14 Let � be a variable in a recursive model, and let � be a non-descendent

of � . Then, any unblocked path between � and � must include exactly one edge from

����� �.

Lemma 14 allows us to write Eq. (C.2) as

���� �
��

���

�� � �� (C.3)

Thus, the correlation between � and � can be expressed as a linear function of the

parameters ��� � � � � ��, with no constant term.

Consider a triple ������� ���, and let�� � ���� � � � � �����
1. From lemma 9, we

can express the partial correlation of �� and � given�� as:
�To simplify the notation, we assume that ���� � �, for � � �� � � � � �
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�������
�

�����������
��������

�

���������
��������

����������
��������

�
(C.4)

where function �� is linear on the correlations ���� , ����
� , � � �, ����

� , and �� is a

function of the correlations among the variables given as arguments. We abbreviate

������ ������ � � � �����
� by ������ �����, and �������� � � � � ����� by ��������.

We have seen that the correlations ���� , ����
� , � � �, ����

� , can be expressed as

linear functions of the parameters 	�� � � � � 	�. Since �� is linear on these correlations,

it follows that we can express �� as a linear function of the parameters 	�� � � � � 	�.

Formally, by lemma 9, ������ ����� can be written as:

������ ����� � 
������ � 
������
� � � � �� 
������

� (C.5)

Also, for each �	 � ���� ���, we can write:

�
�� � ����	� � � � � � ����	� (C.6)

Replacing each correlation in Eq.(C.5) by the expression given by Eq. (C.6), we

obtain

������ ����� � ���	� � � � �� ���	� (C.7)

where the coefficients ���’s are given by:

��� �
��

	��


����� � �  � �� � � � � � (C.8)

Lemma 15 The coefficients ������ � � � � ��� in Eq. (C.7) are identically zero.

Proof: The fact that�� d-separates �� from � in �, implies that ���� ���
� � in any

probability distribution compatible with � ([Pea00a], pg. 142). Thus, ������ �����

must vanish when evaluated in �. But this implies that the coefficient of each of the

	�’s in Eq. (C.7) must be identically zero.
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Now, we show that the only difference between evaluations of ������ ����� on the

causal graphs � and �, consists on the coefficients of parameters ��� � � � � ��.

First, observe that coefficients ��� � � � � � ��� are polynomials on the correlations among

the variables ������� � � � ���� . Thus, they only depend on the unblocked paths be-

tween such variables in the causal graph. However, the insertion of edges 	� � � ,

. . . , 	� � � , in � does not create any new unblocked path between any pair of

������ � � � � ���� (and obviously does not eliminate any existing one). Hence, the co-

efficients ��� � � � � � ��� have exactly the same value in the evaluations of ������ �����

on � and �.

Now, let �� be such that 
 � �, and let � � ���� ���. Note that the insertion of

edges 	� � � , . . . , 	� � � , in � does not create any new unblocked path between

� and � including the edge whose parameter is �� (and does not eliminate any existing

one). Hence, coefficients ��� �, � � �� � � � � �, have exactly the same value on � and �.

From the two previous facts, we conclude that, for 
 � �, the coefficient of �� in

the evaluations of ������ ����� on � and � have exactly the same value, namely zero.

Next, we argue that ������ ����� does not vanish when evaluated on �.

Finally, let �� be such that 
 � �, and let � � ���� ���. Note that there is no

unblocked path between � and � in � including edge 	� � � , because this edge

does not exist in �. Hence, the coefficient of �� in the expression for the correlation

���� on � must be zero.

On the other hand, the coefficient of �� in the same expression on � is not neces-

sarily zero. In fact, it follows from the conditions in the definition of Instrumental sets

that, for 
 � �, the coefficient of �� contains the term � ����. �

From lemma 15, we get that ������ ����� is a linear function only on the param-

eters ��� � � � � ��.
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C.2.2 System of Equations �

Rewriting Eq.(C.4) for each triple ������� ���, we obtain the following system of

linear equations on the parameters ��� � � � � ��:

� �

��������������
�������������

������ ����� � �������

� ��������� � ��������

� � �

������ ����� � �������

� ��������� � ��������

where the terms on the right-hand side can be computed from the correlations among

the variables �� ���	�� � � � � �	�� , estimated from data.

Our goal is to show that � can be solved uniquely for the ��’s, and so prove the

identification of ��� � � � � ��. Next lemma proves an important result in this direction.

Let 
 denote the matrix of coefficients of �.

Lemma 16 ���
� is a non-trivial polynomial on the parameters of the model.

Proof: From Eq.(C.8), we get that each entry ��� of 
 is given by

��� �
��

���

��� � ��� �

where ��� is the coefficient of ����
� (or ���� , if � � �), in the linear expression for

������ ����� in terms of correlations (see Eq.(C.5)); and ��� � is the coefficient of ��

in the expression for the correlation ����
� in terms of the parameters ��� � � � � �	 (see

Eq.(C.6)).

From property ����� of lemma 9, we get that ��� has constant term equal to 1. Thus,

we can write ��� � � � ���� , where ���� represent the remaining terms of ��� .
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Also, from condition ��� of Theorem 8, it follows that ����
contains term � ����.

Thus, we can write ����
� � ���� � �����

, where �����
represents all the remaining terms

of ����
.

Hence, a diagonal entry ��� of �, can be written as

��� � � ������ � ���� � � �����
� ��� �

��

���

��� � ���� (C.9)

Now, the determinant of � is defined as the weighted sum, for all permutations � of

��� 	 	 	 � 
�, of the product of the entries selected by � (entry ��� is selected by permuta-

tion � if the ��� element of � is �), where the weights are � or ����, depending on the

parity of the permutation. Then, it is easy to see that the term

� � �
��

���

� ����

appears in the product of permutation � � ��� 	 	 	 � 
�, which selects all the diagonal

entries of �.

We prove that ����� does not vanish by showing that � � appears only once in the

product of permutation ��� 	 	 	 � 
�, and that � � does not appear in the product of any

other permutation.

Before proving those facts, note that, from the conditions of lemma 10, for � � � �

� � 
, paths �� and �� have no edge in common. Thus, every factor of � � is distinct

from each other.

Proposition 17 Term � � appears only once in the product of permutation ��� 	 	 	 � 
�.

Proof: Let � be a term in the product of permutation ��� 	 	 	 � 
�. Then, � has one factor

corresponding to each diagonal entry of �.

A diagonal entry ��� of � can be expressed as a sum of three terms (see Eq.(C.9)).
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Let � be such that for all � � �, the factor of � corresponding to entry ��� comes

from the first term of ��� (i.e., � ������ � ���� �).

Assume that the factor of � corresponding to entry ��� comes from the second term

of ��� (i.e., ����� � ���). Recall that each term in ����� corresponds to an unblocked path be-

tween 	� and 
 , different from ��, including edge �� � 
 . However, from lemma 11,

any such path must include either an edge which does not belong to any of ���    � ��,

or an edge which appears in some of �����    � ��. In the first case, it is easy to see that

� must have a factor which does not appear in � �. In the second, the parameter of an

edge of some ��, � � �, must appear twice as a factor of � , while it appears only once

in � �. Hence, � and � � are distinct terms.

Now, assume that the factor of � corresponding to entry ��� comes from the third

term of ��� (i.e.,
��

��� ��� � ����). Recall that ��� is the coefficient of ����
� in the ex-

pression for ���	�� 
����. From property ����� of lemma 9, ��� is a linear function

on the correlations ������
�    � ������

, with no constant term. Moreover, correlation

������
can be expressed as a sum of terms corresponding to unblocked paths between

	� and ��� . Thus, every term in ��� has the term of an unblocked path between 	� and

some ��� as a factor. By lemma 12, we get that any such path must include either an

edge that does not belong to any of ���    � ��, or an edge which appears in some of

�����    � ��. As above, in both cases � and � � must be distinct terms.

After eliminating all those terms from consideration, the remaining terms in the

product of ���    � �� are given by the expression:

� � �
��

���

�� � �����

Since ���� is a polynomial on the correlations among variables ����    ���� , with no

constant term, it follows that � � appears only once in this expression. �

Proposition 18 Term � � does not appear in the product of any permutation other than
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��� � � � � ��.

Proof: Let � be a permutation different from ��� � � � � ��, and let � be a term in the

product of �.

Let � be such that, for all � � �, � selects the diagonal entry in the row � of �. As

before, for � � �, if the factor of � corresponding to entry 	�� does not come from the

first term of 	�� (i.e., 
 ������ � ���� �), then � must be different from 
 �. So, we assume

that this is the case.

Assume that � does not select the diagonal entry 	�� of �. Then, � must select

some entry 	��, with �  �. Entry 	�� can be written as:

	�� � ������� �
���

���

������ �

Assume that the factor of � corresponding to entry 	�� comes from term ��� �����. Recall

that each term in ���� corresponds to an unblocked path between �� and � including

edge �� � � . Thus, in this case, lemma 13 implies that � and 
 � are distinct terms.

Now, assume that the factor of � corresponding to entry 	�� comes from term
��

��� ������ �. Then, by the same argument as in the previous proof, terms � and 
 �

are distinct. �

Hence, term 
 � is not cancelled out and the lemma holds. �

C.2.3 Identification of ��� � � � � ��

Lemma 16 gives that ������ is a non-trivial polynomial on the parameters of the

model. Thus, ������ only vanishes on the roots of this polynomial. However, [Oka73]

has shown that the set of roots of a polynomial has Lebesgue measure zero. Thus,

system � has unique solution almost everywhere.

It just remains to show that we can estimate the entries of the matrix of coefficients
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of system � from data.

Let us examine again an entry ��� of matrix �:

��� �
��

���

��� � ��� �

From condition ����� of lemma 9, the factors ��� in the expression above are polynomi-

als on the correlations among the variables ������� � � � ���� , and thus can be estimated

from data.

Now, recall that ���� is given by the sum of terms corresponding to each unblocked

path between �� and 	 including edge 
� � 	 . Precisely, for each term � in ����, there

is an unblocked path � between �� and 	 including edge 
� � 	 , such that � is the

product of the parameters of the edges along �, except for �.

However, notice that for each unblocked path between �� and 	 including edge


� � 	 , we can obtain an unblocked path between �� and 
�, by removing edge


� � 	 . On the other hand, for each unblocked path between �� and 
� we can

obtain an unblocked path between �� and 	 , by extending it with edge 
� � 	 .

Thus, factor ���� is nothing else but �����
. It is easy to see that the same argument

holds for ��� � with � � �. Thus, ��� � � ����
��

, � � �� � � � � �.

Hence, each entry of matrix � can be estimated from data, and we can solve the

system of equations � to obtain the parameters �� � � � � �.

C.3 Proof of Lemma 9

Functions ���� � � � � �� and ����� � � � � ����� are defined recursively. For � � �,

���
��

����� �� �� � ��� � ������

������ ��� �
�
��� ��������
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For � � �, we have
���������������������������
��������������������������

����� � � � � �� � �������� �� � � � � �� ����

� ������� �� �� � � � � �� ��

� �������� �� � � � � �� ����

� ������� �� �� � � � � �� ��

� ������� �� �� � � � � �� ��

�������� � � � � ����� �
��
�������� ��� � � � � �����

� ���������� ��� � � � � �����
��

� ��������� ����� ��� � � � � ������
�
� �
�

Using induction and the recursive definition of ���������, it is easy to check that:

��������� � �� �����������
�������������������������������������

Now, we prove that functions �� and ���� as defined satisfy the properties ���� ����.

This is clearly the case for � � �. Now, assume that the properties are satisfied for all

� 	 
 .

Property ��� follows from the definition of ����� � � � � 
� and the assumption that

it holds for ������� � � � � 
 � ��.

Now, ������� � � � � 
 � �� is linear on the correlations ���� � � � � ������. Since

������� 
� �� � � � � 
 � �� is equal to �����
� �� �� � � � � 
 � ��, it is linear on the

correlations ���� � � � � ����. Thus, ����� � � � � 
� is linear on ���� ���� � � � � ����, with no

constant term, and property ���� holds.

Terms ������
� �� � � � � 
����� and ������� 
� �� � � � � 
��� are polynomials on

the correlations among the variables �� �� � � � � 
 . Thus, the first part of property �����

holds. For the second part, note that correlation ��� only appears in the first term of

����� � � � � 
�, and by the inductive hypothesis ������
� �� � � � � 
����� has constant

term equal to 1. Also, since ����� �� �� � � � � 
� � ����� �� �� � � � � 
� and the later one

93



is linear on the correlations ���� ���� � � � � ��� , we must have that the coefficients of

����� �� � � � � �� must be linear on these correlations. Hence, property ���� holds.

Finally, for property ����, we note that by the inductive hypothesis, the first term

of �������� �� � � � � � � ���� has constant term equal to 1, and the second term has no

constant term. Thus, property ���� holds. �
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