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Abstract 

This paper concerns the assessment of direct 
causal effects from a combination of: (i) non- 
experimental data, and (ii) qualitative do- 
main knowledge. Domain knowledge is en- 
coded in the form of a directed acyclic graph 
(DAG), in which all interactions are assumed 
linear, and some variables are presumed to be 
unobserved. We provide a generalization of 
the well-known method of Instrumental Vari- 
ables, which allows its application to models 
with few conditional independeces. 

1 Introduction 

This paper explores the feasibility of inferring linear 
cause-effect relationships from various combinations of 
data and theoretical assumptions. The assumptions 
are represented in the form of an acyclic causal dia- 
gram which contains both arrows and bi-directed arcs 
[9, 101. The arrows represent the potential existence of 
direct causal relationships between the corresponding 
variables, and the bi-directed arcs represent spurious 
correlations due to  unmeasured common causes. All 
interactions among variables are assumed to be lin- 
ear. Our task is to  decide whether the assumptions 
represented in the diagram are sufficient for assessing 
the strength of causal effects from non-experimental 
data, and, if sufficiency is proven, to express the tar- 
get causal effect in terms of estimable quantities. 

This decision problem has been tackled in the past half 
century, primarily by econometricians and social sci- 
entists, under the rubric "The Identification Problem" 
[6] - it is still unsolved. Certain restricted classes of 
models are nevertheless known to be identifiable, and 
these are often assumed by social scientists as a mat- 
ter of convenience or convention [ 5 ] .  A hierarchy of 
three such classes is given in [7]: (1) no bidirected 
arcs, (2) bidirected arcs restricted to root variables, 

Figure 1: (a )  a "bow-pattern", and (b) a bow-free 
model 

and (3) bidirected arcs restricted to variables that are 
not connected through directed paths. 

Recently [4], we have shown that the identification of 
the entire model is ensured if variables standing in di- 
rect causal relationship (i.e., variables connected by 
arrows in the diagram) do not have correlated errors; 
no restrictions need to  be imposed on errors associated 
with indirect causes. This class of models was called 
"bow-free" , since their associated causal diagrams are 
free of any "bow pattern" [lo] (see Figure 1). 

Most existing conditions for Identification in general 
models are based on the concept of Instrumental Vari- 
ables (IV) [ll], [2]. IV methods take advantage of con- 
ditional independence relations implied by the model 
to prove the Identification of specific causal-effects. 
When the model is not rich in conditional indepen- 
dence~,  these methods are not much informative. In 
[3], we proposed a new graphical criterion for Identi- 
fication which does not make direct use of conditional 
independence, and thus can be successfully applied to 
models in which IV methods would fail. 

In this paper, we provide an important generalization 
of the method of Instrumental Variables that makes it 
less sensitive to the independence relations implied by 
the model. 

2 Linear Models and Identification 

An equation Y = pX + e encodes two distinct as- 
sumptions: (1) the possible existence of (direct) causal 
influence of X on Y; and, (2) the absence of causal in- 
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Figure 2: A simple linear model and its causal diagram 

fluence on Y of any variable that does not appear on 
the right-hand side of the equation. The parameter P 
quantifies the (direct) causal effect of X on Y .  That 
is, the equation claims that a unit increase in X would 
result in ,B units increase of Y ,  assuming that every- 
thing else remains the same. The variable e is called 
an "error" or "disturbance"; it represents unobserved 
background factors that the modeler decides to keep 
unexplained. 

A linear model for a set of random variables Y = 
{Yl, . . . , Y,) is defined formally by a set of equations 
of the form 

and an error variance/covariance matrix @, i.e., 
[!Pij] = C o v ( e i ,  e j ) .  The error terms e j  are assumed 
to have normal distribution with zero mean. 

The equations and the pairs of error-terms ( e i ,  e j )  with 
non-zero correlation define the structure of the model. 
The model structure can be represented by a directed 
graph, called causal diagram, in which the set of nodes 
is defined by the variables Yl,. . . ,Yn, and there is a 
directed edge from Y,  to  Yj if the coefficient of Y,  in the 
equation for Y,  is different from zero. Additionally, if 
error-terms e i  and e j  have non-zero correlation, we add 
a (dashed) bidirected edge between Y,  and Y j .  Figure 
2 shows a model with the respective causal diagram. 

The structural parameters of the model, denoted by 0, 
are the coefficients c i j ,  and the non-zero entries of the 
error covariance matrix !P. In this work, we consider 
only recursive models, that is, c j i  = 0 for i 2 j. 

Fixing the model structure and assigning values to 
the parameters 6 ,  the model determines a unique 
covariance matrix C over the observed variables 
{Yl,. . . , Y,), given by (see [ I ] ,  page 85) 

where C is the matrix of coefficients c j i .  

Conversely, in the Identification problem, after fixing 
the structure of the model, one attempts to solve for 

6' in terms of the observed covariance C. This is not 
always possible. In some cases, no parametrization of 
the model could be compatible with a given C. In 
other cases, the structure of the model may permit 
several distinct solutions for the parameters. In these 
cases, the model is called nonident i f ied .  

Sometimes, although the model is nonidentifiable, 
some parameters may be uniquely determined by the 
given assumptions and data. Whenever this is the 
case, the specific parameters are identif ied. 

Finally, since the conditions we seek involve the struc- 
ture of the model alone, and do not depend on the 
numerical values of parameters 8,  we insist only on 
having identification almost everywhere, allowing few 
pathological exceptions. The concept of identification 
almost everywhere is formalized in section 6. 

3 Graph Background 

Definition 1 A path in a graph i s  a sequence of edges 
(directed o r  bidirected) such  tha t  each edge s tar ts  in the  
node ending the  preceding edge. A directed path i s  a 
path composed only  by  directed edges, all oriented in 
the  s a m e  direction. N o d e  X i s  a descendent of node 
Y if there  i s  a directed path  f rom Y t o  X .  Node  Z is  
a collider in a path p if there  i s  a pair of consecutive 
edges in p such  tha t  both edges are oriented toward Z 
(e.g .,... -+ Z +- ...). 

Let p be a path between X and Y ,  and let Z be an 
intermediate variable in p. We denote by p[X - Z ]  the 
subpath of p consisting of the edges between X and Z. 

Definition 2 (d-separat ion)  
A set  of nodes  Z d-separates X from Y in a graph, 
if Z blocks every  path  between X and  Y .  A path p 
i s  blocked by a se t  Z (possibly e m p t y )  if one o f  the  
following holds: 

( i j  p contains  a t  least o n e  non-col l ider  that  i s  in Z; 

(22) p  contains  a t  least o n e  collider tha t  i s  outside Z 
and h a s  n o  descendant  in Z .  

4 Instrumental Variable Methods 

The traditional definition qualifies a variable Z as in- 
strumental, relative to a cause X and effect Y if [ lo] :  

1. Z is independent of all error terms that have an 
influence on Y which is not mediated by X; 

2. Z is not independent of X.  

The intuition behind this definition is that all correla- 
tion between Z and Y must be intermediated by X. 
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Figure 3: Typical Instrumental Variable 
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Figure 4: Conditional IV Examples 
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Figure 5: Simultaneous use of two IVs 

obtained by removing edges X1 -t Y and Xz + Y 
from the model. Note that in this graph, Z1 and Z2 
satisfy the graphical conditions for a conditional IV. 

If we can find Z with these properties, then the causal Intuitively, if we could use both Z1 and Zz together 
effect of X on Y, denoted by c, is identified and given as instrumental variables, we would be able to identify 

by c = UZY /uzx. parameters cl and c2. This motivates the following 
informal definition: 

Figure 3 shows a typical example of an instrumental 
variable. It is easy to verify that variable Z satisfy A set of variables Z = ( 2 1 , .  . . , Zk)  is called an 
properties (1)  and (2)  in this model. instrumental set relative to  a set of causes X = 

{ X I , .  . . , X,) and an effect Y if: 
A generalization of the IV method is offered through 
thi use of conditional IV's. A conditional IV is a vari- 
able Z that may not have properties (1)  and (2), but 1. Each Zi E Z is independent of all error terms that 

there is a conditioning set W which makes it happen. have an influence on Y which is not mediated by 

When such pair (2,  W )  is found, the causal effect of some Xj E X; 

X on Y is identified and given by c = c ~ ~ ~ , ~ / u ~ ~ . w .  2. Each Zi E Z is not independent of the respective 
Xi E X, for appropriate enumerations of Z and 

[l l]  provides the following equivalent graphical crite- 
rion for conditional IV's, based on the concept of d- x; 
separation: 3. The set Z is not redundant with respect to Y. 

That is, for any Zj E Z we cannot explain the 

1. W contains only non-descendents of Y; correlation between Zi and Y by correlations be- 
tween Zi and Z - { & ) ,  and correlations between 

2. W d-separates Z from Y in the subgraph G, ob- Z - { Z i )  and Y .  
tained by removing edge X -t Y from G; 

- -- 3. W does not d-separate Z from X in G,. 

As an example of the application of this criterion, 
Figure 4 show the graph obtained by removing edge 
X -t Y from the model of Figure 2. After condition- 
ing on variable W, Z becomes d-separated from Y but 
not from X .  Thus, parameter c is identified. 

5 Instrumental Sets 

* Although very useful, the method of conditional IV's 
has some limitations. As an example, Figure (5a) 
shows a simple model in which the method cannot be 
applied. In this model, variables Z1 and 2 2  do not 
qualify as IV's with respect to either cl or c2. Also, 
there is no conditioning set which makes it happen. 
Therefore, the conditional IV method fails, despite the 
fact that the model is completely identified. 

Following the ideas stated in the graphical criterion 
for conditional IV's, we show in Figure (5b) the graph 

Properties 1 and 2 above are similar to the ones in the 
definition of Instrumental Variables, and property 3 is 
required when using more than one instrument. To see 
why we need the extra condition, let us consider the 
model in Figure (5c). In this example, the correlation 
between Z2 and Y is given by the product of the corre- 
lation between Zz and Z1 and the correlation between 
Z1 and Y. That is, Zz does not give additional infor- 
mation once we already have Z1. In fact, using Z1 and 
Z2 as instruments we cannot obtain the identification 
of the causal effects of X1 and X2 on Y. 

Now, we give a precise definition of instrumental sets 
using graphical conditions. Fix a variable Y and let 
X = { X I , .  . . , X k )  be a set of direct causes of Y. 

Definition 3 The set Z = ( 2 1 , .  . . , 2,) is said to be 
an Instrumental Set relative to X and Y if we can find 
triples ( Z 1 ,  W l r p l ) ,  . . . , (Z,, W n , p n ) ,  such that: 

(i) For i = 1, .  . . ,n, Z,  and the elements of Wi 
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Figure 6: More examples of Instrumental Sets 

are non-descendents of Y; and pi is an  unblocked 
path between Zi and Y including edge Xi -+ Y. 

(ii) Let G be the causal graph obtained from G by 
deleting edges X1 -+ Y,. . . , X, -+ Y. Then, Wi 
d-separates Zi  from Y i n  E; but Wi does not 
block path pi; 

(iii) For 1 5 i < j 5 n,  variable Z j  does not appear 
i n  path pi; and, if paths pi and pj have a common 
variable V ,  then both pi[V - Y] and p j [ Z j  - V ]  
point to V .  

Next, we state the main result of this paper. 

Theorem 1 If Z = {Z1,. . . , 2,) is an  instrumental 
set relative to causes X = {XI , .  . . , X,) and eflect Y, 
then the parameters of edges X I  + Y,. . . , X, -+ Y 
are identified almost everywhere, and can be computed 
by solving a system of linear equations. 

Figure 6 shows more examples in which the method of 
conditional IV's fails and our new criterion is able to  
prove the identification of parameters ti's. In partic- 
ular, model (a) is a bow-free model, and thus is com- 
pletely identifiable. Model (b)  illustrates an interesting 
case in which variable Xz is used as the instrument for 
X1 -+ Y, while 2 is the instrument for Xz  -+ Y. Fi- 
nally, in model (c) we have an example in which the 
parameter of edge X3 -+ Y is nonidentifiable, and still 
the method can prove the identification of cl and cz. 

The remaining of the paper is dedicated to  the proof 
of Theorem 1. 

6 Preliminary Results 

6.1 Identification Almost Everywhere 

Let h denote the total number of parameters in model 
G. Then, each vector 6' E Eh defines a parametriza- 
tion of the model. For each parametrization 0, model 
G generates a unique covariance matrix C(6'). Let 
6'(A1,. . . , A,) denote the vector of values assigned by 
6' to parameters X I , .  . . ,A,. 

Parameters XI,. . . ,A,, are identified almost every- 
where if C(0) = C(6") implies @(A1,. . . , A,) = 

( A  . , A )  , except when 6' resides on a set of 
Lebesgue measure zero. 

6.2 Wright's Method of Path Coefficients 

Here, we describe an important result introduced by 
Sewall Wright 1121, which is extensively explored in the 
proof. 

Given variables X and Y in a recursive linear model, 
the correlation coefficient of X and Y, denoted p x y ,  
car, be expressed as a polynomial on the parameters 
of the model. More precisely, 

where term T(pl) represents the multiplication of the 
parameters of edges along path pl, and the summation 
ranges over all unblocked paths between X and Y. 
For this equality to  hold, the variables in the model 
must be standardized (variance equal to 1) and have 
zero mean. However, if this is not the case, a simple 
transformation can put the model in this form [13]. 
We refer to Eq.(2) as Wright's Equation for X and Y. 

Wright's method of path coefficients [I21 consists in 
forming Eq.(2) for each pair of variables in the model, 
and solving for the parameters in terms of the correla- 
tions among the variables. Whenever there is a unique 
solution for a parameter A,  this parameter is identified. 

We can use this method to  study the identification 
of the parameters in the model of Figure 5. From 
the equations for py,,y5 and py,,y5 we can see that 
parameters cl and cz are identified if and only if 

6.3 Partial Correlation Lemma 

Next lemma provides a convenient expression for the 
partial correlation coefficient of Yl and Y2, given 
Y3,. . . , Y,, denoted p12.3...n. The proof of the lemma 
is given in the appendix. 

Lemma 1 The partial correlation p12,3,,,, can be ex- 
pressed as the ratio: 

where 4 and $ are functions of the correlations among 
Yl, Yz, . . . , Y,, satisfying the following conditions: 

( i )  $(I, 2 , .  . . , n) = 4(2 ,1 , .  . . , n)  
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(ii) $ ( l ,  2 ,  . . . , n )  is linear on the correlations 
p12 ,  P 3 2 , .  . . , pn2, with no constant term. 

(iii) The coefficients of p l z , p 3 2 , .  . . , p n 2 ,  in 
$(1 ,2 , .  . . , n )  are polynomials on the corre- 
lations among the variables Y I ,  Y3 , .  . . , Yn. 
Moreover, the coefficient of pl:, has the con- 
stant term equal to 1, and the coefficients of 
P32,  . . . , pn2, are linear on the correlations 
p13, p 1 4 , .  . . , P I % ,  with no constant term. 

(iv) ( $ ( i l , .  . . , i n - l ) )2 ,  is a polynomial on the corre- 
lations among the variables Y,,,  . . . ,Y,  ,-,, with 
constant term equal to 1. 

6.4 Path Lemmas 

The following lemmas explore some consequences of 
the conditions in the definition of Instrumental Sets. 

Lemma 2 W.l.o.g., we may assume that, for 1 5 i < 
j 5 n ,  paths pi and pj do not have any common vari- 
able other than (possibly) Zi. 

Proof: Assume that paths pi and pj have some vari- 
ables in common, different from Zi. Let V be the 
closest variable to Xi in path pi which also belongs to 
path pj . 

We show that after replacing triple ( Z i ,  W i , p i )  by 
triple (V,  W i , p i [ V  - Y ] ) ,  conditions ( i )  - ( i i i )  still 
hold. 

It follows from condition ( i i i )  that subpath pi[V - 
Y ]  must point to V .  Since pi is unblocked, subpath 
pi[Zi - V ]  must be a directed path from V to Zi. 

Now, variable V cannot be a descendent of  Y ,  because 
pi[Zi - V ]  is a directed path from V to Zi, and Zi is 
a non-descendent of  Y .  Thus, condition ( i )  still holds. 

Consider the causal graph c. Assume that there exists 
a path p between V and Y witnessing that Wi does 
not d-separate V from Y in c. Since pi[Zi - V ]  is a 
directed path from V to Zi ,  we can always find another 
path witnessing that W i  does not d-separate Zi from 
Y in ?? (for example, i f  p and pi[Zi - V ]  do not have 
any variable in common other than V ,  then we can just 
take their concatenation). But this is a contradiction, 
and thus it is easy to see that condition ( i i )  still holds. 

Condition ( i i i )  follows from the fact that pi[V - Y ]  
and p j[Zj  - V ]  point to V .  

In the following, we assume that the conditions of 
lemma 2 hold. 

Lemma 3 For all 1 5 i 5 n ,  there exists no unblocked 
path between Zi and Y ,  dzflerent from pi, which in- 
cludes edge Xi + Y and is composed only b y  edges 
from P I , .  . . ,pi .  

Proof: Let p be an unblocked path between Zi and 
Y ,  different from pi, and assume that p is composed 
only by edges from pl, . . . ,pi. 

According to condition ( i i i ) ,  i f  Zi appears in some path 
pj, with j # i ,  then it must be that j > i. Thus, p 
must start with some edges of  pi. 

Since p is different from pi, it must contain at least 
one edge from p l ; .  . . ,pi-1. Let (V1,Vz) denote the 
first edge in p which does not belong to pi. 

From lemma 2 ,  it follows that variable Vl must be a Zk 
for some k < i ,  and by condition ( i i i ) ,  both subpath 
p[Zi - Vl]  and edge ( V l ,  V2)  must point to V l .  But 
this implies that p is blocked by V l ,  which contradicts 
our assumptions. 

The proofs for the next two lemmas are very similar 
to the previous one, and so are omitted. 

Lemma 4 For all 1 5 i 5 n ,  there is no unblocked 
path between Zi and some W i j  composed only b y  edges 
from P I , .  . . ,pi. 

Lemma 5 For all 1 5 i < n ,  there is no unblocked 
path between Zi and Y including edge X j  -+ Y ,  with 
j < i ,  composed only b y  edges from pl , .  . . ,pi. 

7 Proof of Theorem 1 

7.1 Notation 

Fix a variable Y in the model. Let X = { X I , .  . . , Xk)  
be the set of  all non-descendents of Y which are con- 
nected to Y by an edge (directed, bidirected, or both). 
Define the following set of  edges with an arrowhead at 
Y :  

Note that for some Xi E X there may be more than 
one edge between Xi and Y (one directed and one 
bidirected). Thus, IInc(Y)l 2 1x1. Let X I  ,... , A m ,  
m 2 k ,  denote the parameters of  the edges in Inc (Y) .  

I t  follows that edges X I  -+ Y , .  . . , X n  + Y ,  be- 
long to I n c ( Y ) ,  because X I , .  . . ,X , ,  are clearly non- 
descendents of  Y .  W.l.o.g., let X i  be the parameter of 
edge Xi + Y ,  1 < i 5 n ,  and let . . , A m  be the 
parameters of  the remaining edges in Inc(Y) .  

Let Z be any non-descendent of  Y .  Wright's equation 
for the pair (2, Y ) ,  is  given by 

where each term T ( p l )  corresponds to an unblocked 
path between Z and Y .  Next lemma proves a property 
of such paths. 
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Figure 7: Wright's equations 

Lemma 6 Let Y be a variable in a recursive model, 
and let Z be a non-descendent of Y. Then, any un- 
blocked path between Z and Y must include exactly one 
edge from Inc(Y). 

Lemma 6 allows us to write Eq. (4) as 

Thus, the correlation between Z and Y can be 
expressed as a linear function of the parameters 
X I , .  . . , A m ,  with no constant term. Figure 7 shows 
an example of those equations for a simple model. 

7.2 Basic Linear Equations 

Consider a triple (Zi ,Wi,pi) ,  and let W i  = 
{W,,, . . . , Wik) '. From lemma 1, we can express the 
partial correlation of Zi and Y given W i  as: 

where function di is linear on the correlations pz,y, 
pw,, Y ,  . . . , pw,, Y ,  and $i is a function of the corre- 
lations among the variables given as arguments. We 
abbreviate di(Zi,Y, Wi,, . . . , Wiki) by di(Zi, Y, Wi) ,  
and $i(V,Wi,,... ,Wik) by @i(V,Wi). 

We have seen that the correlations p z , ~ ,  pw., Y ,  . . . , 
p w , , ~ ,  can be expressed as linear functions of the pa- 
rameters A1, . . . , Am. Since di is linear on these cor- 
relations, it follows that we can express q5i as a linear 
function of the parameters X I , .  . . ,Am. 

Formally, by lemma 1, di(Zi,Y, W i )  can be written 
as: 

Also, for each V, E {Zi) U W i ,  we can write: 

'To simplify the notation, we assume that  lWil = k, 
f o r i = l ,  . . .  ,n 

Replacing each correlation in Eq.(7) by the expression 
given by Eq. (8), we obtain 

where the coefficients qil's are given by: 

Lemma 7 The coefficients qi,,+l,. . . , qim in Eq. (9) 
are identically zero. 

Proof: The fact that W i  d-separates Zi from Y in - 
G, implies that pziy.wi = 0 in any probability dis- 
tribution compatible with c ([lo], pg. 142). Thus, 
di(Zi, Y, W i )  must vanish when evaluated in G. But 
this implies that the coefficient of each of the Xi's in 
Eq. (9) must be identically zero. 

Now, we show that the only difference between evalu- 
ations of di(Z,, Y, Wi )  on the causal graphs G and G, 
consists on the coefficients of parameters XI,. . . ,A,. 

First, observe that coefficients bi,, . . . , bik are poly- 
nomials on the correlations among the variables 
Zi, Wi,, . . . , W,, . Thus, they only depend on the un- 
blocked paths between such variables in the causal 
graph. However, the insertion of edges XI + Y, . . . , 
X, + Y, in does not create any new unblocked 
path between any pair of Zi, Wil , . . . , Wik (and obvi- 
ously does not eliminate any existing one). Hence, the 
coefficients bi,, . . . , bi, have exactly the same value in 
the evaluations of &(Zi, Y, Wi )  on G and G. 

Now, let XI be such that 1 > n,  and let I/j E {Zi) U 
Wi.  Note that the insertion of edges X1 + Y, . . . , 
X, + Y, in c does not create any new unblocked path 
between Vj and Y including the edge whose parameter 
is XI (and does not eliminate any existing one). Hence, 
coefficients ai,l, j = 0 , .  . . , k, have exactly the same 
value on c and G. 

From the two previous facts, we conclude that, for 
1 > n,  the coefficient of XI in the evaluations of 
di(Zi, Y,  Wi)  on c and G have exactly the same value, 
namely zero. Next, we argue that di(Zi, Y, Wi)  does 
not vanish when evaluated on G. 

Finally, let A1 be such that 1 5 n,  and let I/j E {Zi) U 
W i .  Note that there is no unblocked path between Vj 
and Y in c including edge XI -t Y, because this edge 
does not exist in -6. Hence, the coefficient of XI in the 
expression for the correlation pvjy on c must be zero. 

On the other hand, the coefficient of XI in the same ex- 
pression on G is not necessarily zero. In fact, it follows 
from the conditions in the definition of Instrumental 
sets that, for 1 = i, the coefficient of Xi contains the 
term T(pi). 
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From lemma 7, we get that $i(Zi,Y, Wi) is a linear 
function only on the parameters XI,. . . ,A,. 

7.3 Sys tem of Equat ions  

Rewriting Eq.(6) for each triple (Zi, Wi ,p i ) ,  we ob- 
tain the following system of linear equations on the 
parameters XI,. . . ,An: 

where the terms on the right-hand side can be 
computed from the correlations among the variables 
Y, Zi, Wil, .  . . , Wik, estimated from data. 

Our goal is to  show that @ can be solved uniquely for 
the Xi's, and so prove the identification of XI,. . . , A n .  
Next lemma proves an important result in this direc- 
tion. Let Q denote the matrix of coefficients of a. 

permutation a if the ith element of a is l), where the 
weights are 1 or (-I) ,  depending on the parity of the 
permutation. Then, it is easy to see that the term 

appears in the product of permutation a = (1,.  . . , n), 
which selects all the diagonal entries of Q. 

We prove that det(Q) does not vanish by showing that 
T* appears only once in the product of permutation 
(1,.  . . , n), and that T* does not appear in the product 
of any other permutation. 

Before proving those facts, note that, from the condi- 
tions of lemma 2, for 1 5 i < j 5 n,  paths pi and pj 
have no edge in common. Thus, every factor of T* is 
distinct from each other. 

Proposition: Term T* appears only once in the prod- 
uct of permutation (1, . . . , n) .  

Proof:  Let r be a term in the product of permutation 
(1, .  . . , n). Then, T has one factor corresponding to 
each diagonal entry of Q.  

L e m m a  8 Det(Q) 2s a non-trivial P ~ ~ Y ~ ~ ~ ~ ~ ~  On the A diagonal entry qii of Q can be expressed as a sum 
parameters of the model. of three terms (see Eq.( l l ) ) .  

Proof:  From Eq.(lO), we get that each entry qil of Q Let i be such that for all 1 > i: the factor of T corre- 
is given by sponding to entry qll comes from the first term of qll 

k (i.e., T(pl)Il + bl0l). 
Assume that the factor of T corresponding to entry qii 
comes from the second term of qii (i.e., 8i0i.bi0). Recall 
that each term in cioi corresponds to an unblocked 

where bi, is the coefficient of pwtj Y (or pz; Y ,  if j = O), 
path between Zi and Y ,  different from pi, including 

in the linear expression for $i(Zi,Y,Wi) in terms edge Xi + Y. However, from lemma 3, any such path 
correlations (see Eq.(7)); and aijl is the ~~e!fficient of must include either an edge which does not belong to 
X1 in the expression for the correlation pwij Y in terms any of p l ,  . . . , pn ,  or an edge which appears in some 
of the parameters XI,. . . ,A, (see Eq.(8)). of p i+ l , .  . . ,pn .  In the first case, it is easy to see that 

From property (iii) of lemma 1, we get that bio has T must have a factor which does not appear in T*.  In 

constant term equal to 1. ~ h u s ,  we can write bio = the second, the parameter of an edge of some PI, 1 > i ,  
1 + pi,, where ii0 represent the remaining terms of bio, must appear twice as a factor of T, while it appears 

onlv once in T*.  Hence. r and T *  are distinct terms. 
Also, from condition (i) of Theorem 1, it follows that 
aioi contains term T(pi). Thus, we can write aioi = 
T(pi) + BiOi, where hioi represents all the remaining 
terms of aioi. 

Hence, a diagonal entry qii of Q, can be written as 

k 

qii = T(pi)[l  + pio] + bi,i . bio + C bi, . ai,i (11) 
j=1 

Now, the determinant of Q is defined as the weighted 
sum, for all permutations .rr of (1,.  . . , n ) ,  of the prod- 
uct of the entries selected by .rr (entry qil is selected by 

Now, assume that the factor of r correspondin to en- 9 try qii comes from the third term of qii (i.e., C j = l  bi, . 
u ~ , ~ ) .  Recall that bij is the coefficient of pw;, y in the 
expression for q$(Zi,Y, W i ) .  From property (iii) of 
lemma 1, bi, is a linear function on the correlations 
pziw,, , . . . , pz iw ik ,  with no constant term. Moreover, 
correlation p z , ~ ; ~  can be expressed as a sum of terms 
corresponding to unblocked paths between Zi and Wi, . 
Thus, every term in bij has the term of an unblocked 
path between Zi and some Wil as a factor. By lemma 
4, we get that any such path must include either an 
edge that does not belong to any of p l , .  . . ,pn ,  or an 
edge which appears in some of p i+ l , .  . . ,pn .  As above, 
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in both cases r and T *  must be distinct terms. 

After eliminating all those terms from consideration, 
the remaining terms in the product of (1,.  . . , n )  are 
given by the expression: 

Since bio is a polynomial on the correlations among 
variables W i , ,  . . . , Wi,,  with no constant term, it fol- 
lows that T *  appears only once in this expression. 

Proposition: Term T* does not appear in the prod- 
uct of any permutation other than (1,. . . , n). 

Proof: Let a be a permutation different from 
( 1 , .  . . , n ) ,  and let r be a term in the product of a. 

Let i be such that,  for all 1 > i ,  ?r selects the diagonal 
entry in the row 1 of Q. As before, for 1 > i ,  if the 
factor of r corresponding to entry qll does not come 
from the first term of qu (i.e., T ( p l ) [ l  + bl,]), then r 
must be different from T*. So, we assume that this is 
the case. 

Assume that a does not select the diagonal entry qii 
of Q. Then, a must select some entry qil, with 1 < i .  
Entry qil can be written as: 

Assume that the factor of r corresponding to entry qil 
comes from term bio . ai,l. Recall that each term in 
aior corresponds to  an unblocked path between Zi and 
Y including edge X l  + Y. Thus, in this case, lemma 
5 implies that r and T* are distinct terms. 

Now, assume that the factor of r corresponding to en- 
k try qil comes from term Cj,,  bijaij l .  Then, by the 

same argument as in the previous proof, terms r and 
T* are distinct. 

Hence, term T* is not cancelled out and the lemma 
holds. 

7.4 Identification of XI,. . . ,A, 

Lemma 8 gives that det(Q) is a non-trivial polynomial 
on the parameters of the model. Thus, det(Q) only 
vanishes on the roots of this polynomial. However, [8] 
has shown that the set of roots of a polynomial has 
Lebesgue measure zero. Thus, system has unique 
solution almost everywhere. 

It just remains to  show that we can estimate the entries 
of the matrix of coefficients of system from data. 

Let us examine again an entry qil of matrix Q: 

From condition ( i i i )  of lemma 1, the factors bi, in the 
expression above are polynomials on the correlations 
among the variables Z, ,  W, ,  , . . . , Wi, ,  and thus can be 
estimated from data. 

Now, recall that ai,l is given by the sum of terms cor- 
responding to each unblocked path between Zi and Y 
including edge Xi + Y. Precisely, for each term t in 
aiol, there is an unblocked path p between Zi and Y 
including edge Xl -+ Y, such that t is the product of 
the parameters of the edges along p, except for XI. 

However, notice that for each unblocked path between 
Zi and Y including edge X i  -t Y, we can obtain an 
unblocked path between Zi  and X l ,  by removing edge 
X I  + Y. On the other hand, for each unblocked path 
between Zi and X I  we can obtain an unblocked path 
between Zi and Y,  by extending it with edge Xl + Y. 

Thus, factor aiol is nothing else but pzix,. It is easy to 
see that the same argument holds for aiJl with j > 0. 
Thus, aijl = p w , , ~ , ,  j = 0,. . . , k .  

Hence, each entry of matrix Q can be estimated from 
data, and we can solve the system of equations to 
obtain the parameters XI,. . . ,A,. 

8 Conclusion 

In this paper, we presented a generalization of the 
method of Instrumental Variables. The main advan- 
tage of our method over traditional IV approaches, is 
that it is less sensitive to the set of conditional indepen- 
dence~ implied by the model. The method, however, 
does not solve the Identification problem. But, it il- 
lustrates a new approach to  the problem which seems 
promising. 

Appendix 

Proof of Lemma 1: Functions d ( 1 ,  . . .  , n )  and 
$( i l , .  . . , are defined recursively. For n = 3, 



UAI 2002 BRIT0 & PEARL 93 

For n > 3,  we have 

Using induction and the recursive definition of P12.3...nr 
it is easy to check that: 

Now, we prove that functions q5n and in-' as defined 
-. satisfy the properties ( i )  - ( i v ) .  This is clearly the 

case for n = 3. Now, assume that the properties are 
satisfied for all n < N .  

Property ( i )  follows from the definition of 
ON(1 , .  . . , N )  and the assumption that it holds 
for q5N-1(l,. . . , N - 1 ) .  

Now, dN-I ( 1 , .  . . , N - 1)  is linear on the correla- 
tions plz,. . . , p ~ - 1 , 2 .  Since 4 ~ ~ - ' ( 2 ,  N ,  3 , .  . . , N - 1 )  
is equal to I # ~ - ' ( N ,  2 , 3 , .  . . , N - I ) ,  it is linear on the 
correlations P32 , .  . . , P N , ~ .  ~ h u s ,  4 N ( 1 ,  . . . , N )  is lin- 
ear on pl2, P32, .  . . , p ~ , ~ ,  with no constant term, and 
property (ii) holds. 

Terms ( I ~ - ~ ( N ,  3 , .  . . , N - I ) ) ~  and 
- - qbN-'(1, N , 3 , .  . . , N - 1)  are polynomials on the 

correlations among the variables 1 , 3 ,  . . . , N. Thus, 
the first part of property ( i i i )  holds. For the second 
part, note that correlation pl2 only appears in the first 
term of r # ~ ~ ( l , .  . . , N ) ,  and by the inductive hypothesis 

4 
( $ N - 2 ( ~ ,  3 , .  . . , N - 1 ) )  has constant term equal to 
1. Also, since d N ( l ,  2 , 3 , .  . . , N )  = 4 N ( 2 ,  1 ,3 , .  . . , N )  
and the later one is linear on the correlations 
p ~ z ,  p13,. . . , P I N ,  we must have that the coefficients of 
1$~(1 ,2 , .  . . , N )  must be linear on these correlations. 

i Hence, property ( i v )  holds. 

Finally, for property ( i v ) ,  we note that by the inductive 
hypothesis, the first term of ( $ J ~ - ~ ( N ,  3 , .  . . , N - I ) ) ~  
has constant term equal to 1,  and the second term has 
no constant term. Thus, property ( i v )  holds. 
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