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Introduction

This note discusses two problems that might be considered weaknesses of Bayesian analysis.
The �rst was noted in a recent paper of Cozman (2000), and concerns the notion of \rel-
evance" when complete probabilistic model is not available. The second, stimulated by an
example due to Philippe Smets, concerns the interpretation of evidential reports that are
cast as betting odds. I will describe the two problems, o�er their resolution, and then argue
that Bayesian analysis should retain its status as a powerful model of human reasoning.

1 Informational relevance in partially speci�ed models

In standard Bayesian analysis, the notion of informational \relevance" is captured by the
construct of probabilistic \dependence" (or conditional dependence), and is fully character-
ized when a complete probability model is available. We say that an event A is relevant to
B when the discovery of A changes our belief in B, that is, P (BjA) 6= P (B). Similarly, the
notion of \irrelevance" is formalized using (conditional) \independence" (Dawid 1979)|a
notion governed by a set of qualitative axioms called \graphoids" (Pearl 1988), which have
intuitive appeal beyond the boundaries of probability analysis.

The apparent paradox I wish to discuss in this note surfaces when we do not possess
a complete probability function. In such a state of ignorance (about probabilities), theory
predicts that some of the graphoid axioms are violated, yet these violations are not re
ected
in actual reasoning|human judgment continues to conform to the dictates of the graphoid
axioms.

Consider two jointly distributed (discrete) variables, X and Y , for which we have the
conditional probabilities P (yjx) for all x and y, but we lack any knowledge of the prior
probability P (x). With this state of partial ignorance, and assuming P (yjx) 6= P (yjx0) for
some x0 6= x, X is judged to be relevant to Y , because the measurement X = x would induce
a di�erent belief in Y = y than the measurement X = x0. At the same time, measurement
of Y leaves our uncertainly about X unaltered, for the bounds on P (xjy) remain [0; 1] for
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all �ndings Y = y. Thus, it appears that the axiom of symmetry, that X is relevant to Y
if and only if Y is relevant to X, should be violated in this state of knowledge.1 Yet such
violation is not re
ected in actual judgment.

Let X = x stand for the existence of a technologically advanced civilization in some
remote galaxy. Let Y = y stand for receiving an intelligible radio signal from deep space.
Assume, as is common among humanoids, that we have di�culty assigning a prior to X,
though we can assess the conditional probability P (yjx). If we associate our epistemic state
of belief with the set of probabilities that are considered possible,2 and if we equate irrelevance
with the invariance of that set of probabilities, then we should classify Y as irrelevant to
X; our uncertainty concerning x will remain unaltered by any observation of Y , since the
bounds on P (x) remain [0; 1] before and after observing Y = y. But this is not supported in
commonsense reasoning|receiving intelligible radio signals from deep space would no doubt
evoke fancy speculations regarding the existence of intelligent civilization out there,3 hence
it would de�nitely be considered \relevant" to X.

This pattern of judgment prevails throughout science, where scienti�c theories are often
conceived and formulated as a result of unexpected empirical �ndings. Such theories are not
contemplated in advance, and de�nitely are not assigned prior probabilities. Still, it would
be odd to say that, in the pre-discovery state of mind, obtaining those empirical �ndings
would be judged irrelevant to the truth of the theory.

What accounts for this discrepancy? Is it that Bayesian analysis fails to represent pre-
vailing pattern of scienti�c inference, or that the representation of partial knowledge in the
form of probability intervals is incomplete? I will argue for the latter alternative.

Whereas representing a state of ignorance in the form of a set of probabilities is an
e�ective construct for many purposes (see (Walley 1991; Cozman 1997)), one should not
equate an agent's epistemic state with the boundaries of that set. The dynamics of each
member of that set plays an important role in what the agent knows and believes, not less
important than the dynamics of the boundaries.

To cast this assertion in concrete terms, let us return to the radio signal example and
examine the dynamics of points in the interval 0 � P (x) � 1. While the boundaries of this
interval are not altered by observing Y = y, since 0 � P (xjy) � 1, each interior point in this
interval moves from P (x) to

P (xjy) =
LP (x)

1 + (L� 1)P (x)

where L is the likelihood ratio P (yjx)=P (yjx0). Thus, assuming L > 1, every interior point
undergoes some movement toward P (x) = 1, with the size of the movement varying from
point to point. I suggest that it is this internal motion which accounts for our perception of
Y as relevant to X, in this example. Ignoring this internal motion would amount to a loss of

1Cozman (2000) discusses additional violations of the graphoid axioms.
2Levi (1980) called such sets credal sets, and Walley (1991, chapter 9) called an event Y epistemic

irrelevant if knowledge of Y does not change the agent's credal set, arguing that such knowledge would not
a�ect the practical consequences of the agent's beliefs (see Cozman, 2000).

3Assuming, for argument sake, that P (yjnot-x) 6= 0, say the possibility exists that a smart hacker may
fabricate such signals.

2



valuable information, not the least of which is our judgment of relevance relationships, which
is central for controlling attention and for choosing among alternative information sources.

At the same time, in order to envision this internal motion, an agent must �rst postulate
one or several interior points in the set of possible probability functions, then examine their
movement under information update. Thus, we see that there is some subtle wisdom to
the sloppy advice often o�ered by Bayesians: \just assume any conventient prior." True,
assuming any conventient prior may not lead to a valid posterior, but it helps uncover
nevertheless the dynamics of belief updating that interval representations tend to mask.

2 Two Interpretations of evidential reports

Suppose someone was murdered and you try to assess which of 4 suspects, denoted
a; b; c; and d, is the actual killer, given that one and only one of the suspects
committed the murder. Initially, you have no reason to suspect any one of the
four more than another. Two pieces of evidence arrive:

Evidence 1, denoted e1, makes you believe strongly that the killer is one of a; b;
or c, but it might still be d. In fact, looking at this evidence, you are willing to
bet 2:1 that it is not d.

Evidence 2, denoted e2, makes you sure that the killer is one of a and d.

What is your belief about the actual killer? Which of a or d you feel is the more
likely killer?

This basic story,4 in various shades and colors, has been devised to demonstrate that
Bayesian analysis clashes with intuition and commonsense. Most people feel that a is more
likely to be the killer, while Bayesian analysis (so the the argument goes) predicts that d is
more likely.

Here is what makes most people conclude the a is more suspect than d. From the
phrase \...e1, makes you believe strongly...," people infer that e1 made the class fa; b; cg
more suspect than it was before. Further, our willingness to bet 2:1 against d seems to
imply that e1 (partially) exonerates d from suspicion. Evidence e2 merely removes b and c
from consideration, but does not alter the relative degree of suspicion between a and d. The
net result is that a's guilt is positively supported by the evidence, while d's guilt receives
negative support.

To make this argument more compelling and concrete, we can imagine that fa; b; cg are
smokers, that d is a nonsmoker, and that e1 is some indication that the killer smoked. We can
equally imagine that e2 arrives �rst, and e1 second. e2 removes b and c from consideration
(say they had a strong alibi) and leaves a and d as the only suspects, with no reason to
prefer one over the other. Now comes the evidence about smoking, e1,|surely d should be
deemed less likely to be the killer.

4The story was presented to me by Phillipe Smets, (November, 1999) in an e-mail message entitled \The
danger of equiprobable priors." I took the liberty of making minor changes in the original text, so as to
render the accompanying arguments more plausible. I am indebted to Phillipe for the example and for
subsequent e-mail discussions, though he does not agree with my analysis (and conclusions).
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How does Bayesian analysis treat this story? According to its critics, the analysis should
proceed as follows. The input \you are willing to bet 2:1 that it is not d" should be translated
into a statement about posterior probabilities, conditioned on e1,

P (fa; b; cgje1) = 2P (fdgje1); (1)

from which we readily obtain

P (fa; b; cgje1) =
2

3
; P (fdgje1) =

1

3
(2)

If we further assume that a; b; c are equally suspect, each will get a probability 1=3�2=3 = 2=9
of being the killer. The arrival of e2 removes b and c from consideration but leaves the ratio
P (fdgje1) : P (fagje1) the same (as in standard Bayes conditionalization), which yields

P (fagje1; e2) : P (fdgje1; e2) =
2

9
:
1

3
= 2 : 3: (3)

Thus, we �nally see that, contrary to commonsense, d is deemed more likely to be the killer
than a (by a 3:2 ratio).

Can this clash be reconciled?5 It surely can.
Bayes' analysis remains faithful to commonsense, but commonsense is vulnerable to am-

biguity in the interpretations of the key statement:

\...looking at this evidence, you are willing to bet 2:1 that it is not d"

The interpretation expounded in the intuitive argument above, according to which e1 sup-
ports d's innocence, does not interpret the betting ratio literally, but assigns to it a likelihood-
ratio interpretation:

P (e1jfa; b; cg) : P (e1jfdg) = 2 : 1 (4)

which renders a a more likely suspect:

P (fagje1) = 2P (fdgje1)

This interpretation is compelled in fact when we consider e1 as indicative of the killer's
smoking habits. If our preference toward fa; b; cg originates from comparing the smoking
behavior of the killer to those of the suspects, then e1 should be judged twice more likely to
have been produced by any one of a; b; and c, than by d, namely,

P (e1jfag) = P (e1jfbg) = P (e1jfcg) = 2P (e1jfdg)

giving (assuming equal prior probabilities)

P (fagje1) = P (fbgje1) = P (fcgje1) = 2P (fdgje1);

5I am somewhat embarrassed to o�er a resolution that should be obvious to most practicing Bayesians
and to any reader of my book (Pearl 1988, Sections 2.2.2 and 2.3.3). However, considering that pseudo-
paradoxes of this type tend to reappear periodically in the literature, a rea�rmation of fundamentals might
be in order.
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and the posterior probability of d should calculate to

P (fdgje1) =
1

9
; (5)

not to 1/3 as stated in (2). This interpretation is incompatible with the posterior probability
interpretation of (1), because, according to (5), the odds of betting against d should have
been 8:1 and not 2:1 as stated in the story. Moreover, taking the input statement literally,
betting 2:1 against d implies that d's guilt received positive, not negative support, because
the belief in d's guilt went up from 1/4 to 1/3.

In summary, we see that the clash that emerges from this story is not a clash between
Bayesian vs. intuitive reasoning but, rather, between two legitimate interpretations of the
input sentence:

\... looking at the evidence, you are willing to bet 2:1 that it is not d"

The �rst interprets this sentence literally, as quantifying the final beliefs resulting from
e1, expressed in terms of one's willingness to bet on the propositions fdg vs. fa; b; cg. The
second interprets this sentence colloquially, as describing the incremental change in one's
beliefs and, hence, as quantifying the relative strength of evidential support that fdg and
each of its rival alternatives receives from e1, and from e1 alone.

If we take the literal interpretation, then Bayesian analysis encodes the input statement
as a ratio between two posterior probabilities (as in (1)), and helps us derive the logical
implication of this interpretation, i.e., d is more likely to be the killer than a (as in (3)). If,
however, we take the colloquial interpretation, then Bayesian analysis is again at our service;
it encodes the input sentence in the form of a likelihood ratio (as in (4)), and again derives
the correct implication, i.e., a is more likely to be the killer than d.

The tension between these two interpretations dates back to Je�rey's conditionalization
(Je�rey 1965) which was devised to handle belief updating based on non propositional ob-
servations (see Pearl (1988, pp. 62{69)), that is, observations summarized in terms of the
�nal probabilities they induce. Goldszmidt and Pearl (1996) analyzed the semantics of these
interpretations and distinguished between two types of evidential reports, Type-J (connot-
ing \Je�rey") and Type-L (connoting \likelihood ratio"). Type-J , which corresponds to
our literal interpretation in terms of �nal beliefs, requires considerations of the agent's pre-
observation beliefs, and was characterized therefore as \All things considered". Type-L,
which corresponds to our colloquial interpretation in terms of belief changes, is based exclu-
sively on the observation at hand, and was characterized as \Nothing else considered". Pearl
(1988, pp. 44{47) discusses the tendency of people to quantify incremental changes of belief
in terms of absolute probabilities, and how the reported probabilities should be converted
back to likelihood ratios.

This still behooves us to explain why it is so easy to lure readers into the colloquial
interpretation in terms of evidential support, or belief change, and ignore the literal inter-
pretation in terms of �nal beliefs in a betting situation. After all, the story states explicitly
that the 2:1 ratio stands for one's willingness to bet, and makes no mention at all of strength
of evidence or belief change. The answer lies in what may seem to be an innocence, incon-
sequential phrase: \... looking at the evidence, you will be willing to bet ...". Can we look
at the evidence e1 and decide how to bet on d versus not-d? Can we examine a laboratory
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report concerning traces of tobacco on the victim's body and decide, considering that d does
not smoke, how to bet on d versus not-d? The answer is: \No!"; because such decision
must take into account other factors beside the report, for example, how many smokers and
non-smokers are suspect, whether other suspects have solid alibi, etc. Forensic experts are
undoubtedly instructed to ignore such considerations when judging how likely the killer is
to be a smoker. Therefore when we tell someone: \Looking at this evidence," the listener
expects to �nd a summary of that evidence and that evidence alone. Finding a statement
about betting behavior, the listener has no choice but to translate this statement into a
Type-L evidential report, namely, a likelihood ratio.

The likelihood ratio is the only interpretation that rests strictly on the relationships
between the laboratory �ndings and the smoking behavior of the killer, one that is not
contaminated with previous beliefs about suspect d or his companions.6 To perform this
translation, the listener constructs a hypothetical, standard betting situation in which one
starts with a neutral (50{50) position on whether the killer is a smoker or non-smoker and,
upon seeing the evidence e1, one ends up with the speci�ed betting odds: 2:1 in favor of a
smoker. It is this hypothetical interpretation of the input betting odds that leads listeners
to the presumption that e1 supports d's innocence (as re
ected in (4)) rather than d's guilt
(as implied by the literal interpretation of (1).)

3 SUMMARY

We have examined two aspects of Bayes's analysis that, at �rst glance, seem incompatible
with human reasoning. The �rst concerned the practice of postulating prior probabilities in
cases of complete ignorance (about probabilities). We showed that this practice may serve a
useful cognitive function|the detection of informational relevance among potentially observ-
able events. Such relevance relation may remain undetected in the interval representation
of ignorance, where sets of probabilities are used to encode agents beliefs. The second as-
pect concerned the proper handling of evidential reports that are cast as betting odds. We
showed that often cited paradoxes in such cases have little to do with the assumption of
equiprobable priors. Rather, they re
ect a clash between two legitimate interpretations of
evidential reports that must be decided at the onset of any analysis. We also showed that
Bayes's analysis is well equipped to handle both interpretations, and that the likelihood ratio
interpretation is the more natural one of the two.
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