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This paper examines the optimality of A*, in 
the sense of expanding the least number of distinct 
nodes, over three classes of algorithms which 
return solutions of comparable costs to that found 
by A*. We Arst show that A* is optimal over those 
algorithms guaranteed to And a solution at least as 
good as A*‘s for every heuristic assignment h. 
Second, we consider a wider class of algorithms 
which, like A*, 
solution. (i.e., 

are guaranteed to And an optimal 
admissible) if all ccst estimctes are 

optimistic (i.e., hlsrh*). On this class we show that 
A* is not optimal and that no optimal algorithm 
exists unless h is also consistent, in which case A* is 
optimal. Finally we show that A* is optimal over the 
s’ubclass of best-first algorithms which are admissi- 
ble whenever hSh*. 

1. INTRODUCTION AND PRE INARIES 

1.1 A* and Informed Best-First Strategies 

Of all search strategies used in problem solv- 
ing, one of the most popular methods of exploiting 
heuristic information to cut down search time is the 
informed best-first strategy. The general philoso- 
phy of this strategy is to use the heuristic informa- 
tion to assess the “merit“ latent in every candidate 
search avenue, then continue the exploration along 
the direction of highest merit Formal descriptions 
of this strategy are usually given in the context of 
path searching problems, a formulation which 
represents many combinato13ial problems such as 
routing, scheduling, speech recognition, scene 
analysis, and others. Given a weighted directional 
graph G with a distinguished start node s and a set 
of goal nodes r, the optimal path problem is to find 
a lowest cost path from s to l? where the cost of the 
path may, in general, be an arbitrary function of 
the weights assigned to the nodes and branches 
along that path. 

By far, the most studied version of informed 
best-first strategies is the algorithm A* (Hart, Nils- 
son and Raphael, 1968) which was developed for 
additive cost measwes, i.e, where the cost of a path 
is defined as the sum of the costs of its arcs. TO 
match this cost measure, A* employs a special addi- 
tive form of the evaluation function f made up from 
the sum f (n)=g (n)+h(n), where g(n) is the cost of 
the currentlv evaluated path from s to n and h is a 
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*Supported in part by NSF Grant No. MSC 81-142209 

heuristic e&mate of the cost of the path remaining 
between n and some goal node. A* constructs a 
tree T of selected paths of G using the elementary 
operation of node expansion, i.e., generating all 
successors of a given node. Starting with s, A* 
selects for expansion that leaf node of T which has 
the lowest f value, and only maintains the lowest-g 
path to any given node. The search halts as soon as 
a node selected for expansion is found to satisfy the 
goal conditions. It is known that if h(n) is a lower 
bound to the cost of any continuation path from n 
to I’, then A* is admissible, that is, it is guaranteed 
to And the optimal path. 

‘I’he optimaMy of A *, in the sense of expand- 
ing the least number of distinct nodes, has been a 
subject of some confusion. The well-known property 
of A* which predicts that decreasi errors h *-h 
can on1 

3 
improve its performance 7! Nilsson, 1980, 

result 6 has often been interpreted to reflect some 
supremacy of A* over other search algorithms of 
equal information. Consequently, several authors 
have assumed that A*‘s optimality is an established 
fact (e.g., Nilsson, 1971; Martelli, 1977; M&o, 1981; 
Barr and Feigenbaum, 1982). In fact, all this pro- 
perty says is that some A* algorithms are better 
than other A* algorithms depending on the heuris- 
tics which guide them. It does not indicate whether 
the additive rule f =g+h is better than other ways 
of combining g and h (e.g., 1 =g +h2/ (g +h)); neither 
does it assure us that expansion policies based only 
on g and h can do as well as more sophisticated 
best-first policies using the entire information 
gathered along each path (e.g., f(n)= max [f (n’) In’ 
is on the path to nl). These two coniectures will be 
examine d-in 
confirmation 

this paper, and will be iiven a qualified 

Gelperin (19’78) has correctly pointed out that 
in any discussion of the optimality of A* one should 
compare it to a wider class of equally informed algo- 
rithms, not merely those guided by f =g +h, a.ld 
that the comparison class should include, for exam- 
ple, algorithms which adjust their h in accordance 
with the information gathered during the search. 
His analysis, unfortunately, falls short of consider- 
ing the entirety of this extended class, having to fol- 
low an over-restrictive definition of equally- 
informed. Gelperin’s interpretation of the state- 
ment “an algorithm B is never more informed than 
A” not only restricts B from using information una- 
vailable to A, but also forbids B from processing 
common information in a better way than A does. 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 

TECHNICAL REPORT 
R-27
1983



For example, if B is a best-first algorithm guided by 
an evaluation function f~(.), then to qualify for 
Gelperin’s definition of being “never more informed 
than A,” B is restricted from ever assigning to a 
node n an fB(n) value higher than A would, even if 
the information gathered along the path to n 
justifies such an assignment. We now remove such 
restrictions. 

1.3 summary of Results 

In our analysis we use the natural definition of 
“equally informed,” allowing the algorithms com- 
pared to have access to the same heuristic informa- 
tion while placing no restriction on the way they use 
it. We will consider a class of heuristic algorithms, 
searching for a lowest (additive) cost path in a 
graph G, in which an arbitrary heuristic function 
h(n) is assigned to the nodes of G and is made avail- 
able to each algorithm in the class upon generating 
node n. From this general class we will discuss 
three special subclasses: We first compare the com- 
plexity of A* with those algorithms which are at 
least as good as A* in the sense that they return 
solutions at least as cheap as A*‘s in every problem 
instance. We denote that class of algorithms by $. 
We then restrict the domain of instances to that on 
which A* is admissible, that is, hSh* and consider 
the wider class of algorithms which are as good as 
A* only on this restricted domain. Here we shall 
show that A* is not optimal and that no optimal 
algorithm e&&s unless h is also restricted to be 
consistent. Finally, we will consider the subclass of 
best-first algorithms that are admissible when hSh* 
and show that A* is optimal over that class. 

1.4 Notation and Defhitions 

G- 
G - 

S- 
r- 
P- 

cm - 
p”c-n - 
B’d - 

g(n) - 

h*(n) - 

h(n) - 

c*- 

c (n,n’) 

directed locally finite graph, G=( V,E) 
the subgraph of G exposed during 
the search 
start node 
a set of goal nodes, l’ 6: V 
a solution path, i.e., a path in G 
from s to some goal node 7 E l7 
the cost of path P 
A path in G between node 7~ and ni 
The cost of the cheapest path gorng 
froms ton 
The cost of the cheapest path found 
so far from s to n 
The cost of the cheapest path going 
from n to r 
An estimate of h*(n), assigned to 
each node in G 
The cost of the cheapest path from s 
t0 r 
The cost of the arc between n and 
n’, c (n ,n’)a5>0. 

k (n,n’) - The cost of the cheapest path 
between n and n’ 

(G,s ,r,h) - A quadruple defining a problem 
instance 

Let the domain of instances 
admissible be denoted by IAD, i.e.: 

on which A* is 

IAD =[(G,s,r.h)ihSh*onGj 

Obviously, any algorithm in 4p is also admissible 
over 1~0. 

A path on G is said to be strictly d-bounded 
relative to f if every node n’ along that path 
satisfies 1 (n’)<d. It is known that if hgh*, then A* 
expands any node reachable by a strictly C*- 
bounded path, regardless of the tie-breaking rule 
used. The set of nodes with this property will be 
referred to as surely evanded by A*. (Nodes out- 
side this set may or may not be expanded depend- 
ing on the tie-breaking rule used.) In general, for 
arbitrary constant d and an arbitrary evaluation 
function f over (G,s ,I’,h), we denote by N/d the set of 
al1 nodes reachable by a strictly d-bounded path in 
G. For example, Nfig+h is the set of nodes surely 
expanded by A* over Im. 

The notion of optimality that we examine in 
this paper is robust to the choice of tie-breaking 
rules and is given by the following definition: 

Lkjkition: An algorithm A is said to be optimal over 
a class A of algorithms relative to a set I of problem 
instances if in each instance of I, every algorithm in 
A will expand all the nodes surely expanded by A in 
that problem instance. 

2. IzEsuLTs 

21 OptimaIity Over AIgorit.hms As Good As A+ 

Theorem 1: Any algorithm which is at least as good 
as A* will expand, if provided the heuristic informa- 
tion h4h8, all nodes that are surely expanded by A*, 
i.e., A * is optimal over relative 

?t 
to 1~0. 

m 

Proof: Let I=( G,s ,I’,h) be some problem 
instance in 1~ and assume that n is surely 
expanded by A*, i.e., nEN$,. Therefore, there 
exists a path PO-,, such that 

j’ (n’) = g (n’)+h(n’) < C* Wx’ E PS,, 

Let D=ng;~ if (n’)] and let B be an algorithm in hJ. 

Obviously i;th A* and B will halt with cost C*, while 
D<C*. 

Assume that B does not expand n. We now 
create a new graph G’ (see figure 1) by adding to G a 
goal node t’ with h(t’)=O and an edge from n to t’ 
with non-negative cost D-C(PB-,,). Denote the 
extended path PsIr-t’ by P*, and let 
I’=(G’,s ,r u It’j,h) be a new instance in the algo- 
rithms’ domain. Although h may no longer be 
admissible on /‘, the construction of I’ guarantees 
that f (n’)SD if n’EP+, and thus, algorithm A* 
searching G’ will find a solution path with cost C,<D 
(Dechter & Pearl, 1983). Algorithm B, however, will 
search I’ in exactly the same way it searched I; the 
only way B can reveal any difference between I and 
I’ is by expanding n. Since it did not, it will not find 
solution path P* but will halt with cost C*>D, the 
same cost it found for I. This contradicts its pro- 
perty of being as good as A*. 

2.2 Nonoptimality Over Algorithms Compatible’ 
with A+ 

Theorem 1 asserts the optimality of A* over a 
somewhat restricted class of algorithms, those 
which never return a solution more expensive than 
A*‘s, even in instances where non-admissible h are 



Figure 1 

provided. If OUT problem space includes only 
admissible cases we should really be concerned with 
a wider class A, of competitors to A*, those which 
only return as good a solution as A* in instances of 
JADl regardless of how badly they may perform 
hypothetically under non-admissible h. We shall 
call algorithms in this class compatible with A*. 

Disappointedly, A* cannot be proven to be 
optimal over the entire class of algorithms compati- 
ble with it, and, in fact, some such algorithms may 
grossly 
instances. 

outperform A * in specific problem 
For example, consider an algorithm B 

guided by the following search policy: Conduct an 
exhaustive right-to-left depth-first search but 
refrain from expanding one distinguished node n 
e.g., the leftmost son of s. By the time this search 
is completed, examine n to see if it has the poten- 
tial of sprouting a solution path cheaper than all 
those discovered so far. If it has, expand it and con- 
tinue the search exhaustively. Otherwise, return 
the cheapest solution at hand. B is clearly compati- 
ble with A*; it cannot miss an optimal path because 
it would only avoid expanding n when it has 
sufficient information to justify this action, but oth- 
erwise will leave no stone unturned. Yet, in the 
graph of Figure 2a, B will avoid expanding many 
nodes which are surely expanded by A*. A* will 
expand node J1 immediately after s (f(J1)=4) and 
subsequently will also expand many nodes in the 
subtree rooted at J1. B, on the other hand, will 
expand J3, then select for expansion the goal node 
7, continue to expand J2 and at this point will tit 
&thout ezpanding node J1. Relying on the admissi- 
bility of h, B can infer that the estimate h(Jl)=O is 
overly optimistic and should be at least equal to 
h(J2)-i=19, thus precluding J1 from lying on a path 
cheaper than (s , Js,~). 

Granted that A* is not optimal over its com- 
patible class 4, the question arises if an optimal 
algorithm exists altogether. Clearly, if A, possesses 
an optimal algorithm, that algorithm must be 
better than A+ in the sense of expanding, in some 
problem instances, fewer nodes than A* while never 
expanding a node which is surely skipped by A*. 
Note that algorithm B above could not be such an 
optimal algorithm because in return for skipping 
node J1 in Figure 2a it had to pay the price of 
expanding J2, yet J2 will not be expanded by A* 
regardless of the tie-breaking rule invoked. If we 
could show that this “node tradeoff” pattern must 
hold for every algorithm compatible with A*, and on 
every instance of Im, then we would have to con- 
clude that no optimal algorithm exists. Figure 2b, 
however, represents an exception to the node- 
tradeoff rule; algorithm B does not expand a node 
(Jl) which must be expanded by A* and yet, it never 
expands a node which A+ may skip. 

2b 
We now show that cases such as 

may occur only in rare instances. 
that of Figure 

7heorem 2: If an algorithm B, compatible with A*, 
does not expand a node which is surely expanded by 
A* and if the graph in that problem instance con- 
tains at least one optimal solution path along which 
h is not fully informed (h<h*), then in that very 
problem instance B must expand a node which may 
be avoided by A*. 

Proof: Assume the contrary, i.e., there is an 
instance I=( G,s ,r,h)EI m such that a node n which is 
surely expanded by A* is avoided by B and, at the 
same time, B expands no node which is avoided by 
A*, we shall show that this assumption implies the 
existence of another instance I’ E IRD where B will 
not find an optimal solution. I’ is constructed by 
taking the graph G4 exposed by a specific run of A* 
(including nodes in OPEN) and appending to it 
another edge (n,t’) to a new goal node t’, with cost 
c(n,t')=D'-k,(s,n) where 

D’=max (n')(n'EN$h, 
G 1 

and k, (nl,n2) is the cost of the cheapest path from 
n1 to n2 in Go. 

Since G contains an optimal path P*ol along 
which h(n')<h*(n') (with the exception of 7 and pos- 
sibly s), we know that there is e tin-breaking rule 
that will guide A* to And PST and halt without ever 
expanding another node having f (n)=C*. Using this 
run of A* to define G,, we see that every nontermi- 
nal node in G, must satisfy the strict inequality 
g(n)+h(n)<C*. 

We shall tist prove that I’ is in IAD, i.e., that 
h(n')r;h@'I(n') for every node n' in G, . This inequality 
certainly holds for n' such that g (n')+h(n')2C* 
because all such nodes were left unexpanded by A* 
and hence appear as terminal nodes in G, for which 
h+'(n')== (with the exoepticn of 7, f~- which 
l~(7)=h*~.(7)=0). It remains, therefore, to verify the 
inequality for nodes n’ in NzJ, for which we have 
g(n’)+h(n’)4D’. A ssume 
such n’ E J$,, 

the c!ontrary, that ior some 
we have h(n')>h*',(n'). This implies 

a 

Figure 2 

b 
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h(n’) > k, (n’,n) + c (nJ’> 

=k,(n’,n) + D’-k&P) 

~kk,(n’,n) +k,(s,n’) +h(n’) -k+n) 

and 

OX- 

k, (s ,n) > k, (n’,n) + k, (s n’) 

in violation of the triangle inequality 
paths in G, . Hence, I’ is in 1~0. 

for cheapest 

Assume now that algorithm B does not gen- 
erate any node outside G,. If B has avoided expand- 
ing n in I, it should also avoid expanding n in I’; all 
decisions must be the same in both cases since the 
sequence of nodes generated (including those in 
OPEN) is the same. On the other hand, the 
cheapest path in I’ now goes from s to n to t ‘, hav- 
ing the cost D’<C l , and will be missed by B. This 
violates the admissibility of B on an instance in Im 
and proves that B could not possibly avoid the 
expansion of n without generating at least one node 
outside G,. Hence, B must expand at least one node 
avoided by A* in this specific run. 

m 

Theorem 2 can be given two interpretations. 
On one hand it is discomforting to know that neither 
A* nor any other algorithm is truly optimal over 
those guaranteed to find an optimal solution when 
given hSh*, not even optimal in the restricted case 
of ensuring that the set of nodes surely expanded 
by that algorithm is absolutely the minimal 
required.* On the other hand, Theorem 2 endows A* 
with some optimality property, albeit weaker than 
hoped; the only way to gain one node from A* is to 
relinquish another. Not every algorithm enjoys 
such strength. 

2.3 Optimality Under Consistent Heuristics 

We shall now prove that conditions like those 
of Figure 2, which permit other algorithms to out- 
maneuver A*, can only occur in instances where h is 
nonconsistent; in other words, if in addition to being 
admissible h is also consistent (or monotone) then 
A* is optimal over the entire class of algorithms 
compatible with it. 

LJ@?ntin: A heuristic function h is said to be con- 
sistent if for any pair of nodes, TZ’ and n, the triangle 
inequality holds: h (n’)sk (n’,n)+h(n). Clearly, con- 
sistency implies admissibility but not vice versa. 

IReorem 3: Any algorithm which is admissible over 
1m (i.e., compatible with A*) will expand, if provided 
a consistent heuristic h, all nodes that are surely 
expanded by A*. 

Au,of: We again construct a new graph G’, as 
in Figure 1, but now we assign to the edge (n,t’) a 
cost c =h(n)+b, where 

6 = j$[ C*-D’] > 0 

This finding, by the way, is not normally acknowledged in the 
literature. M&o (1981), for example, assumes that A+ is 
optimal in this sense, i.e., that no admissible algorithm equally 
informed to A * can ever avoid a node expanded by A *. Similar 
interpretations are suggested by the theorems of Gelperin 
(1977). 

This construction creates a new solution path P* 
with cost at most C*-6 and, simultaneously, (due to 
h’s consistency) retains the admissibility of h on 
the new instance I’. For, if at some node n’ we have 

h(n’) > h*p(n’) = mink(n’,n) + c 
1 

; h?(n)]. 

then we should also have (given h (n’)Sh5(n)): 

h (n’) > k (n’,n) + c = k(n’,n) + h(n)+6 

in violation of h’s consistency. 

In searching G’, algorithm AC will find the 
extended path P* costing C*-6, because: 

f (0 = 8 (n)+c = f (n)+6 I; D’+6 = C*-6 < C* 

and so, t’ is reachable from s by a path strictly 
bounded by C* which ensures its selection. Algo- 
rithm B, on the other hand, if it avoids expanding n, 
must behave the same as in problem instance I, 
halting with cost C* which is higher than that found 
by A*. This contradicts the supposition that B is 
both admissible and avoids the expansion of node n. 

. 

2.4 Optimality Over Generalized Best-First. A@- 
IWlJllS 

The next result establishes A*‘s optimality 
over the set of generalized 6esSfirst (GBF) algo- 
rithms which are admissible if provided with hSh*. 
Algorithms in this set operate identically to A*; the 
lowest f path is selected for expansion, and the 
search halts as soon as the Arst goal node is 
selected for expansion. However, unlike A+, these 
algorithms will be permitted to employ any evalua- 
tion function f(P) where f(P) is a function of the 
nodes, the edge-costs, and the heuristic function h 
evaluated on the nodes of P, i.e. 

f P>kf (sJbn2 . . . ..n)=f~~~.[c(ni.ni+l)l.[h(~)~l~~P). 

Due to the path-dependent nature of f , a GBF algo- 
rithm would, in general, need to unfold the search 
graph, i.e., to maintain multiple paths to identical 
nodes. Under certain conditions, however, the algo- 
rithm can discard, as in A*, all but the lowest f 
path to a given node, without compromising the 
quality of the final solution. This condition applies 
when f is or&r preservin.g, i.e., if path* PI is judged 
to be more meritorious than P2, both going from s 
to n, then no cornmon extension (Ps) of PI and P2 
may later reverse this judgement. Formally: 

f(P,kf (P2) - f PPskf (P2Ps) 

Clearly, both f =g+h and f(P)= max/g (n’)+h(n’)Jn’EP} 

are order preserving, and so is evkry combinatioi 
f =F(g ,h) which is monotonic in both arguments. 

The following results are stated without 
proofs (for a detailed discussion of best-first al o- 
rithms see Dechter 8c Pearl (1983) or Pearl (1983) f . 



Theorem 4: Let B be a best-first algorithm using an 
evaluation function f B 
(G,s ,l?,h) E IAD, fB satisfies: 

such that for every 

f (Pt)=f (s, nlrn2, . . . ,7)=C(Q) Vy E l?. 
If B is admissible for I,, then N$ s N$!i, and B 
expands every node in Nczh. Moreover, if fB is also 
of the form j’=F(g,hJ then F must satisfy 
F(z ,y)= +y . 

q  

An interesting implication of Theorem 4 
asserts that any admissible combination of g and h, 
hsh *, will expand every node surely expanded by 
A*. In other words, the additive combination g +h is, 
in this sense, the optimal way of aggregating g and 
h for additive cost measures. 

Theorem 4 also implies that g(n) constitutes 
a sufficient summary of the information gathered 
along the path from s to n. Any additional informa- 
tion regarding the heuristics assigned to the ances- 
tors of n, or the costs of the individual arcs along 
the path, is only superfluous, and cannot yield a 
further reduction in the number of nodes expanded 
with admissible heuristics. Such information, how- 
ever, may help reduce the number of node evalua- 
tions performed by A* (Martelli, 1977; M&o, 1981). 
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