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Abstract

We develop a qualitative theory of Markov
Decision Processes �mdps� and Partially Ob�
servable mdps that can be used to model
sequential decision making tasks when only
qualitative information is available� Our ap�
proach is based upon an order�of�magnitude
approximation of both probabilities and util�
ities� similar to ��semantics� The result is a
qualitative theory that has close ties with the
standard theory arithmetics and is amenable
to the most recent general planning tech�
niques�

� Introduction

The general task of sequential decision making un�
der uncertainty and partial information is of central
importance in AI since it embraces a broad range of
common problems found in planning� robotics� game
solving� etc� Currently� the most general and clear for�
mulation of the task is achieved through the theory of
Markov Decision Processes �mdps� and Partially Ob�
servable mdps �pomdps� 	
� ��� �
� These models do
not only provide a sound� concise and general frame�
work for modeling complex problems but also algo�
rithms for solving them� the most important being the
Value Iteration and Policy Iteration algorithms�

The standard formulation for an mdp �or pomdp�
model is made of two types of ingredients�

�a� qualitative information that de�ne the structure of
the problem� e�g� the set of world con�gurations
�state space�� the set of available decisions �also
known as controls or actions�� the feedback that
can be received by the agent� etc� and

�b� quantitative information �also known as
parametrization of the structure� that� to�
gether with the qualitative information� de�nes
the model� Typical examples are the transition

probabilities of going from one state to another
after the application of a control� the costs
incurred in such application� etc�

In general� the �optimal� solution to an mdp �pomdp�
depends in both types of information� so the stan�
dard algorithms need such information� Quite often�
however� we have precise knowledge of the qualitative
information but only �rough� estimates of the quan�
titative parameters� In such cases� the standard al�
gorithms cannot be applied unless the missing infor�
mation is �completed�� A process that is arbitrary
and� more important� sometimes unnecessary for ob�
taining reasonable solutions� Thus� we would like to
have a well�founded framework in which partially spec�
i�ed problems can be solved��

In this paper� we develop a qualitative theory for mdps
and pomdps in which such underspeci�ed problems
can be modeled and solved� As it will be seen� the re�
sulting theory can be thought as a generalization of the
standard mdp theory in the sense that as the quantita�
tive information becomes more precise� the qualitative
processes become �closer� to the standard processes�

In the computational side� we will show how the Value
Iteration algorithm can be used as a general algo�
rithm for solving the qualitative models� Yet for some
subclasses of problems� other recent algorithms might
work better� specially those based on heuristic search�
symbolic model�checking and sat�

The paper is organized as follows� In the next Section�
we review the formal de�nitions and most important
results of the standard theory of mdps and pomdps� In
Sect� �� we present the formal foundations upon which
the qualitative theory of mdps and pomdps is built�
The qualitative theory of mdps and pomdps is given
in Sections � and � respectively� Then� in Sect� � we
discuss and give pointers for the computational issues
that arise from special subclasses of problems� We

�Other approaches for solving unspeci�ed mdps are
those based on Reinforcement Learning� yet they basically
estimate the quantitative information from experimenta�
tion� see �����
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�nish the paper with a brief discussion that includes
related work and a summary� Due to space limitations�
we only provide proofs for the most novel results�

� Standard MDPs and POMDPs

In this section and the rest of the paper we use a no�
tation similar to the one in ���� the reader is referred
there for an excellent introduction to mdps�

The mdp model assumes the existence of a physical
system that evolves in discrete time and that is con�
trolled by an agent� The system dynamics is governed
by probabilistic transition functions that maps states
and controls to states� At every time� the agent incurs
in a cost that depends in the current state of the sys�
tem and the applied control� Thus� the task is to �nd
a control strategy �also known as a policy	 that min�
imize the expected total cost over the in�nite horizon
time setting� Formally� an mdp is characterized by

�M
	 A �nite state space S � f
� � � � � ng�

�M�	 a �nite set of controls U�i	 for each state i � S�

�M�	 transition probabilities pi�u�j	 for all u � U�i	
that are equal to the probability of the next state
being j after applying control u in state i� and

�M
	 a cost g�i� u	 associated to u � U�i	 and i � S�

A strategy or policy � is an in�nite sequence
���� ��� � � � 	 of functions where �k maps states to con�
trols so that the agent applies the control �k�i	 in
state xk � i at time k� the only restriction being that
�k�i	 � U�i	 for all i � S� If � � ��� �� � � � 	� the policy
is called stationary �i�e� the control does not depend in
time	 and is simply denoted by �� The cost associated
to � when the system starts at state x� is�

J��x�	
�
� lim

N��
E

�
N��X
k��

�kg�xk� �k�xk		

�
�
	

where the expectation is taken with respect to the
probability distribution induced by the transition
probabilities� and where the number � � ��� 
�� called
the discount factor� is used to discount future costs at
a geometric rate�

The mdp problem is to �nd an optimal policy �� sat�
isfying J��i	

�
� J���i	 � J��i	 �i � 
� � � � � n	� for every

other policy �� Although there could be none or more
than one optimal policy� the optimal cost vector J�

is always unique� The case � � 
 is of outmost im�
portance since it guarantees that the optimal policy
always exists and� more important� that there exists a
stationary policy that is optimal� In such case� J� is
the unique solution to the Bellman equation�

J��i	 � min
u�U�i�

g�i� u	 � �

nX
j��

pi�u�j	J
��j	� ��	

Also� if J� is a solution for ��	 then the greedy station�
ary policy �� with respect to J��

���i	
�
� argmin

u�U�i�

��
�g�i� u	 � �

nX
j��

pi�u�j	J
��j	

��
� ��	

is an optimal and stationary policy for the mdp�
Therefore� solving the mdp is equivalent to solving ��	�
Such equation can be solved using the dp operator �

�TJ	�i	
�
� min

u�U�i�
g�i� u	 � �

nX
j��

pi�u�j	J�j	 �
	

that map Rn into Rn � When � � 
 it is not hard to
show that the dp operator is a contraction mapping
with �xed point J� that satisfy��

J� � TJ� � lim
k��

T kJ� ��	

where J� is the zero n�dimensional vector� The Value
Iteration algorithm computes J� iteratively by us�
ing ��	 as an update rule� Starting from any vector
J � Value Iteration computes a succession of vectors
hJkik�� de�ned by J�

�
� J and Jk��

�
� TJk� The al�

gorithm stops when Jk�� � Jk� or when the residual
maxi�S jJk���i	 � Jk�i	j is su�ciently small� In the
latter case� the suboptimality of the resulting policy is
bounded by a constant multiplied by the residual�

��� Partially Observable MDPs

A Partially Observable Markov Decision Process
�pomdp	 is an mdp in which the agent does not know
the state of the system� This is an important depar�
ture from the mdp model since even if the agent knows
the optimal strategy for the underlying mdp� it can�
not apply it� Thus� the agent needs to estimate the
state of the system and then act accordingly� Such es�
timates are known as the belief states of the agent and
are updated continuously as the system evolves� The
pomdp framework alse extends the mdp framework by
allowing controls to return information about the sys�
tem� For example� a blood�test might return blood
type and reading�radarmight return the distance to
objects� See ��� for de�nitions from the AI perspective�
Formally� a pomdp is characterized by�

�P
	 A �nite state space S � f
� � � � � ng�

�P�	 a �nite set of controls U�i	 for each state i � S�

�P�	 transition probabilities pi�u�j	 for all u � U�i	
equal to the probability of the next state being
j after applying u in i�

�P
	 a �nite set of observations O�i� u	 � O that may
result after applying u � U�i	 in i � S�

�A contraction mapping T � S � S over a Banach space
S with norm k � k is a bounded operator such that kTJ �
TJ

�k � �kJ � J
�k with � � �� In this case� it is known

that T is continuous� that has a unique �xed point J�� and
that TnJ � J

� as n�� for any J � S� See �����



�P�� observation probabilities pi�u�o� for all u � U�i�
and o � O�i� u� equal to the probability of re�
ceiving o in i after applying u� and

�P�� a cost g�i� u� associated to u � U�i� and i � S�

It had been shown that �nding an optimal strategy to
this problem is equivalent to solving an in�nite mdp

problem in belief space� the so�called belief�mdp� whose
elements are�

�B	� A belief space B of prob� distributions over S�

�B
� a set of controls U�x� � fu � �i�x�i� � 
 � u �
U�i��g for each belief state x � B� and

�B�� a cost g�x� u� �
Pn

i�� g�i� u�x�i� for each u �
U�x� and x � B�

The transition probabilities of the belief�mdp are de�
termined by the abilities of the agent� It is known
that a full capable and rational agent should perform
Bayesian updating in order to behave optimally� In
that case� the transition probabilities are

x� xou with probability px�u�o�

where u � U�x�� o � O�x� u� the set of possible ob�
servations after applying control u in belief state x�
px�u�o� is the probability of receiving observation o af�
ter applying u in x� and xou is the Bayesian update of
x after u and o� i�e�

xou�i�
�
�

xu�i� pi�u�o�

px�u�o�
� ���

xu�i�
�
�

nX

j��

x�j� pj�u�i�� ���

px�u�o�
�
�

nX

i��

xu�i� pi�u�o�� ���

O�x� u�
�
� fo � px�u�o� � 
g� ���

And the corresponding dp operator is�

�TJ��x�
�
� min

u�U�x�
g�x� u� � �

X

o�O�x�u�

px�u�o�J�x
o
u��

As in the mdp case� when � � 	� the dp operator is
a contraction mapping so it has a unique �xed point
that is the solution to the Bellman equations� This fact
guarantees the existence of an stationary strategy that
is optimal but� unfortunately� the Value and Policy
Iteration algorithms are no longer feasible �but see �	��
for a survey of pomdps algorithms��

� Foundations

Our approach towards a qualitative theory for mdps
and pomdps will be based on the qualitative decision

theory proposed by Wilson few years ago �
��� Wil�
son�s theory� built upon ideas of Pearl and Goldszmidt
�

� 
	� 	��� de�nes a set of abstract quantities called
Extended Reals� denoted by Q� that are used to rep�
resent qualitative probabilities and utilities� Each Ex�
tended Real is a rational function p�q where p and
q are polynomials in � with coe�cients in the ratio�
nals� Plainly� � is thought as a very small but un�
known quantity so that the Extended Reals can be
used to represent �information up to � precision�� For
example� quantities like 	 � � and � might be used
for the qualitative probabilities �likely� and �unlikely�
respectively� and ��� for a high utility� These quanti�
ties are then combined using standard arithmetic op�
erations between polynomials for computing expected
qualitative utilities� The utilities are then compared
among each other by means of a linear order � in Q
that is de�ned in �
����

In order to use Wilson�s theory to de�ne a qualitative
version of mdps we need to be sure that equations like
�	� and ��� are well�de�ned� That is� we need to de�ne
some notion of convergence and then give conditions
that guarantee the existence of such limits�

Let us begin with some intuition about the problem
we face� Consider the sequence hsnin�� de�ned by
sn �
Pn

k�� �
k� Since the di�erence between two con�

secutive elements sn�� � sn � �n��� we would expect
that such sequence �converges� to

P
k�� �

k� This no�
tion of convergence is what we are after� As the reader
may observe the set of candidate limits must include
some collection of series in ��

��� A Complete Extension of Q

Consider the set S� of two�sided in�nite formal series

in � with real coe�cients s �
P

k ak�
k such that

ksk�
�
�
X

k

jakj�
�k � ��

with � � 
 a real number� where the summation is over
all integers� We say that a sequence hsnin�� from S�
converges to s � S� i� ks� snk� � 
 as n � �� and

that the sequence is convergent i� ksn � smk� � 
 as
n�m��� Note that there is no reason for a conver�
gent sequence to converge to something in S�� Fortu�
nately� this is not the case� This fact is known as that
hS�� k�k�i is a complete normed space �i�e� Banach���

We de�ne the following arithmetic operations of sum�
multiplication by an scalar and multiplication between

�More precisely� Wilson�s paper de�nes f��� � g��� if
and only if f��� � g��� � � for all � � ��� �� where � � �
depends in f and g�

�Indeed� hS�� k�k�i is the L����� space with respect to
the measure �� over Z de�ned by ��fkg � ��k� The Riesz�
Fischer Theorem in Analysis asserts that this space is com�
plete �i�e� it is a Banach Space� 	
�� Ch����x
��



series�

�s� t��k�
�
� s�k� � t�k��

��s��k�
�
� �s�k��

�s � t��k�
�
�
X

i�j

��i� j � k��s�i�t�j� �
X

i

s�i� t�k � i�

where s�k� is the functional notation for the kth term
of s� and ����� is � �resp	 
� if � is true �resp	false�	

Two important elements in S� are � and � de�ned
as ��k� � 
 and ��k� � � �resp	 
� if k � 
 �resp	
k �� 
�	 They are respectively the identity elements for
the sum and product of series	 The order�of�magnitude
of s � S� is de�ned by s�

�
� inffk � Z � s�k� �� 
g

and ��
�
� �	 For the subset S� of series such that

s� � �� we have

Theorem � S� is a �eld� i�e� �S������ is a commu�
tative group� �S� n f�g��� �� is a commutative group�
and the product is distributive with respect to the sum�

Example �� Let s �
P

k�� �
�k�k	 Then� its multi


plicative inverse is s�� � � � �

�
�	 To check this� for

k � 
�

�s � s�����k� � 
�

�s � s����
� � s�
�s���
� � ��

�s � s����k� �
X

i

s�i�s���k � i�

� s�k � ��s����� � s�k�s���
�

� ���k����� � ��k � 
�

Hence s � s�� � �	 �

It is not hard to show that the set of Extended Reals
Q is dense in S�	 That is� that for any s � S� there
exists a sequence hsnin�� from Q such that sn � s	

��� Linear Order in S�

We de�ne a linear order in S� from the linear order
in Q using the fact that Q is dense	 The construction
is done in the standard way by de�ning the set P of
positive elements in S�	

Let us denote with � the order in Q and let s � S�

be not equal to �	 Since Q is dense� there exists a se

quence hsnin�� from Q that converges to s	 Moreover�
we can choose the series such that sn

� � s� for all n	
We say that s � P if and only if there exists an integer
N such that sn 	 � for all n � N 	The following result
shows that P is well
de�ned and satis�es the desired
conditions	

Theorem � Let s � S� be di�erent from �� Then

�a� s is in �or not in� P independently of the chosen
series hsni� i�e� from any two such series hsni and
hs�ni the conclusion is the same�

�b� either s � P or �s � P�

�c� s � P if and only if s�s�� � 
�

For s� t � S� we say that s � t if and only if s � t is
in P � the other relations �� 
� � � � are de�ned in the
usual way	 Unfortunately the �eld S� also lacks� as Q�
the least upper bound property of the reals� that is that
every bounded set has a least upper bound �similarly
for greatest lower bounds�	

��� Normed Vector Spaces

An n
dimensional normed vector space with ele

ments in S� can be de�ned using the norm kJk

�
�

supi������ �n kJ�i�k�	 This space� denoted by Sn
� � is a

normed real vector space	 Since S� is complete Sn
� is

also complete �i	e	 Banach�	 A map T � Sn
� � Sn

�

is a contraction mapping with coe�cient � � �
� �� if
kTJ � THk � � kJ �Hk for all J�H � Sn

� 	 If so� T
has a unique �x point J� � Sn

� 	

We also will deal with more general vector spaces
whose elements can be though as mappings SX

� where
X is a ��nite or in�nite� set	 The corresponding norm
is kJk � supx�X kJ�x�k�	 Thus� if jX j � n� SX

� is the

n
dimensional space Sn
� and if jX j � �� then SX

� is
in�nite dimensional	

��� S��Probability Spaces

An S�
probability space is a triplet ���F � P � where �
is a �nite set of outcomes� F is the set of all subsets
of �� and P is a S�
valued function on F such that�

�a� P �A� 
 � for all A � ��

�b� P �A�B� � P �A��P �B� for all disjoint A�B � ��

�c� P ��� � �	

In this case we say that P is a S�
probability over ��
or that P is a qualitative probability over �	 A random
variable X on ���F � P � is a mapping �� S�	 Its ex

pected value is de�ned as EX

�
�
P

���X���P �f�g�	

����� Kappa Rankings

A kappa ranking is a function � that maps subsets in F
into the non
negative integers �including�� such that�
��
� ��� ���� � 
 and ��A�B� � minf��A�� ��B�g
for disjoint A�B � �	 This function should be thought
as a ranking of the set of worlds into degrees of disbelief
so that values of 
����� � � � refer to situations deemed
as probable� unprobable� very unprobable� � � � Such
values have a close connection with qualitative proba

bilities since if P is a qualitative probability� then P �

is a kappa ranking	 Kappa rankings had been used
to model order
of
magnitude approaches to decision
making ���� ��� ��� and are closely related to other
qualitative approaches like ���	 It is easy to see that



� � � � Z
� � f�g is a kappa ranking i� there exists

� � � such that ���� � ��

As just said� any qualitative probability induces a
kappa ranking over worlds� The other direction� go	
ing from kappa rankings to qualitative probabilities� is
not uniquely determined� However� we de
ne one such
mapping� called projection� that will play a major role
when de
ning the qualitative processes�

����� Projections

A projection �� of a kappa ranking � over �
nite� �
is a qualitative probability over � that is consistent
with �� i�e� �����

� � ���� for all � � �� To de
ne ���
let nm be the number of elements from � such that �
assign m to them� i�e� jf� � � � ���� � mgj � nm�
Then� �� is de
ned as ����� � � if ���� �� and

�����
�
�

N����

n����

�
������ �

X
j�����

��nj �� ��� �j

�
A �
��

otherwise� where the integers Nk are de
ned as

N�
�
� 
� Nk

�
�

k��X
j��

��nj �� ���Nj �

Later� in Sect� �� we will discuss the �arbitrariness� of
this de
nition�

Example �� Let � � fa� b� c� d� eg and � be such that
��a� � ��b� � �� ��c� � ��d� � 
 and ��e� � �� Then�

���a� � ���b� � ���
�

� �� ��

�
�

���c� � ���d� � ���
�
�� ��

�
�

���e� � ����

Clearly� ���a�� ���b�� ���c�� ���d�� ���e� � � so ��
is a qualitative probability consistent with �� �

Theorem � Let � be a kappa ranking over �� Then�

�a� �� is a qualitative proability over ��

�b� �����
� � ���� for all � � �� and

�c� sup
�

X
���

k�����k� � 
 as ����

where the sup is over all kappa rankings over ��

Proof� Part �b� follows readily from de�nitions� For �a��
we only need to show that

P
� ����� � ��

X
���

�����

�
X
���

������ �����
N����

n����

�
�
���� �

X
j�����

��nj �� 	�� �j
�

�
X
k��

��nk �� 	�� nk
Nk

nk

�
�
k �
X
j�k

��nj �� 	�� �j
�

�
X
k��

��nk �� 	��Nk �
k �

k��X
j��

��nk �� 	� nj �� 	��Nj �
k

�
X
k��

��nk �� 	�� �k
�
Nk �

k��X
j��

��nj �� 	��Nj

�

� ��n� �� 	�� ��N� � ��

For �c�� �x a kappa measure � over 
� Then�

X
���

������ � 	�� k�����k� � � �
X
j��

�
�j � � �

�

�� �
�

X
���

������ � 	�� k�����k�

�
X
k��

��nk �� 	��Nk

����k �X
j�k

��nj �� 	�� �j
���
�

�
X
k��

��nk �� 	��Nk

X
j�k

��nj �� 	�� ��j

� 
j�j
X
k��

��nk �� 	��
X
j�k

��nj �� 	�� ��j

� 
j�j
X
k��

��nk �� 	��
��k

�� ���
�
j
j 
j�j

�� �

where we have used ��nk �� 	��Nk � 
j�j �exercise�� So�

X
���

k�k���k� � � �
� � j
j 
j�j

�� �
� �

as ��� and independently of �� �

� Qualitative MDPs

A Qualitative Markov Decision Process �qmdp� is an
mdp in which the quantitative information is given
by qualitative probabilities and costs� i�e� a qmdp is
characterized by

�QM
� a 
nite set of states S � f
� �� � � � � ng�

�QM�� a 
nite set of controls U�i� for each i � S�

�QM�� qualitative transition probabilities Pi�u�j� of
making a transition to j � S after applying
control u � U�i� in i � S� and

�QM�� a qualitative cost g�i� u� of applying control
u � U�i� in i � S�

To de
ne the cost associated to policy � �
���� ��� � � � �� consider an N 	stage �	trajectory start	
ing at state i 	 � hikik�� where i� � i and
Pik��k�ik��ik��� 
 �� Each such trajectory 	 has qual	
itative probability and cost given by

P �	�
�
�

N��Y
k��

Pik��k�ik��ik���� �

�



g���
�
�

N��X

k��

�k g�ik� �k�ik��� ����

The in�nite horizon expected discounted cost of apply�
ing policy � starting at state i is de�ned as

J��i�
�
� lim

N��

X

�

P ��� g��� � lim
N��

E
�
g���

�
����

where the sum is over all N �stage ��trajectories start�
ing at i and the expectation is with respect to the
qualitative probability ���� �compare with Eq���� for
mdps�� In general	 the limit in ���� is not always well�
de�ned� However	 when all costs g�i� u� are in Q and
� � �	 then the limit exists and J� is well�de�ned�
From now on	 we will assume that this is the case�
The optimal cost�to�go starting from state i	 denoted
by J��i�	 is J��i�

�
� inf� J��i�� We would like to prove

that J� is well�de�ned and that there exists a station�
ary policy �� such that J� � J�� � Unfortunately	 such
result seems very di
cult since S� lacks the least upper
bound property of the reals� Thus	 we conform our�
selves with showing the existence of optimal stationary
policies and a method for computing them� That is	
we need to show that the partial order � in Sn� �where

J � J � if J�i� � J�i�� i � � � � � � n� has a unique mini�
mum in the set fJ� � � a stationary policyg� For that	
we will show that the qualitative version of the Bell�
man equation has unique solution� Let T be the dp
operator for the qualitative mdp� Then	

Theorem � If � � �� then there exists � � � such
that T is a contraction mapping�

Proof� Choose � large enough so that

�
�
� max

i�����n
sup

u�U�i�

�

nX
j��

kPi�u�j�k� � ��

which exists since U�i� is �nite� Let J�H � Sn
� � Then�

kTJ � THk

� max
i�����n

k�TJ��i�� �TH��i�k
�

� max
i�����n

����
�

min
u�U�i�

g�i� a� � �

nX
j��

Pi�u�j�J�j�

�
�

�
min

u�U�i�
g�i� a� � �

nX
j��

Pi�u�j�H�j�

�����
�

� max
i�����n

�

nX
j��

kPi�u��j�k� kJ�j��H�j�k
�

� kJ �Hk max
i�����n

�

nX
j��

kPi�u��j�k�

� � kJ �Hk

where u� is the control that minimizes the minimum term

in the second equality� �

Corollary � Assume g�i� u� � Q for all i � S� u �
U�i� and � � �� Then� the qualitative version of the
Bellman Equation ��� has unique solution J�� In ad�
dition� J� can be found with Value Iteration� and the
policy �� greedy with respect to J� is the best station�
ary policy�

Note	 however	 that �� is not necessarily optimal� This
possibility seems very unlikely but a de�nite answer is
yet to be found�

��� Order�of�Magnitude Speci�cations

We say that a qmdp is an order�of�magnitude speci�
�cation when the transition probabilities Pi�u�j� are
only known up to a compatible kappa ranking �i�u�j�	
i�e� Pi�u�j�

�
� �i�u�j�� In this case	 we consider the

qmdp the corresponds to the operator�

�TJ��i� � min
u�U�i�

g�i� u� � �

nX

j��

	�i�u
�j�J�j�

where 	�i�u
is the projection of �i�u� Clearly	 Corol�

lary 
 asserts that this qmdp can be solved with Value
Iteration�

� Qualitative POMDPs

A de�nition for Qualitative pomdps �qpomdp� can be
obtained readily from the pomdp formulation�

�QP�� A �nite state space S � f�� � � � � ng	

�QP�� a �nite set of controls U�i� for each i � S	

�QP�� qualitative transition probabilities pi�u�j� of
making a transition to j when control u � U�i�
is applied in i � S	

�QP�� a �nite set of observations O�i� u� � O that
may result after applying u � U�i� in i � S	

�QP
� qualitative observation probabilities pi�u�o� of
receiving observation o � O�i� u� in i � S after
the application of u � U�i�	 and

�QP�� a qualitative cost g�i� u� associated to u � U�i�
and i � S�

Similarly	 we can de�ne a qualitative version of the
belief�mdp but a serious problem appears� the in�nite�
ness of the belief�mdp thwarts a suitable choice for �
as in Theorem �� Consequently	 we are not able to
proof that the corresponding dp operator is a contrac�
tion� Fortunately	 we can get good results for the case
of order�of�magnitude speci�cations�

��� Order�of�Magnitude Speci�cations

A qpomdp is said to be an order�of�magnitude spec�
i�cation if the qualitative probabilities Pi�u�j� and



Pi�u�o� are only known up to compatible kappa rank�
ings �i�u�j� and �i�u�o� respectively� In this case� we
are content to only consider kappa belief states which
are de�ned as kappa rankings over states� Thus� the
transition dynamics of kappa belief states is given by
the order�of�magnitude analogous to Eqs��������	

�ou�i�
�

 �u�i� � �i�u�o�� �u�o�� ��
�

�u�i�
�

 min

j�����n

�
��j� � �j�u�i�

�
� ����

�u�o�
�

 min

i�����n

�
�u�i� � �i�u�o�

�
� ����

O�k� u�
�

 fo 	 ku�o� ��g� ����

The qualitative belief�mdp over kappa belief states is	

�K�� A belief space K of kappa measures over S�

�K�� a set of controls U��� 
 fu 	 �i���i� ��� u �
U�i��g for each � � K� and

�K�� a cost g�k� u� 

Pn

i�� g�i� u� ���i� for each u �
U��� and � � K where �� is the projection of ��

With transition probabilities given by

�� �ou with qualitative probability ��u�o��

Therefore� the Bellman equation is

J���� 
 min
u�U���

g��� u� � �
X

o�O���u�

��u�o�J
���ou� ����

with the obvious dp operator� As claimed� we now
prove that the Bellman equation ���� has unique solu�
tion that can be found with Value Iteration�

Theorem � If � � �� then there exists � 	 � such
that the dp operator T is a contraction mapping�

Proof� Choose � large enough such that

sup
�

sup
u�U���

�
X

o�O���u�

k��u�o�k� � �

where the �rst sup is over all kappa rankings over S� The

existence of � is guaranteed by � � � and Theorem ���c��

Then� use a proof similar to that of Theorem �� �

Corollary � Assume g�i� u� � Q for all i � S� u �
U�i� and � � �� Then� the Bellman Equation ���� has
unique solution J�� In addition� J� can be found with
Value Iteration� and the policy 
� greedy with respect
to J� is the best stationary policy�

� Computational Issues

So far� we have focused the paper in the theoreti�
cal foundations for a qualitative theory of mdps and

pomdps� In the computational side� we showed that
the Value Iteration algorithm can be used to �nd op�
timal stationary policies for qmdps and qpomdps� As
in the standard theory� Value Iteration is one of the
most general algorithms for solving sequential decision
tasks� yet for certain subclasses of problems other algo�
rithms might be more e�cient� For example� problems
in which the agent does not receive any feedback from
the environment �i�e� problems with a single dummy
observation that is always received� form an important
class known as conformant planning problems� They
can be e�ciently solved by performing search in be�
lief space with standard algorithms like a� or ida��
These search algorithms are guided by heuristic func�
tions that can be automatically extracted from the
problem representation� Such methods had proven to
be powerful and successful in the standard setting and
we expect them to do well in this setting� see �
� ���

Another important subclass is that in which all tran�
sition and observation probabilities has the same or�
der of magnitude �� In such case� the kappa belief
states are just sets of states and the resulting model
can be solved using the model�checking or sat based
approaches to planning� see ��� �� ����

Finally� in settings in which the number of steps is
bounded a priori� the qualitative planning problem can
be encoded into a �qualitative� probabilistic sat for�
mula that can be solved by a suitable modi�cation of
the maxplan algorithm �����

� Discussion

The work in kappa rankings was �rst formalized by
Spohn ���� but its roots can be traced back to Adam�s
conditionals ���� They have been used by Pearl and
Goldszmidt to de�ne a qualitative decision theory ����
��� �
� and also are connected with the ��semantics
for default reasoning ���� ���� More recently� Giang
and Shenoy present a qualitative utility theory based
in kappa rankings �����

Another approach to qualitative mdps and pomdps
had been recently given in terms of possibility theory
���� �
�� This approach is based on the qualitative deci�
sion criteria within the framework of possibility theory
suggested in ����� As our approach� theirs computes
a value function and policy using a suitable version
of the Value Iteration algorithm� However� as their
example shows� knowing the �possibilistic� cost func�
tion is not su�cient for recovering the policy �this is
the reason why their algorithm computes the policy
together with the cost function�� This is a fundamen�
tal departure from the standard theory of mdps and
pomdps in which there is a one�one correspondence
between stationary policies and cost functions� The
reason for such discrepancy can be better understood
by considering the order�of�magnitude version of the



Bellman equation�

J��i� � min
u�U�i�

max

�
g�i� u�

�
� max
j�����n

�
pi�u�j�

�
� J��j�

��
�

It is not hard to see that this equation is �usually� con�
stant for all states except the goal� so it cannot be used
to discriminate among controls� This loss of informa�
tion is due to the fact that order�of�magnitude quan�
tities cannot �increase	 through summations �a fact
that is well�known to researchers in the 
eld�� This is
the main reason why we have decided to work with the
Extended Reals instead of their orders of magnitude�

Another important point we need to discuss is that
the choice for projections seems quite arbitrary� This
fact� however� does not worry us since the kappa spec�
i
cation is very imprecise and so the only important
thing that is required when going from kappa rank�
ings to qualitative probabilities is consistency� Thus�
we would feel as happy with any other consistent map
that can do the job�

In summary� we have proposed a novel formulation
for a qualitative theory of mdps and pomdps that is
based upon a complete extension of the Extended Re�
als proposed by Wilson� The formal developments had
been achieved using Mathematical ideas from Func�
tional Analysis� and was motivated by the necessity
of taking limits� The new entities are then combined
using standard techniques in the theory of mdps to
obtain a qualitative theory that is very close to the
standard theory� This is an important di�erence with
other approaches whose ties with the standard theory
of mdps and pomdps are not as clear�
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