
THEOPTI TYOFA'RMSITED'

Rina Dechter and Judea Pearl

C%%%F ~~~D$brat~%,
University 0 P California, Los r eles, CA 90024

A..BsmAcT

This paper examines the optimality of A*, in
the sense of expanding the least number of distinct
nodes, over three classes of algorithms which
return solutions of comparable costs to that found
by A*. We Arst show that A* is optimal over those
algorithms guaranteed to And a solution at least as
good as A*‘s for every heuristic assignment h.
Second, we consider a wider class of algorithms
which, like A*,
solution. (i.e.,

are guaranteed to And an optimal
admissible) if all ccst estimctes are

optimistic (i.e., hlsrh*). On this class we show that
A* is not optimal and that no optimal algorithm
exists unless h is also consistent, in which case A* is
optimal. Finally we show that A* is optimal over the
s’ubclass of best-first algorithms which are admissi-
ble whenever hSh*.

1. INTRODUCTION AND PRE INARIES

1.1 A* and Informed Best-First Strategies

Of all search strategies used in problem solv-
ing, one of the most popular methods of exploiting
heuristic information to cut down search time is the
informed best-first strategy. The general philoso-
phy of this strategy is to use the heuristic informa-
tion to assess the “merit“ latent in every candidate
search avenue, then continue the exploration along
the direction of highest merit Formal descriptions
of this strategy are usually given in the context of
path searching problems, a formulation which
represents many combinato13ial problems such as
routing, scheduling, speech recognition, scene
analysis, and others. Given a weighted directional
graph G with a distinguished start node s and a set
of goal nodes r, the optimal path problem is to find
a lowest cost path from s to l? where the cost of the
path may, in general, be an arbitrary function of
the weights assigned to the nodes and branches
along that path.

By far, the most studied version of informed
best-first strategies is the algorithm A* (Hart, Nils-
son and Raphael, 1968) which was developed for
additive cost measwes, i.e, where the cost of a path
is defined as the sum of the costs of its arcs. TO
match this cost measure, A* employs a special addi-
tive form of the evaluation function f made up from
the sum f (n)=g (n)+h(n), where g(n) is the cost of
the currentlv evaluated path from s to n and h is a

--
*Supported in part by NSF Grant No. MSC 81-142209

heuristic e&mate of the cost of the path remaining
between n and some goal node. A* constructs a
tree T of selected paths of G using the elementary
operation of node expansion, i.e., generating all
successors of a given node. Starting with s, A*
selects for expansion that leaf node of T which has
the lowest f value, and only maintains the lowest-g
path to any given node. The search halts as soon as
a node selected for expansion is found to satisfy the
goal conditions. It is known that if h(n) is a lower
bound to the cost of any continuation path from n
to I’, then A* is admissible, that is, it is guaranteed
to And the optimal path.

‘I’he optimaMy of A *, in the sense of expand-
ing the least number of distinct nodes, has been a
subject of some confusion. The well-known property
of A* which predicts that decreasi errors h *-h
can on1

3
improve its performance 7! Nilsson, 1980,

result 6 has often been interpreted to reflect some
supremacy of A* over other search algorithms of
equal information. Consequently, several authors
have assumed that A*‘s optimality is an established
fact (e.g., Nilsson, 1971; Martelli, 1977; M&o, 1981;
Barr and Feigenbaum, 1982). In fact, all this pro-
perty says is that some A* algorithms are better
than other A* algorithms depending on the heuris-
tics which guide them. It does not indicate whether
the additive rule f =g+h is better than other ways
of combining g and h (e.g., 1 =g +h2/ (g +h)); neither
does it assure us that expansion policies based only
on g and h can do as well as more sophisticated
best-first policies using the entire information
gathered along each path (e.g., f(n)= max [f (n’) In’
is on the path to nl). These two coniectures will be
examine d-in
confirmation

this paper, and will be iiven a qualified

Gelperin (19’78) has correctly pointed out that
in any discussion of the optimality of A* one should
compare it to a wider class of equally informed algo-
rithms, not merely those guided by f =g +h, a.ld
that the comparison class should include, for exam-
ple, algorithms which adjust their h in accordance
with the information gathered during the search.
His analysis, unfortunately, falls short of consider-
ing the entirety of this extended class, having to fol-
low an over-restrictive definition of equally-
informed. Gelperin’s interpretation of the state-
ment “an algorithm B is never more informed than
A” not only restricts B from using information una-
vailable to A, but also forbids B from processing
common information in a better way than A does.

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved.

TECHNICAL REPORT
R-27
1983

For example, if B is a best-first algorithm guided by
an evaluation function f~(.), then to qualify for
Gelperin’s definition of being “never more informed
than A,” B is restricted from ever assigning to a
node n an fB(n) value higher than A would, even if
the information gathered along the path to n
justifies such an assignment. We now remove such
restrictions.

1.3 summary of Results

In our analysis we use the natural definition of
“equally informed,” allowing the algorithms com-
pared to have access to the same heuristic informa-
tion while placing no restriction on the way they use
it. We will consider a class of heuristic algorithms,
searching for a lowest (additive) cost path in a
graph G, in which an arbitrary heuristic function
h(n) is assigned to the nodes of G and is made avail-
able to each algorithm in the class upon generating
node n. From this general class we will discuss
three special subclasses: We first compare the com-
plexity of A* with those algorithms which are at
least as good as A* in the sense that they return
solutions at least as cheap as A*‘s in every problem
instance. We denote that class of algorithms by $.
We then restrict the domain of instances to that on
which A* is admissible, that is, hSh* and consider
the wider class of algorithms which are as good as
A* only on this restricted domain. Here we shall
show that A* is not optimal and that no optimal
algorithm e&&s unless h is also restricted to be
consistent. Finally, we will consider the subclass of
best-first algorithms that are admissible when hSh*
and show that A* is optimal over that class.

1.4 Notation and Defhitions

G-
G -

S-
r-
P-

cm -
p”c-n -
B’d -

g(n) -

h*(n) -

h(n) -

c*-

c (n,n’)

directed locally finite graph, G=(V,E)
the subgraph of G exposed during
the search
start node
a set of goal nodes, l’ 6: V
a solution path, i.e., a path in G
from s to some goal node 7 E l7
the cost of path P
A path in G between node 7~ and ni
The cost of the cheapest path gorng
froms ton
The cost of the cheapest path found
so far from s to n
The cost of the cheapest path going
from n to r
An estimate of h*(n), assigned to
each node in G
The cost of the cheapest path from s
t0 r
The cost of the arc between n and
n’, c (n ,n’)a5>0.

k (n,n’) - The cost of the cheapest path
between n and n’

(G,s ,r,h) - A quadruple defining a problem
instance

Let the domain of instances
admissible be denoted by IAD, i.e.:

on which A* is

IAD =[(G,s,r.h)ihSh*onGj

Obviously, any algorithm in 4p is also admissible
over 1~0.

A path on G is said to be strictly d-bounded
relative to f if every node n’ along that path
satisfies 1 (n’)<d. It is known that if hgh*, then A*
expands any node reachable by a strictly C*-
bounded path, regardless of the tie-breaking rule
used. The set of nodes with this property will be
referred to as surely evanded by A*. (Nodes out-
side this set may or may not be expanded depend-
ing on the tie-breaking rule used.) In general, for
arbitrary constant d and an arbitrary evaluation
function f over (G,s ,I’,h), we denote by N/d the set of
al1 nodes reachable by a strictly d-bounded path in
G. For example, Nfig+h is the set of nodes surely
expanded by A* over Im.

The notion of optimality that we examine in
this paper is robust to the choice of tie-breaking
rules and is given by the following definition:

Lkjkition: An algorithm A is said to be optimal over
a class A of algorithms relative to a set I of problem
instances if in each instance of I, every algorithm in
A will expand all the nodes surely expanded by A in
that problem instance.

2. IzEsuLTs

21 OptimaIity Over AIgorit.hms As Good As A+

Theorem 1: Any algorithm which is at least as good
as A* will expand, if provided the heuristic informa-
tion h4h8, all nodes that are surely expanded by A*,
i.e., A * is optimal over relative

?t
to 1~0.

m

Proof: Let I=(G,s ,I’,h) be some problem
instance in 1~ and assume that n is surely
expanded by A*, i.e., nEN$,. Therefore, there
exists a path PO-,, such that

j’ (n’) = g (n’)+h(n’) < C* Wx’ E PS,,

Let D=ng;~ if (n’)] and let B be an algorithm in hJ.

Obviously i;th A* and B will halt with cost C*, while
D<C*.

Assume that B does not expand n. We now
create a new graph G’ (see figure 1) by adding to G a
goal node t’ with h(t’)=O and an edge from n to t’
with non-negative cost D-C(PB-,,). Denote the
extended path PsIr-t’ by P*, and let
I’=(G’,s ,r u It’j,h) be a new instance in the algo-
rithms’ domain. Although h may no longer be
admissible on /‘, the construction of I’ guarantees
that f (n’)SD if n’EP+, and thus, algorithm A*
searching G’ will find a solution path with cost C,<D
(Dechter & Pearl, 1983). Algorithm B, however, will
search I’ in exactly the same way it searched I; the
only way B can reveal any difference between I and
I’ is by expanding n. Since it did not, it will not find
solution path P* but will halt with cost C*>D, the
same cost it found for I. This contradicts its pro-
perty of being as good as A*.

2.2 Nonoptimality Over Algorithms Compatible’
with A+

Theorem 1 asserts the optimality of A* over a
somewhat restricted class of algorithms, those
which never return a solution more expensive than
A*‘s, even in instances where non-admissible h are

Figure 1

provided. If OUT problem space includes only
admissible cases we should really be concerned with
a wider class A, of competitors to A*, those which
only return as good a solution as A* in instances of
JADl regardless of how badly they may perform
hypothetically under non-admissible h. We shall
call algorithms in this class compatible with A*.

Disappointedly, A* cannot be proven to be
optimal over the entire class of algorithms compati-
ble with it, and, in fact, some such algorithms may
grossly
instances.

outperform A * in specific problem
For example, consider an algorithm B

guided by the following search policy: Conduct an
exhaustive right-to-left depth-first search but
refrain from expanding one distinguished node n
e.g., the leftmost son of s. By the time this search
is completed, examine n to see if it has the poten-
tial of sprouting a solution path cheaper than all
those discovered so far. If it has, expand it and con-
tinue the search exhaustively. Otherwise, return
the cheapest solution at hand. B is clearly compati-
ble with A*; it cannot miss an optimal path because
it would only avoid expanding n when it has
sufficient information to justify this action, but oth-
erwise will leave no stone unturned. Yet, in the
graph of Figure 2a, B will avoid expanding many
nodes which are surely expanded by A*. A* will
expand node J1 immediately after s (f(J1)=4) and
subsequently will also expand many nodes in the
subtree rooted at J1. B, on the other hand, will
expand J3, then select for expansion the goal node
7, continue to expand J2 and at this point will tit
&thout ezpanding node J1. Relying on the admissi-
bility of h, B can infer that the estimate h(Jl)=O is
overly optimistic and should be at least equal to
h(J2)-i=19, thus precluding J1 from lying on a path
cheaper than (s , Js,~).

Granted that A* is not optimal over its com-
patible class 4, the question arises if an optimal
algorithm exists altogether. Clearly, if A, possesses
an optimal algorithm, that algorithm must be
better than A+ in the sense of expanding, in some
problem instances, fewer nodes than A* while never
expanding a node which is surely skipped by A*.
Note that algorithm B above could not be such an
optimal algorithm because in return for skipping
node J1 in Figure 2a it had to pay the price of
expanding J2, yet J2 will not be expanded by A*
regardless of the tie-breaking rule invoked. If we
could show that this “node tradeoff” pattern must
hold for every algorithm compatible with A*, and on
every instance of Im, then we would have to con-
clude that no optimal algorithm exists. Figure 2b,
however, represents an exception to the node-
tradeoff rule; algorithm B does not expand a node
(Jl) which must be expanded by A* and yet, it never
expands a node which A+ may skip.

2b
We now show that cases such as

may occur only in rare instances.
that of Figure

7heorem 2: If an algorithm B, compatible with A*,
does not expand a node which is surely expanded by
A* and if the graph in that problem instance con-
tains at least one optimal solution path along which
h is not fully informed (h<h*), then in that very
problem instance B must expand a node which may
be avoided by A*.

Proof: Assume the contrary, i.e., there is an
instance I=(G,s ,r,h)EI m such that a node n which is
surely expanded by A* is avoided by B and, at the
same time, B expands no node which is avoided by
A*, we shall show that this assumption implies the
existence of another instance I’ E IRD where B will
not find an optimal solution. I’ is constructed by
taking the graph G4 exposed by a specific run of A*
(including nodes in OPEN) and appending to it
another edge (n,t’) to a new goal node t’, with cost
c(n,t')=D'-k,(s,n) where

D’=max (n')(n'EN$h,
G 1

and k, (nl,n2) is the cost of the cheapest path from
n1 to n2 in Go.

Since G contains an optimal path P*ol along
which h(n')<h*(n') (with the exception of 7 and pos-
sibly s), we know that there is e tin-breaking rule
that will guide A* to And PST and halt without ever
expanding another node having f (n)=C*. Using this
run of A* to define G,, we see that every nontermi-
nal node in G, must satisfy the strict inequality
g(n)+h(n)<C*.

We shall tist prove that I’ is in IAD, i.e., that
h(n')r;h@'I(n') for every node n' in G, . This inequality
certainly holds for n' such that g (n')+h(n')2C*
because all such nodes were left unexpanded by A*
and hence appear as terminal nodes in G, for which
h+'(n')== (with the exoepticn of 7, f~- which
l~(7)=h*~.(7)=0). It remains, therefore, to verify the
inequality for nodes n’ in NzJ, for which we have
g(n’)+h(n’)4D’. A ssume
such n’ E J$,,

the c!ontrary, that ior some
we have h(n')>h*',(n'). This implies

a

Figure 2

b

97

h(n’) > k, (n’,n) + c (nJ’>

=k,(n’,n) + D’-k&P)

~kk,(n’,n) +k,(s,n’) +h(n’) -k+n)

and

OX-

k, (s ,n) > k, (n’,n) + k, (s n’)

in violation of the triangle inequality
paths in G, . Hence, I’ is in 1~0.

for cheapest

Assume now that algorithm B does not gen-
erate any node outside G,. If B has avoided expand-
ing n in I, it should also avoid expanding n in I’; all
decisions must be the same in both cases since the
sequence of nodes generated (including those in
OPEN) is the same. On the other hand, the
cheapest path in I’ now goes from s to n to t ‘, hav-
ing the cost D’<C l , and will be missed by B. This
violates the admissibility of B on an instance in Im
and proves that B could not possibly avoid the
expansion of n without generating at least one node
outside G,. Hence, B must expand at least one node
avoided by A* in this specific run.

m

Theorem 2 can be given two interpretations.
On one hand it is discomforting to know that neither
A* nor any other algorithm is truly optimal over
those guaranteed to find an optimal solution when
given hSh*, not even optimal in the restricted case
of ensuring that the set of nodes surely expanded
by that algorithm is absolutely the minimal
required.* On the other hand, Theorem 2 endows A*
with some optimality property, albeit weaker than
hoped; the only way to gain one node from A* is to
relinquish another. Not every algorithm enjoys
such strength.

2.3 Optimality Under Consistent Heuristics

We shall now prove that conditions like those
of Figure 2, which permit other algorithms to out-
maneuver A*, can only occur in instances where h is
nonconsistent; in other words, if in addition to being
admissible h is also consistent (or monotone) then
A* is optimal over the entire class of algorithms
compatible with it.

LJ@?ntin: A heuristic function h is said to be con-
sistent if for any pair of nodes, TZ’ and n, the triangle
inequality holds: h (n’)sk (n’,n)+h(n). Clearly, con-
sistency implies admissibility but not vice versa.

IReorem 3: Any algorithm which is admissible over
1m (i.e., compatible with A*) will expand, if provided
a consistent heuristic h, all nodes that are surely
expanded by A*.

Au,of: We again construct a new graph G’, as
in Figure 1, but now we assign to the edge (n,t’) a
cost c =h(n)+b, where

6 = j$[C*-D’] > 0

This finding, by the way, is not normally acknowledged in the
literature. M&o (1981), for example, assumes that A+ is
optimal in this sense, i.e., that no admissible algorithm equally
informed to A * can ever avoid a node expanded by A *. Similar
interpretations are suggested by the theorems of Gelperin
(1977).

This construction creates a new solution path P*
with cost at most C*-6 and, simultaneously, (due to
h’s consistency) retains the admissibility of h on
the new instance I’. For, if at some node n’ we have

h(n’) > h*p(n’) = mink(n’,n) + c
1

; h?(n)].

then we should also have (given h (n’)Sh5(n)):

h (n’) > k (n’,n) + c = k(n’,n) + h(n)+6

in violation of h’s consistency.

In searching G’, algorithm AC will find the
extended path P* costing C*-6, because:

f (0 = 8 (n)+c = f (n)+6 I; D’+6 = C*-6 < C*

and so, t’ is reachable from s by a path strictly
bounded by C* which ensures its selection. Algo-
rithm B, on the other hand, if it avoids expanding n,
must behave the same as in problem instance I,
halting with cost C* which is higher than that found
by A*. This contradicts the supposition that B is
both admissible and avoids the expansion of node n.

.

2.4 Optimality Over Generalized Best-First. A@-
IWlJllS

The next result establishes A*‘s optimality
over the set of generalized 6esSfirst (GBF) algo-
rithms which are admissible if provided with hSh*.
Algorithms in this set operate identically to A*; the
lowest f path is selected for expansion, and the
search halts as soon as the Arst goal node is
selected for expansion. However, unlike A+, these
algorithms will be permitted to employ any evalua-
tion function f(P) where f(P) is a function of the
nodes, the edge-costs, and the heuristic function h
evaluated on the nodes of P, i.e.

f P>kf (sJbn2n)=f~~~.[c(ni.ni+l)l.[h(~)~l~~P).

Due to the path-dependent nature of f , a GBF algo-
rithm would, in general, need to unfold the search
graph, i.e., to maintain multiple paths to identical
nodes. Under certain conditions, however, the algo-
rithm can discard, as in A*, all but the lowest f
path to a given node, without compromising the
quality of the final solution. This condition applies
when f is or&r preservin.g, i.e., if path* PI is judged
to be more meritorious than P2, both going from s
to n, then no cornmon extension (Ps) of PI and P2
may later reverse this judgement. Formally:

f(P,kf (P2) - f PPskf (P2Ps)

Clearly, both f =g+h and f(P)= max/g (n’)+h(n’)Jn’EP}

are order preserving, and so is evkry combinatioi
f =F(g ,h) which is monotonic in both arguments.

The following results are stated without
proofs (for a detailed discussion of best-first al o-
rithms see Dechter 8c Pearl (1983) or Pearl (1983) f .

Theorem 4: Let B be a best-first algorithm using an
evaluation function f B
(G,s ,l?,h) E IAD, fB satisfies:

such that for every

f (Pt)=f (s, nlrn2, . . . ,7)=C(Q) Vy E l?.
If B is admissible for I,, then N$ s N$!i, and B
expands every node in Nczh. Moreover, if fB is also
of the form j’=F(g,hJ then F must satisfy
F(z ,y)= +y .

q

An interesting implication of Theorem 4
asserts that any admissible combination of g and h,
hsh *, will expand every node surely expanded by
A*. In other words, the additive combination g +h is,
in this sense, the optimal way of aggregating g and
h for additive cost measures.

Theorem 4 also implies that g(n) constitutes
a sufficient summary of the information gathered
along the path from s to n. Any additional informa-
tion regarding the heuristics assigned to the ances-
tors of n, or the costs of the individual arcs along
the path, is only superfluous, and cannot yield a
further reduction in the number of nodes expanded
with admissible heuristics. Such information, how-
ever, may help reduce the number of node evalua-
tions performed by A* (Martelli, 1977; M&o, 1981).

REFEREINCXS

Barr, A. and Feigenbaum, E.A. 1981. Hundboolc of
Artificial Intelligence, Los Altos, Calif.: Wil-
liam Kaufman, Inc.

Dechter, R. and Pearl, J. 1983. “Generalized best-
flrst strategies and the optirnality of A*,"
UCLA-ENG8219, University of California,
Los Angeles.

Gelperin, D. 1977. “On the optimality of A*“.
Arti.cid Intelligence, vol. 8, No. 1, 69-76.

Hart, P.E., Nilsson, N.J. and Raphael, B. 1968. “A for-
mal basis for the heuristic determination
of minimum cost paths.” IEEE l%uns. Sys-
tems Science and Cybernetics, SSC-4, No.
2, 100-107.

Martelli, A. 1977. “On the complexity of admissible
search algorithms.”
vol. 8, No. 1, 1-13.

Artificial Intelligence,

M&o, L. 1981. “Some remarks on heuristic search
algorithms.” Proc. of Int. Joint Conf. on
ti, Vancouver, B.C., Canada, August 24-28,
1981.

Nilsson, N.J. 1971. Problem-Solving Methods in
Artificial Intelligence, New-York: McGraw-
Hill.

Nilsson, N.J. 1980. Principles of Artificial InteUi-
gence, Palo Alto, Calif.: Tioga Publishing
co.

Pearl, J. 1983. HEURISTICS: Intelligent Search
Strategies, Reading, Mass.: Addison-
Wesley, in press.

99

