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ABSTRACT OF THE DISSERTATION
Studies in Causal Reasoning and Learning
by

Jin Tian
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Building intelligent systems that can learn about and reason with causes and
effects is a fundamental task in artificial intelligence. This dissertation ad-
dresses various issues in causal reasoning and learning in the framework of causal
Bayesian networks. We offer a complete characterization of the set of distri-
butions that could be induced by local interventions on variables governed by
a causal Bayesian network. The characterization provides a symbolic inferential
tool for tasks in causal reasoning. We propose a new method of discovering causal
structures, based on the detection of local, spontaneous changes in the underlying
data-generating model. We show that the use of information about local changes
increases our power of causal discovery beyond the limits set by independence
equivalence that governs Bayesian networks. In the presence of unmeasured vari-
ables, causal models may impose non-independence functional constraints and
no general criterion is previously available for finding those constraints. We offer
a systematic method of identifying functional constraints, which facilitates the
task of testing causal models. Causal effects permit us to predict how systems
would respond to actions or policy decisions. We establish new graphical crite-
ria for ensuring the identification of causal effects that generalize and simplify
existing criteria in the literature, and we provide computational procedures for

systematically identifying causal effects. Assessing the probability of causation,
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that is, the likelihood that one event was the cause of another, guides much of
what we understand about and how we act in the world. We show how useful
information on the probabilities of causation can be extracted from empirical
data, and how data from both experimental and nonexperimental studies can be
combined to yield information that neither study alone can provide. Our results
clarify the basic assumptions that must be made before statistical measures such
as the excess-risk-ratio could be used for assessing attributional quantities such

as the probability of causation.
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CHAPTER 1

Causal Models

1.1 Introduction

A major challenge in artificial intelligence is to build autonomous intelligent sys-
tems that can make sense of their environment, so that they can respond to
unexpected events or changes in the environment. Traditional probabilistic and
statistical approaches assume a static time-invariant environment, and they can
not predict what happens if the environment changes or some external actions
occur. Such predictions are not discernible from probabilistic information; they
rest on causal relationships. We human beings communicate about the world in
the language of causation, and we would like to build intelligent systems that
understand causal talk. We must build intelligent systems that can learn about
and reason with causes and effects. The two challenges that we will face are:

1. How should an intelligent agent acquire causal information from the envi-
ronment?

2. How should an intelligent agent process available causal information?

This dissertation addresses both of the problems in the framework of causal
Bayesian networks, also called causal models', which provide a mathematical
language for representing and reasoning about causal relations.

1.2 Causal Models and Interventions

The use of causal models for encoding distributional and causal assumptions
is now fairly standard (see, for example, [Pea88, SGS93, HS95, Jor98, GPRI9,
Lau00, Pea00, Daw02]). The simplest such model, called Markovian, consists of a
directed acyclic graph (DAG) G, called a causal graph, over aset V = {Vi,..., V,}
of vertices, representing variables of interest, and a set of directed edges, or ar-
rows, that connect these vertices (see Figure 1.1 for an example causal graph).

!Throughout this dissertation, we will refer to the terms causal model and causal Bayesian
network interchangeably.
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Figure 1.1: A typical causal graph.

The interpretation of a causal graph has two components, probabilistic and
causal. The probabilistic interpretation views the arrows as representing proba-
bilistic dependencies among the corresponding variables, and the missing arrows
as representing conditional independence assertions: Each variable is independent
of all its non-descendants given its direct parents in the graph.? These assump-
tions amount to asserting that the joint probability function P(v) = P(v1,...,vn)
factorizes according to the product

P(v) = HP(UHP%) (1.1)

where Pa; denotes the set of parents of variable V; in the graph.?

The causal interpretation views the arrows as representing causal influences
between the corresponding variables. In this interpretation, the factorization of
(1.1) still holds, but the factors are further assumed to represent autonomous
data-generation processes, that is, each conditional probability P(v;|pa;) repre-
sents a stochastic process by which the values of V; are chosen in response to
the values pa; (previously chosen for V;’s parents), and the stochastic variation of
this assignment is assumed independent of the variations in all other assignments.
Moreover, each assignment process remains invariant to possible changes in the
assignment processes that govern other variables in the system.

This modularity assumption enables us to predict the effects of interventions,
whenever interventions are described as specific modifications of some factors in
the product of (1.1). The simplest such intervention, called atomic, involves fixing

?We use family relationships such as “parents,” “children,” “ancestors,” and “descendants,”
to describe the obvious graphical relationships. For example, we say that V; is a parent of V}
if there is an arrow from node V; to V;, Vi — V5.

3We use uppercase letters to represent variables or sets of variables, and use corresponding
lowercase letters to represent their values (instantiations). For example, pa; represents an
instantiation of Pa;.



a set T of variables to some constants T = ¢, which yields the post-intervention
distribution*

_ | Igpvigry Pluilpai)  for all v consistent with 7' = ¢.
Piv) = { 0 for all v inconsistent with T = ¢. (12)

Eq. (1.2) represents a truncated factorization of (1.1), with factors corresponding
to the manipulated variables removed. This truncation follows immediately from
(1.1) since, assuming modularity, the post-intervention probabilities P(v;|pa;)
corresponding to variables in 7" are either 1 or 0, while those corresponding to
unmanipulated variables remain unaltered.® If T stands for a set of treatment
variables and Y for an outcome variable in V\T, then Eq. (1.2) permits us to cal-
culate the probability P,(y) that event Y = y would occur if treatment condition
T = t were enforced uniformly over the population. This quantity, often called
the causal effect of T on Y, is what we normally assess in a controlled experiment
with T randomized, in which the distribution of Y is estimated for each level ¢
of T'.

We see from Eq. (1.2) that the model needed for predicting the effect of
interventions requires the specification of three elements

M =V, G, P(vilpa;))

where (1) V = {Vi,...,V,,} is a set of variables, (ii) G is a directed acyclic graph
with nodes corresponding to the elements of V', and (iii) P(v;|pa;),i = 1,...,n,is
the conditional probability of variable V; given its parents in G. Since P(v;|pa;) is
estimable from nonexperimental data whenever V' is observed, we see that, given
the causal graph G, all causal effects are estimable from the data as well.

1.3 Causal Models with Hidden Variables

Our ability to estimate P;(v) from nonexperimental data is severely curtailed
when some variables in a Markovian causal model are unobserved. We call
unobserved variables hidden or latent variables. If two or more variables in
V are affected by unobserved confounders, the presence of such confounders
would not permit the decomposition in (1.1). Letting V' = {14,...,V,} and
U = {Uy,...,Uy} stand for the sets of observed and hidden variables, respec-

1[Pea95a, Pea00] used the notation P(v|set(t)), P(vldo(t)), or P(v|{) for the post-
intervention distribution, while [Lau00] used P(v|[¢).

°Eq. (1.2) was named “Manipulation Theorem” in [SGS93], and is also implicit in Robins’
(1987) G-computation formula.



tively, the observed probability distribution, P(v), becomes a mixture of prod-
ucts:

P)=Y [ Pllpa,) [] Plulpas) (1.3)

u {VieVv} {i|U;eU}

where Pa,, and Pa,, stand for the sets of parents of V; and U, respectively, and the
summation ranges over all the U variables. The post-intervention distribution,®
likewise, will be given as a mixture of truncated products

Pv) = >ou Hpigr P(uilpas) T1; Pluilpas,) v .consist.ent Wit}.l . (1.4)
0 v inconsistent with £.

And, the question of identifiability arises, i.e., whether it is possible to express
P,(v) as a function of the observed distribution P(v). Clearly, given a causal
model M and any two sets T and S in V', P;(s) can be determined unambiguously
using (1.4). The question of identifiability is whether a given causal effect P;(s)
can be determined uniquely from the distribution P(v) of the observed variables,
and is thus independent of the unknown quantities, P(v;|pa,,) and P(u;|pa,;),
that involve elements of U.

Definition 1 [Causal-Effect Identifiability]

The causal effect of a set of variables T on a disjoint set of variables S is said to be
identifiable from a graph G if the quantity Py(s) can be computed uniquely from
any positive probability of the observed variables—that is, if P (s) = PM2(s)
for every pair of models M, and M, with PM(v) = PM2(v) > 0 and G(M;) =

In other words, given the causal graph G, the quantity FPy(s) can be determined
from the observed distribution P(v) alone; the details of M are irrelevant.

If, in a Markovian model with hidden variables, each hidden variable is a root
node with exactly two observed children, then the corresponding model is called
a semi-Markovian model. In a semi-Markovian model, the observed probability
distribution P(v) in Eq.(1.3) can be written as

Py =Y T] Plvilpas, u') [ | Plu:) (1.5)
where Pa; and U’ stand for the sets of the observed and unobserved parents of
V; respectively. The post-intervention distribution is then given by

Pv) = >oulivigry Ploilpas, w') TT, P(ui) v ftonsist;ent wit]r} t. (1.6)
0 v inconsistent with ¢.

We only consider interventions on observed variables.



Figure 1.2: A semi-Markovian model.

It is convenient to represent a semi-Markovian model with a causal graph
G that does not show the elements of U explicitly but, instead, represents the
confounding effects of U variables using bidirected edges. Divergent edges V; <
Uy — V; will be represented by a bidirected edge between V; and V. The presence
of such bidirected edge in G represents unmeasured factors (or confounders) that
may influence two variables in V'; we assume that substantive knowledge permits
us to decide if such confounders can be ruled out from the model. For example,
Figure 1.1 will be represented by Figure 1.2, assuming that the variable U is a
hidden variable.

Causal Bayesian networks provide a strict mathematical language for reason-
ing with causes and effects. This dissertation addresses various issues in causal
reasoning, including learning causal structures from data, testing causal models,
assessing the effects of actions, and determining the causes of effects.

1.4 Contributions

The principal contributions of this dissertation are

e The establishment of a necessary and sufficient set of properties for inter-
ventional distributions induced by causal Bayesian networks.

e A new method of discovering causal structures, based on the detection of
local, spontaneous changes in the underlying data-generating model.

e A procedure for systematically identifying functional constraints induced
by causal Bayesian networks with hidden variables.

e A procedure for systematically identifying causal effects, in the presence of
unmeasured confounders, from a combination of nonexperimental data and
substantive assumptions encoded in the form of a directed acyclic graph.

e The derivation of tight bounds on probabilities of causation, from data
obtained in experimental and observational studies, under general assump-
tions concerning the data-generating process.



1.5 Overview

In Chapter 2, we offer a complete characterization of interventional distribu-
tions that could be induced by a causal Bayesian network. We show that the
set of interventional distributions must adhere to three norms of coherence, and
we demonstrate the use of these norms as inferential tools in tasks of learning
and identification. In Chapter 3, we propose a new method of discovering causal
structures, based on the detection of local, spontaneous changes in the underlying
data-generating model. We analyze the classes of structures that are equivalent
relative to a stream of distributions produced by local changes, and devised al-
gorithms that output graphical representations of these equivalence classes. We
investigate both the Bayesian approach and an approach that infers structures
by detecting distributional changes. Chapter 4 develops a systematic procedure
of identifying functional constraints induced by causal Bayesian networks with
hidden variables. The procedure facilitates the task of testing causal models as
well as inferring such models from data. Chapter 5 concerns the assessment of the
causal effects in nonparametric models. The chapter establishes new criteria for
deciding whether the assumptions encoded in a causal graph are sufficient for as-
sessing the strength of causal effects and, if the answer is positive, computational
procedures are provided for expressing causal effects in terms of the underlying
joint distribution. Chapter 6 shows how to use the results in Chapter 5 to identify
causal effects in linear models. Chapter 7 deals with the problem of estimating
the probability of causation, that is, the probability that one event was the cause
of another in a given scenario, for example, the probability that event F would
not have occurred if it were not for event C, given that C and F did in fact occur.
Starting from structural-semantical definitions of the probabilities of necessary or
sufficient causation (or both), we show how to bound these quantities from data
obtained in experimental and observational studies, under general assumptions
concerning the data-generating process. The results delineate more precisely the
basic assumptions that must be made before statistical measures such as the
excess-risk-ratio could be used for assessing attributional quantities such as the
probability of causation.



CHAPTER 2

A Characterization of Causal Models

2.1 Introduction

In this chapter, we seek a characterization for the set of interventional distribu-
tions, P;(v), that could be induced by some causal Bayesian network. Whereas
[Pea00, pp.23-4] has given such characterization relative to a given network, we
assume that the underlying network, if such exists, is unknown. Given a col-
lection of arbitrary interventional distributions, we ask whether the collection
is compatible with the predictions of some underlying causal Bayesian network.
Section 2.2 identifies three properties (of the collection) that are both necessary
and sufficient for the existence of such an underlying network. Section 2.3 iden-
tifies necessary properties of distributions induced by semi-Markovian models,
causal Bayesian networks in which some of the variables are unmeasured. Sec-
tion 2.4 shows how the properties uncovered in Sections 2.2 and 2.3 can be used
as symbolic inferential tools for predicting the effects of actions from nonexper-
imental data in the presence of unmeasured variables. The Conclusion section
outlines the use of these properties in learning tasks which aim at uncovering the
structure of the network.

2.2 Interventional Distributions in Markovian Models

Let P, be a set of arbitrary interventional distributions
P, = {P,(u)|[T CV,t € Dm(T)} (2.1)

where Dm(T) represents the domain of 7. For example, assume that V' consists
of two binary variables X and Y with the domain of X being {zg,z;} and the
domain of Y being {yo,y1}, then P, contains distributions P(z,y), Py,(2,y),
P (z,y), Py(,y), Py (x,y), Pugyol2,y),. .., where each Py(x,y) is an arbitrary
probability distribution over XY . For this set of distributions to be induced by
some underlying causal Bayesian network such that each P(z,y) corresponds to
the distribution of X, Y under the intervention do(T = t) to the causal Bayesian
network, they have to satisfy some norms of coherence. For example, it must



be true that P, (z¢) = 1. For another example, if the causal graph is X — Y
then P, (xo) = P(xo), and if the causal graph is X «— Y then Py, (y0) = P(yo),
therefore, it must be true that either Py (o) = P(zo) or Py (yo) = P(y). We
would like to know what properties a P, set must satisfy such that it is compatible
with some underlying causal Bayesian network. In this section, we show that a
P, set induced from a Markovian causal model is fully characterized by three
properties: effectiveness, Markov, and recursiveness.

Property 1 (Effectiveness) For any set of variables T,

Pi(t) = 1. (2.2)

Effectiveness states that, if we force a set of variables T" to have the value ¢, then
the probability of T taking that value ¢ is one.

For any set of variables S disjoint with 7', an immediate corollary of effective-

ness reads:
Pult) = 1, (2.3)

which follows from
Pt,s(t) > P, g(t,s) =1 (2.4)

Equivalently, if T3 € T, then

| 1 1if#; is consistent with 7.
Pi(t,) = { 0 if t; is inconsistent with ¢. (2:5)
We further have that, for 77 € T and S disjoint of T,
[ Py(s) ift; is consistent with ¢.
Pi(s,th) = { 0 if ¢, is inconsistent with ¢. (2.6)
Property 2 (Markov) For any two disjoint sets of variables Sy and S,
Pv\(51U32)(517 52) - Pv\51 (51)P0\32(52>- (27)

An equivalent form of the Markov property is: For any set of variables T C V,

PN = [ Poplor). (2.8)

{ilvieV\T}



Eq. (2.8) can be obtained by repeatedly applying Eq. (2.7), and Eq. (2.7) follows
from Eq. (2.8) as follows:

Pv\(51U52)(51> 52) = H I_)v\{vZ Uz

V;€S51US2

= H Po\foiy (vi) H P wiy (Vi)

Viesy V; €852

= U\Sl(sl)PU\Sz<32)' (2'9)

Definition 2 For two single variables X and Y, define “X affects Y7, denoted
by X ~ Y, as 3W C Viw,z,y, such that Py, (y) # Pu(y). That is, X affects YV
if, under some setting w, intervening on X changes the distribution of Y.

Property 3 (Recursiveness) For any set of variables {Xo,..., Xz} CV,
(XQMXl)/\/\(X]C_l’\/?Xk) :>_‘(Xk’\f>Xo) (210)
Property 3 is a stochastic version of the (deterministic) recursiveness axiom given
n [Hal98]. It comes from restricting the causal models under study to those
having acyclic causal graphs. For k = 1, for example, we have X ~ V¥ = —(YV ~»
X)), saying that for any two variables X and Y, either X does not affect ¥ or
Y does not affect X. [Hal98] pointed out that, recursiveness can be viewed as

a collection of axioms, one for each k, and that the case of £ = 1 alone is not
enough to characterize a recursive model.

Theorem 1 (Soundness) Effectiveness, Markov, and recursiveness hold in all
Markovian models.

Proof: All three properties follow from the factorization of Eq. (1.2).

Effectiveness From Eq. (1.2), we have
P(T=t)=0 fort #t, (2.11)
and since

> R{)=1, (2.12)

teDm(T)

we obtain the effectiveness property of Eq. (2.2).



Markov From Eq. (1.2), we have

P(v\t) = PB(t,u\t) = H P(vi|pa;). (2.13)
V;eV\T
Letting 7=V \ {Vi} in Eq. (2.13) yields
Pv\{vi}(vi) = P(vilpai). (2.14)

Substituting Eq. (2.14) back into Eq. (2.13), we get the Markov property
(2.8), which is equivalent to (2.7).

Recursiveness Assume that a total order over V that is consistent with the
causal graph is V; < .-+ < V,,, such that V; is a nondescendant of Vj if
V; < V;. Consider a variable V; and a set of variables S C V' which does
not contain V. Let B; = {Vj|V; < V;,V; € V' \ S} be the set of variables
not in S and ordered before V}, and let A; = {Vj|[V; < Vi, V; € V'\ S} be
the set of variables not in S and ordered after V;. First we show that

. (2.15)
We have

- ZP”J »85 a] ”j 185b5 (aj)ﬂ (by Eq. (2~7)) (2.16)

where P,. ;.,(b;) = HMVGB , P(vilpa;) is a function of b; and its parents.
Since all variables in A; are ordered after the variables in Bj, P, s 4. (b;) is
not a function of a;. Hence Eq. (2.16) becomes

ij,s(bj - v],saj E ij,sb] a]

= Py, s, (b)) (2.17)
Similarly,
= Z Py(vj, aj, b))
Vs Qg
ZPv],s,a sbj (U]Ja’j>
U 05
- v],sa] ZPsb Ujaaj
Uy
= Py 5.0 (b)) (2.18)
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Eq. (2.15) follows from (2.17) and (2.18).

From Eq. (2.15), we have that, for any two variables V; < V; and any set of

variables S,
ij,s(%') = P, (W): (219)

which states that if X is ordered before Y then Y does not affect X, based
on our definition of “X affects Y. Therefore, we have that if X affects YV
then X is ordered before Y, or

XoV=X<Y (2.20)

Recursive property (2.10) then follows from (2.20) because the relation “<”
is a total order.

O

To facilitate the proof of the completeness theorem, we give the following
lemma.

Lemma 1 [Pea88, p.124] Given a DAG over V, if a set of functions f;(v;, pa;)
satisfy

Z .fi(vhpai) = 17 and 0 S fi(vi;pai> S 1: (221>

v, e Dm(V;)

and P(v) can be decomposed as

P(v) = Hfi(vi,pai), (2.22)

then we have

fi(ui,pai) = P(Ui]pai), 1= 1, e, T (223)

Theorem 2 (Completeness) If a P, set satisfies effectiveness, Markov, and
recursiveness, then there exists a Markovian model with a unique causal graph
that can generate this P, set.

Proof: Define a relation “<” as: X <Y if X ~ Y. Then the transitive closure
of <, <*, is a partial order over the set of variables V from the recursiveness
property as shown in [Hal98]. Let “<” be a total order on V' consistent with <*.

We have that
if X <Y then P, (z) = Py(z) (2.24)
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for any set of variables S. This is because if P, (z) # Ps(x), then ¥ ~ X and
therefore Y < X, which contradicts the fact that X < Y is consistent with <*.

Define a set PA; as a minimal set of variables that satisfies
Ppai (UZ) = PU\{W}(’UZ'). (2.25)
We have that
if Vi <V}, then V; € PA,. (2.26)

Otherwise, assuming V; € PA; and letting PA] = PA; \ {V;}, from Egs. (2.24)
and (2.25) we have

PP%(”) = Ppaé,vj (Uz) = P’U\{W}(Ui)7 (2.27)

which contradicts the fact that PA; is minimal. From Eq. (2.26), drawing an
arrow from each member of PA; toward V;, the resulting graph G is a DAG.

Substituting Eq. (2.25) into the Markov property (2.8), we obtain, for any set
of variables T,

Pw\t)= ] Ppailv). (2.28)
{ilvig1y
By Lemma 1, we get
Ppa, (vi) = P(vilpas). (2.29)

From Egs. (2.28), (2.29), and the effectiveness property (2.6), Eq. (1.2) follows.
Therefore, a Markovian model with a causal graph G can generate this P, set.

Next, we show that the set PA; is unique. Assuming that there are two
minimal sets PA; and PA} both satisfying Eq. (2.25), we will show that their
intersection also satisfies Eq. (2.25). Let A = PA, N PA,, B = PA;\ A, B =
PAINA, and S =V \ (PA;UPA, U{V;}). From the Markov property Eq. (2.7),

we have

Pa(b,V,5,01) = Pan, (b0, S)Pv\{vz‘}(vz‘)
= Par,vq‘,(ba bl: S)Pa,b(vi) (2.30)

Summing both sides of (2.30) over B’ and S, we get

Po(b,v:i) = Pop,(b) Pop(vs)- (2.31)
Substituting Ppe, (vi) with Py (v;) in (2.31), we get

Pu(b,v;) = Py (b) Pow (). (2.32)

12



Summing both sides of (2.32) over B, we obtain
Pa(%’) = Pa,b’ (’l}i> = Ppa'i (Ui), (233)

which says that the set A = PA; N PA! also satisfies Eq. (2.25). This contra-
dicts the assumption that both PA; and P A} are minimal. Thus PA, is unique. O

A Markovian model also satisfies the following properties.

Property 4 If a set B is composed of nondescendants of a variable V;, then for
any set of variables S,

P, s(b) = Py(b). (2.34)
Proof: If B is disjoint of S, Eq. (2.34) follows from Eq. (2.15) since B C B;.

If B is not disjoint of S, Eq. (2.34) follows from the Effectiveness property and
Eq. (2.15). O

Property 5 For any set of variables S C V \ (PA; U{Vi}),
Pra, s (Vi) = Ppa, (v4). (2.35)
Proof: Let 8" =V \ (PA, U{V;} US).
Pras (Vi) = ) Poag,s(s', vi)
= Py} (v) Bpas s (5") (by Eq. (2.7))

= Ppa,(0:) > Praysw(s') (by Eq. (2.25))

= Ppa; (vi) (2.36)
O

Property 6
Ppa,(vi) = P(vilpai). (2.37)

Property 6 has been given in Eq. (2.29).

Property 7 For any set of variables S CV, and V; € S,

Py(vilpa;) = P(vilpa;), for pa; consistent with s. (2.38)
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Proof: Let §' = V\ (PA; U{V;}US). Assuming that pa; is consistent with s, we
have

Py(vi, pa;) = ZPS(%Paz‘a s')
— Z Py i3 (Vi) Po i (pas, 8') (by Eq. (2.7))
= P(v;|pay) ZPMZ. (pa;, s') (by Eq. (2.14))
5/

= P(vilpa;) Ps 5, (pa;)
= P(vifpa;) Ps(pa;) (by Property 4) (2.39)

which leads to Eq. (2.38). O

2.3 Interventional Distributions in Semi-Markovian Mod-
els

When some variables in a Markovian model are unobserved, the probability distri-
bution over the observed variables may no longer be decomposed as in Eq. (1.1).
Let V. = {Vi,...,V,} and U = {Ui,..., Uy} stand for the sets of observed
and unobserved variables respectively. In a semi-Markovian model, as defined
in Chapter 1.3, the observed probability distribution and the post-intervention
distribution are given by Eqgs. (1.5) and (1.6) respectively.

If, in a semi-Markovian model, no U variable is an ancestor of more than
one V variable, then Pi(v) in Eq. (1.6) factorizes into a product as in Eq. (1.2),
regardless of the parameters {P(v;pa;,u')} and {P(u)}. Therefore, for such a
model, the causal Markov condition holds relative to Gy (the subgraph of G
composed only of V' variables), that is, each variable V; is independent on all its
non-descendants given its parents PA,; in G'y. And by convention, the U variables
are usually not shown explicitly, and Gy is called the causal graph of the model.

The causal Markov condition is often assumed as an inherent feature of causal
models (see e.g. [KSC84, SGS93]). It reflects our two basic causal assumptions:
(1) include in the model every variable that is a cause of two or more other vari-
ables in the model; and (ii) Reichenbach’s (1956) common-cause assumption, also
known as “no correlation without causation,” stating that, if any two variables
are dependent, then one is a cause of the other or there is a third variable causing
both.

If two or more variables in V' are affected by unobserved confounders, the
presence of such confounders would not permit the decomposition in Eq. (1.1),
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and, in general, P(v) generated by a semi-Markovian model is a mixture of prod-
ucts given in (1.5). However, the conditional distribution P(v|u) factorizes into
a product

u) = HP(Uz«lpai,ui), (2.40)

and we also have
[ liipvery Plvilpai, u?) for all v consistent with 7' = .

I (2.41
Hvlu) = i for all v inconsistent with 7" = ¢. ( )

Therefore all Properties 1-7 hold when we condition on u. For example, the
Markov property can be written as

R}\(S1U32)(817 52‘“) = Pv\sl (311U)Pv\52 (SZ{U)- (242)
Let P,(u) denote the set of all conditional interventional distributions
P,(u) = {P(vju)|T CV,t € Dm(T)} (2.43)

Then P, (u) is fully characterized by the three properties effectiveness, Markov,
and recursiveness, conditioning on u.

Let P, denote the set of all interventional distributions over observed variables
V asin (2.1). From the properties of the P,(u) set, we can immediately conclude
that the P, set satisfies the following properties: effectiveness (Property 1), re-
cursiveness (Property 3), Property 4, and Property 5, while Markov (Property 2),
Property 6, and Property 7 do not hold. For example, Property 5 can be proved
from its conditional version,
Ppa, s (Uz{u) = Ppai (Uitu)7 (2'44)
as follows

Py, s (i) praz,s v;lu) P ZPpaz (vilu)P(u) = Py, (vi). (2.45)

Significantly, the P, set must satisfy inequalities that are unique to semi-
Markovian models, as opposed, for example, to models containing feedback loops.
For example, from Eq. (1.6), and using

P(vilpa;,u’) <1, (2.46)
we obtain the following property.
Property 8 For any three sets of variables, T, S, and R, we have
Py(s) > By(r,s) + P (t,s) — P(t,r,s) (2.47)

Additional inequalities, involving four or more subsets, can likewise be derived by
this method. However, finding a set of properties that can completely characterize
the P, set of a semi-Markovian causal model remains an open challenge.
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2.4 Applications in the Identification of Causal Effects

Given two disjoint sets 7' and S, the causal effect Py(s) is said to be identifiable if,
given a causal graph, it can be determined uniquely from the distribution P(v) of
the observed variables, and is thus independent of the unknown quantities, P(u)
and P(v|pas, u'), that involve elements of U. Identification means that we can
learn the effect of the action T = ¢ (on the variables in S) from sampled data
taken prior to actually performing that action. In Markovian models, all causal
effects are identifiable and are given in Eq. (1.2). When some confounders are un-
observed, the question of identifiability arises. Sufficient graphical conditions for
ensuring the identification of P(s) in semi-Markovian models were established by
several authors [SGS93, Pea93, Pea95a] and are summarized in [Pea00, Chapters

3 and 4]. Since

Py(s) = Py(s|u)P(u), (2.48)

and since we have a complete characterization over the set of conditional inter-
ventional distributions (P, (u)), we can use Properties 1-3 (conditioning on u) for
identifying causal effects in semi-Markovian models.

The assumptions embodied in the causal graph can be translated into the
language of conditional interventional distributions as follows:

For each variable V;,

Py oy (vilu) = Py, (vi]u). (2.49)
The Markov property (2.8) conditioning on u then becomes

PNty = ] B (vsh). (2.50)

{ilvieV\T}

The significance of Eq. (2.50) rests in simplifying the derivation of elaborate
causal effects in semi-Markov models. To illustrate this derivation, consider the
model in Figure 1.2, and assume we need to derive the causal effect of X on
{Z,Y}, a task analyzed in [Pea00, pp.86-8] using do-calculus. Applying (2.50) to
P, (y, z|u), (with z replacing t), we obtain:

Py(y,2) = > Puly, zu)P(u)

= P.(ylu)Ps(2) P(u)

= Fe(2) Px(y) (2.51)
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Each of these two factors can be derived by simple means; P,(z) = P(z|z) because
Z has no unobserved parent, and P,(y) = >, P(y|z', 2) P(2') because X blocks
all back-door paths from Z to Y (they can also be derived by applying (2.50) to
P(z,y,z|u)). As a result, we immediately obtain the desired quantity:

Py(y,2) = P(zl2) ) P(yla’, 2)P(d), (2.52)

a result that required many steps in do-calculus.

In general, from (2.50), we have

\t) = Z H Ppa,(vilu )P(u)

uw {i|V;eV\T}

s
D
[@xt
[o%)

N

Depending on the causal graph, the right hand side of (2.53) may sometimes be
decomposed into a product of summations as

Pi(v\t) = HZ H Ppa, (vilu') P(n;)

n; VieS;

= H Pos; (55), (2.54)
J

where N;’s form a partition of U and S;’s form a partition of V' \ 7. Eq. (2.51)
is an example of such a decomposition. Therefore the problem of identifying
Py(v\ t) is reduced to identifying some P, (s;)’s. Based on this decomposition,
a method for systematically identifying causal effects is developed in Chapter 5.

2.5 Conclusion

We have shown that all experimental results obtained from an underlying Marko-
vian causal model are fully characterized by three norms of coherence: Effective-
ness, Markov, and Recursiveness. We have further demonstrated the use of these
norms as inferential tools for identifying causal effects in semi-Markovian models.
This permits one to predict the effects of actions and policies, in the presence of
unmeasured variables, from data obtained prior to performing those actions and
policies.

The key element in our characterization of experimental distributions is the
generic formulation of the Markov property (2.7) as a relationship among three
experimental distributions, instead of the usual formulation as a relationship
between a distribution and a graph (as in (1.1)). The practical implication of
this formulation is that violations of the Markov property can be detected with-
out knowledge of the underlying causal graph; comparing distributions from just
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three experiments, Py (s,us,) (51, S2), Pos, (51), and Py, (s2), may reveal such vio-
lations, and should allow us to conclude, prior to knowing the structure of G, that
the underlying data-generation process is non-Markovian. Alternatively, if our
confidence in the Markovian nature of the data-generation process is unassailable,
such a violation would imply that the three experiments were not conducted on
the same population, under the same conditions, or that the experimental inter-
ventions involved had side effects and were not properly confined to the specified
sets Sl, SQ, and S1 U Sg.

This feature is useful in efforts designed to infer the structure of G from a
combination of observational and experimental data; a single violation of (2.7)
suffices to reveal that unmeasured confounders exist between variables in 57 and
those in S,. Likewise, a violation of any inequality in (2.47) would imply that
the underlying model is not semi-Markovian; this means that feedback loops may
operate in data generating process, or that the interventions in the experiments
are not “atomic”.
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CHAPTER 3

Causal Discovery from Changes

3.1 Introduction

Inferring causal structures from empirical data has become an active research
area in recent years. Several graph-based algorithms have been developed for
this purpose. Some are based on detecting patterns of conditional independence
relationships [PV91, SGS93], and some are based on Bayesian approaches [CH92,
Gei95, Co099]. These discovery methods assume static environment, that is,
a time-invariant distribution and a time-invariant data-generating model, and
attempt to infer structures that encode dynamic aspects of the environment,
for example, how probabilities would change as a result of interventions. This
transition, from static to dynamic information, constitutes a major inferential
leap, and is severely limited by the inherent indistinguishability (or equivalence)
relation that governs Bayesian networks [VP90].

One way of overcoming this basic limitation is to augment the data with
partial causal knowledge, if such is available. [SGS93], for example, discussed
the use of experimental data to identify causal relationships. [CY99] discussed a
Bayesian method of causal discovery from a mixture of observational and exper-
imental data.

We propose a new method of discovering causal relations in data, based on
the detection and interpretation of local spontaneous changes in the environment.
While previous methods assume that data are generated by a static statistical
distribution, our proposal aims at exploiting dynamic changes in that distribu-
tion. Such changes are always present in any realistic domain that is embedded
in a larger background of dynamically changing conditions. For example, natural
disasters, armed conflicts, epidemics, labor disputes, and even mundane decisions
by other agents, are unexpected eventualities that are not naturally captured in
distribution functions. The occurrence of such eventualities tend to alter the
distribution under study and yield changes that are markedly different from or-
dinary statistical fluctuations. Whereas static analysis views these changes as
nuisance, and attempts to adjust and compensate for them, we will view them as
a valuable source of information about the data-generating process. A controlled
experimental study may be thought of as a special case of these environmental
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changes, where the external influence involves fixing a designated variable to some
predetermined value. In general, however, the external influence may be milder,
merely changing the conditional probability of a variable, given its causes. More-
over, in marked contrast to controlled experiments, we may not know in advance
the nature of the change, its location, or even whether it took place; these may
need to be inferred from the data itself.

The basic idea has its roots in the economic literature. The economist Kevin
Hoover (1990) attempted to infer the direction of causal influences among eco-
nomic variables (e.g., employment and money supply) by observing the changes
that sudden modifications in the economy (e.g., tax reform, labor dispute) in-
duced in the statistics of these variables. Hoover assumed that the conditional
probability of an effect given its causes remains invariant to changes in the mech-
anism that generates the cause, while the conditional probability of a cause given
the effect would not remain invariant under such changes. This asymmetry may
be useful in distinguishing cause and effect.

Today we understand more precisely the conditions under which such asym-
metries would prevail and how to interpret such asymmetries in the context of
large, multi-variate systems. Whenever we obtain reliable information (e.g., from
historical or institutional knowledge) that an abrupt local change has taken place
in a specific mechanism that constrains a given family of variables, we can use
the observed changes in the marginal and conditional probabilities surrounding
those variables to determine the direction of causal influences in the domain.
The statistical features that remain invariant under such changes, as well as the
causal assumptions underlying this invariance, are encoded in the causal graph at
hand, and can be used therefore for testing the validity of a given structure. Like-
wise, conflicts between observed and predicted changes can be used for automatic
restructuring of the topology of the structure at hand.

In this chapter, we will assume that we have data generated from a dynami-
cally changing environment and our task is to recover the actual causal structures.
In Section 3.2, we formally present this learning problem. In Section 3.3, we an-
alyze the equivalence classes of causal structures relative to the given data. In
Section 3.4, we analyze the patterns of distributional changes induced by data
and present recovery methods that infer causal directionality information from
those changes. In Section 3.5, we investigate the Bayesian approach for causal
discovery. The Bayesian approach [HMC97] gives us a consistent way of combin-
ing dynamic datasets to get an overall estimation of causal structures. We show
how to derive a Bayesian scoring metric from various types of dynamic data by
assigning appropriate priors over probability parameters. The Bayesian scores
obtained are extensions of previously derived Bayesian scores [CH92, Gei95]. For
mixed observational and experimental data we obtained the same score as given
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in [CY99]. We show that dynamic data increase our power of causal discovery
beyond the limits set by independence equivalence.

3.2 Mechanism Changes

Let our problem domain be a set of discrete random variables V = {V;,..., V,}.
In this chapter, we denote a causal model over V' by a pair M = <G, ©g>, where
G is the causal graph and O is a set of probability parameters. We assume that
each variable V; can take values from a finite domain, Dm(V;) = {vi1, ..., Vir, },
where 7; is the number of states of V;. Let 0., v; € Dm(V;), pa; € Dm(Pa;)
denote the multinomial parameter corresponding to the conditional probability
P(v;|pa;). We will use the following notations: Opa, = {Ov;pa; Ui € DM(V))}, T, =
UpaieDm(pai)é;mi, Og = UL, ¥,. A causal model M = <G,O¢> generates a
probability distribution given in Eq. (1.1), rewritten as

Pv) = Hgvi;pai' (3.1)

H

A probability distribution P(V) is said to be compatible with a causal graph G
if P(V) can be generated by some causal model M = <G, 0>,

Based on the modularity assumption that each family in the causal graph
represents an autonomous physical mechanism and is subjected to change without
influencing other mechanisms, we formally define mechanism change as follows.

Definition 3 (Mechanism Change) A mechanism change to a causal model
M = <G,0¢g> at a variable V; is a transformation of M that produces a new
model, My, = <G, 04>, where O = V,U(O¢\¥;) and ¥} is a set of parameters
having values that differ from those in U;.

We will assume that the parent set Pa; does not change in a mechanism change.
We see that an intervention that fixes V; to a particular value is a special case
of a mechanism change. Let P(V) be the distribution generated by M, as in
Eq. (3.1). Then the distribution generated by My, is given by

PVi (U> = Qi)i;pai H gvj pag - (32)

We will call (P, Py,) a transition pair (TP) and V; the focal variable of the tran-
sition. Assume that a series of mechanism changes occurred successively to a
causal model M = <G, @°G>, and let F' = (V;,,...,V;,) denote the correspond-
ing sequence of focal variables. We use Ppg = (P P',..., P¥) to denote the
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sequence of distributions generated by such a series, and call the pair (Prg, F') a
transition sequence (TS).

As oracles for cause-and-effect relations, causal models can predict the ef-
fects that any external or spontaneous changes have on the distributions. Con-
versely, by detecting how probability distributions change under various mech-
anism changes, we obtain information on the structure of the model generat-
ing those distributions. We propose to exploit the stream of distributions from
mechanism changes to recover underlying causal structures. In this chapter,
we make the following assumptions: each mechanism change occurs at one sin-
gle variable at a time, and we have the distribution (or samples thereof) after
each single mechanism change, that is, we know when each mechanism change
happens and at which variable. We will then assume that we are given a TS
(Prg, F') corresponding to some causal graph G, or, we have a sequence of datasets
Drs = {D° ..., D"}, where each D' is a set of random samples from a distribu-
tion P*, such that each pair (P/~!, P7) is a TP with focal variable V;,, and our
task will be to recover a causal graph (or a set of graphs) that can generate Dyg.
First, we study what can be learned from a TS.

3.3 Indistinguishability of Causal Graphs

Our ability to recover causal graphs is limited by the statistical indistinguisha-
bility of causal models with given data. In this section, we study the classes of
causal structures that are indistinguishable (or “equivalent”) relative to a T'S.

The statistical information provided by any causal graph is completely en-
coded in the independence relationships among the variables. Therefore, two
causal graphs are statistically indistinguishable given one static distribution if
and only if they are independence equivalent. The graphical conditions for inde-
pendence equivalence are given by the following theorem.

Theorem 3 (Independence Equivalence) Two causal graphs are independence
equivalent if and only if they have the same skeletons and the same sets of v-
structures, that is, two converging arrows whose tails are not connected by an
arrow [VP90].

Now assume that we have a TP with focal variable V;. A causal graph G
is said to be compatible with o transition pair (P, Py,) if P can be generated
by a causal model M = <G,0¢> and Py, can be generated by a causal model
My, = <G, 0> resulted from a mechanism change to A at V;. Note that a
causal graph could be compatible with both P and Py, but not compatible with
the TP (P, Py,). Among those independence-equivalent graphs compatible with
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both P and Py, a TP (P, Py,) can distinguish those that can generate Py, from
P with a single mechanism change from those that can not. Two causal graphs
G, and G4 are called transition pair equivalent with respect to a TP with focal
variable V;, or V;-transition equivalent, if every TP (P, Py,) compatible with G,
is also compatible with G5. Two causal graphs are statistically indistinguishable
given a TP (P, Py;) if and only if they are Vj-transition equivalent.

Theorem 4 (Transition Pair Equivalence) Two causal graphs G1 and G
are Vi-transition equivalent if and only if they have the same skeletons, the same
sets of v-structures, and the same sets of parents for V;.

Proof: Let G1 be compatible with a TP (P, Py;). G5 must have the same skeletons
and the same sets of v-structures as G; to be compatible with P (and Py;) by
Theorem 3. We have the following decomposition:

P(v) = P(vilpa}) [ | Pvjlpaj) = P(vilpai) [T £(v;lpad), (3.3)
J# G

where Pa! and Pa? are parents of V; in Gy and G, respectively. G is compatible

with the TP (P, Py,), hence can generate Py, from P by a mechanism change at
Vi:

Pyi(v) = Py (vilpa) | | Pvjlpa). (3.4)

J#
Plugging the expression for [],_; P(v;lpa;j) from Eq. (3.3) into Eq. (3.4), we have

’Ul pa;
PV@‘ (’U) = PVQ (Ui1pa ;pa HP Uy lpa (35)

G, is also compatible with the transition pair (P, Py;) if and only if
Py (v) = Py, (vilpa?) T Pluslpa?). (3.6)
JF
Egs. (3.5) and (3.6) lead to

P(v|pay)

PVi (Uilpa%)P(v»lpal)

= Py, (vilpa7), (3.7)
which holds for any distribution P and Py, if and only if G; has the same parent
set for V; as Gy (Pa} = Pa?); if G, has a different parent set for V; with Go,
Eq. (3.7) will impose some constraints between P and Py, and will not hold for
arbitrary possible transition pair (P, Py;). O
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Figure 3.1: (a)The Cancer network. (a)-(d) are independence equivalent. (e)-(g)
are B-transition equivalent. A mechanism change on A determines a unique
causal graph (h).
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A TS is simply a series of TP’s. Accordingly, we say that a causal graph is
compatible with a transition sequence Prg = (P°, Pt ..., P¥), F = (Vi,,..., Vi)
if it is compatible with each TP (P/~!, P7) in the sequence. Likewise, two causal
graphs GG; and G4 are called transition sequence equivalent with respect to a TS
(Prs, F), or F-transition equivalent, if every TS (Prg, F') compatible with G| is
also compatible with G5. Two causal graphs are statistically indistinguishable
given a TS (Prg, F') if and only if they are F-transition equivalent.

Theorem 5 (Transition Sequence Equivalence) Two causal graphs are F-
transition equivalent if and only if they have the same skeletons, the same sets of
v-structures, and the same sets of parents for variables in F'.

Theorem 5 says that a TS determines the directions of the edges between the
focal variables and their neighbors (among the set of independence-equivalent
graphs). See Figure 3.1 for an example of TS equivalence.

Given a TS, the most we can expect to recover is a set of causal graphs that
are TS-equivalent, as defined by Theorem 5. We may find this equivalence class
by detecting independence relations and distribution changes.

3.4 Learning Causation by Detecting Changes

In this section, we identify the causal information that can be learned by detecting
various changes in the probability distributions, in particular, changes in the
marginal probability of each variable. The following theorem is obvious.

Theorem 6 A mechanism change at a wvariable X to a causal model M =
<G, 0> may alter the marginal probabilities of the descendants of X in G and
can not alter the marginals of nondescendants of X.

It is possible of course that, for some peculiar parameter changes, the marginal
probabilities of some descendants of X would not change. When recovering causal
information from distributional changes, we assume a restriction on a TS called
influentiality.

Definition 4 (influentiality) A TP (P, Px) generated by a causal model
<G,0g> is said to be influential if for every descendant Y of X in G, the
marginal distribution Px(Y') is different from P(Y"). A TS is influential if every
TP in the sequence is influential.

Assuming influentiality, we can obtain causal information by detecting changes
of marginal probabilities.
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Given a TP (P, Px), and assuming that we can test each variable for marginal
distribution change, we can draw the following inferences. If the marginal of a
variable Y has changed, we conclude that Y is a descendant of X. If the marginal
of a variable Z has not changed, we conclude that Z is a nondescendant of X.
We thus conclude that Z < X < Y should be a causal order consistent with the
causal graph. Next we discuss how to piece together ordering information of this
kind, as obtained from a TS.

3.4.1 Partitioning the variables

Given a TS Prg, F = (V;,,...,V;,), each variable can be characterized by a
sequence of 1's and 0’s, a tag ay, . .., ax, where q; reflects whether the marginal of
that variable changed (a; = 1) or not (a; = 0) in the ith transition of the sequence.
Non-focal variables that are given the same tags cannot be distinguished by the
TS (through detecting marginal changes), and no information can therefore be
extracted about their relative causal order in the causal graph. We may put
all such variables into a bucket labeled with the same tag, denoted by B,,...,.
Clearly, since we have no information on causal relations among variables within
the same bucket, all variables in a bucket stand in the same ordering relation to
all variables in another bucket. Focal variables need special treatment since they
carry more information, and we will put each focal variable into an individual
bucket called a focal bucket, denoted by B/

a1-ap”

We classify variables into buckets with the following algorithm.

Algorithm 1 (Partitioning Variable)

Input: a TS Prs, F'=(Vi,,..., Vi)

Output: A set of buckets, each associated with a tag ay . ..ag, and each containing
a set of variables.

Put all variables in a bucket B.
For the ith mechanism change, i = 1,...,k,
For each bucket By, ...q,_, tncluding focal buckets
if it contains the tth focal variable, put it in a focal bucket Bf;,_‘aiull.
put other changing variables in Bg,..q;_;1-
put non-changing variables in Bg,..q;_j0-

We show the partitioning process by an example. Assume that the actual
causal graph is the DAG shown in Figure 3.2(a) and that we are given a TS
(P, Px, Py). In the first transition, with X as the focal variable, P(Y) does
not change, hence By = {Y}; P(X),P(Z),P(W), P(Q) do change, hence we
form By = {Z,W,Q}, B = {X}. Note that a focal variable is put into an
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individual bucket. In the second transition, with ¥~ as the focal variable, P(Y)
changes, giving Bl, = {Y}; P(Z) and P(W) change, giving B;; = {Z, W};
P(Q) and P(X) do not change, giving By, = {Q} and B}, = {X}. As a result,
the variables are partitioned into four buckets: Bfy = {X},BJ, = {YV}, By =

{Q}a Bll = {Za W}

3.4.2 Extracting causal information

We shall now discuss what causal information we can extract from the tags at-
tached to buckets. Consider any two buckets By, ..., and By, ... If there exists
a bit such