
Comments on Seeing and Doing 207

Comments on Seeing and Doing
Judea Pearl
Cognitive Systems Laboratory, Computer Science Department, University of California, Los
Angeles, CA 90024, USA. E-mail: judea@cs.ucla.edu.

I am grateful to Professor Lindley for taking the time to study my book Causality, and for summa-
rizing its main ideas so crisply and lucidly to the readers of this Journal. I would like to comment on
a couple of issues that I believe warrant further emphasis in discussing causality. The first concerns
the importance of mathematical notation for distinguishing causal from associational relationships,
the second deals with the theoretical foundations of causality.

It is true that many members of Lindley's generation were not tormented by causal questions but,
still, one should not take lightly the frustration of those who tried to tackle such questions and who
could not find any mathematical machinery for solving, or even posing those questions. Having been
part of this frustrated generation, I remember quite clearly how, even ten years ago, we could not
express mathematically the simple fact that symptoms do not cause diseases, let alone draw mathe-
matical conclusions from such facts. Asking for the probability that one event "caused" another was
considered an ill-posed, metaphysical question that lies outside the province of statistical analysis.

Statisticians who had to interface with researchers in other disciplines have encountered many
barriers of confusion and miscommunication, all rooted in causation. The main users of statistical
methods: economists, biologists, and health and social scientists, brought with them a wealth of sub-
stantive, c?o(;c)-type information (also called "assumptions"), which they were unable to incorporate
into statistical methods and techniques. Likewise, these users expected statistical methods to produce
meaningful do(x)-type conclusions, but all statistics could deliver were study-specific associations
of the see(x) variety. In some applications (e.g., epidemiology), the absence ofnotational distinction
between do(x) and see(x)-type dependencies seemed unnecessary, because investigators were able
to keep such distinctions implicitly in their heads, and managed to confine the mathematics to strictly
conventional, see(x)-type expressions. In others, as in economics and the social sciences, investiga-
tors rebelled against this notational restriction by leaving mainstream statistics and constructing their
own mathematical machinery (called Structural Equation Models). This machinery has remained a
mystery to outsiders, and eventually became a mystery to insiders as well. "Every science is only so
far exact as it knows how to express one thing by one sign," said Augustus de Morgan in 1858, and
the results of not having the signs for expressing causality reached a critical point in the 1980-90's.
Problems such as the control of confounding, the estimation of treatment effects, the distinction
between direct and indirect effects, the estimation of probability of causation, and the combination
of experimental and nonexperimental data became a source of endless disputes among the users of
statistics, and statisticians could not come to the rescue. Causality describes several such disputes,
and why they could not be resolved by conventional statistical methodology.

One of my main reasons for writing Causality was to see such problems handled by mathematical
analysis and, indeed, I now find it hard to name even a single problem in causal inference that cannot
be expressed and solved by mathematical means. True, the analysis may tell us that the problem
has no solution, namely, that additional information (or "assumptions") is needed. Still, the very

In International Statistic Reviews, Vol. 70(2): 207-209, 2002. TECHNICAL REPORT 
R-283-A

February 2001



208 J. PEARL

assurance that more information is needed, coupled with formal facilities to identify the type of
information needed is a much healthier state of affairs than the one prevailing in my tormented
generation.

My second comments concerns the definition of causality. Some readers have expressed the opin-
ion that causality is still an undefined concept and that, although the do calculus can be an effective
mathematical tool in certain tasks, it does not bring us any closer to the deep and ultimate under-
standing of causality, one that is based solely on classical probability theory.

Unfortunately, aspirations for reducing causality to probability are both untenable and unwar-
ranted. Philosophers have given up such aspirations twenty years ago, and were forced to admit
extra-probabilistic concepts (such as "counterfactuals" or "causal relevance") into the probabilistic
analysis of causation (see Causality, Section 7.5). The reason is quite simple; probability theory deals
with beliefs about an uncertain, yet static world, while causality deals with changes that occur in the
world itself. Causality deals with how probability functions change in response to new conditions
and interventions that originate from outside the probability space, while probability theory, even
when given a fully specified joint density function on all variables in the space, cannot tell us how
that function would change under external interventions. Thus, "doing" is not reducible to "seeing",
and there is no point trying to fuse the two together. Drawing analogy to visual perception, the infor-
mation encoded in a probability function is analogous to a precise description of a three-dimensional
object; it is sufficient for predicting how that object will be viewed from any angle outside the object,
but it is insufficient for predicting how the object will be viewed if manipulated and squeezed by
external forces. The additional information needed for making such predictions (e.g., the object's
hardness or elasticity) is analogous to the causal information (about invariant mechanisms) that the
do calculus extracts from a directed acyclic graph (DAG).

From a mathematical perspective, it is a mistake to say that causality is still undefined. The do
calculus, for example, is based on two well-defined mathematical objects: a probability function
P and a DAG D; the first is standard in statistical analysis while the second is a newcomer that
tells us (in a qualitative, yet formal language) which mechanisms would remain invariant to a given
intervention. Given these two mathematical objects, the definition of "cause" is clear and crisp;
variable X is a probabilistic cause of variable Y if P(y\do(x)) ^ P(y) for some values x and y .
Since each of P(.y\do(x)) and P(y) is well-defined in terms of the pair (P, D), the relation "prob-
abilistic cause" is, likewise, well-defined. Similar definitions can be constructed for other nuances
of causal discourse, for example, "causal effect", "direct cause", "indirect cause" "event-to-event
cause", "necessary cause", "sufficient cause", "likely cause" and "actual cause" (see Causality, pp.
222-3,286-7, 319; some of these definitions invoke functional models).

Not all statisticians are satisfied with these mathematical definitions. Some suspect definitions
that are based on unfamiliar non-algebraic objects (i.e., the DAG) and some mistrust definitions
that are based on unverifiable models. Indeed, no mathematical machinery can ever verify whether
a given DAG really represents the causal mechanisms that generate the data—such verification is
left either to theoretical judgment or to experimental studies that invoke interventions. I submit,
however, that neither suspicion nor mistrust are justified in the case at hand; DAGs are no less formal
than mathematical equations, and questions of model verification need be kept apart from those
of conceptual definition. Consider, for example, the concept of a distribution mean. We certainly
perceive this notion to be well-defined, for it can be computed from any given (non-pathological)
distribution function, even before ensuring that we can estimate that distribution from the data. We
would certainly not declare the mean to be "ill-defined" if, for any reason, we find it hard to estimate
the distribution from the available data. Quite the contrary; by defining the mean in the abstract, as
a functional of any hypothetical distribution, we can often prove that the defining distribution need
not be estimated at all, and that the mean can be estimated (consistently) directly from the data. An
analogous logic applies to causation. Causal quantities are first defined in the abstract, using the pair
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(P, D), and the abstract definition then provides a theoretical framework for deciding, given the type
of data available, whether the assumptions embodied in the DAG are sufficient (or necessary) for
establishing the desired causal quantity from the data.

The separation between concept definition and model verification is even more pronounced in
the Bayesian framework, where purely judgmental concepts, such as the prior distribution of the
mean, are perfectly acceptable, as long as they can be assessed reliably from one's experience or
knowledge. Professor Lindley's observation that "causal mechanisms may be easier to come by than
one might initially think" further implies that, from a Bayesian perspective, the newcomer concept
of a DAG is not an alien after all. If a Bayesian decision-maker is free to assess p(y\see(x)) and
p(y\do(x)) in any way, as separate evaluations, the Bayesian should also be permitted to express
his/her conception of the causal mechanisms (as portrayed in the DAG) that shape those evaluations.
Alternatively, the DAG can be viewed merely as a parsimonious scheme of encoding and maintaining
coherence among those evaluations. (Coherence requires, for example, that for any x, y , and z, the
inequality P(y\do(x),do(z)) >. P(y,x\do(z)) be satisfied, (see Causality, p. 229.)). And there is
no need to cast these conceptions in the language of probabilities to render the analysis legitimate.
Adding probabilistic veneer to these conceptions may make the do calculus appear more traditional,
but would not change the fact that the objects of analysis are still causal mechanisms, and that
these objects have their own special grammar of generating predictions about the effect of actions.
Professor Lindley's observation reminds us that it is not the language in which we cast judgments
that legitimizes the analysis, but whether those judgments can reliably be assessed from our store of
knowledge and from the peculiar form in which this knowledge is organized.

If it were not for loss of reliability (of judgment), one could easily translate the information con-
veyed in a DAG into purely probabilistic formulae, using hypothetical variables. (Translation rules
are provided in Section 7.3 of Causality, p. 232). Indeed, this is how the potential-outcome approach
of Neyman and Rubin has achieved statistical legitimacy: judgments about causal relationships
among observables are expressed as statements about probability functions that involve mixtures of
observable and counterfactual variables. The difficulty with this approach, and the main reason for
its slow acceptance in statistics, is that judgments about counterfactuals are much harder to assess
than judgments about causal mechanisms. For instance, to communicate the simple assumption that
symptoms do not cause diseases, we would have to use a rather unnatural expression and say that the
probability of the counterfactual event "disease had symptoms been absent" is equal to the probabil-
ity of "disease had symptoms been present". Judgments of conditional independencies among such
counterfactual events are even harder for researchers to comprehend or to evaluate.

In summary, I suggest that it is through friendly conceptual semantics and powerful mathematical
machinery that causal analysis will regain its proper place in statistics. With this goal in mind, I
also submit that the theoretical foundations of causality are sharper and stronger when viewed as
supplement to, not as part of, probability theory.
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