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Causes and Explanations:
A Structural-Model Approach.

Part I. Causes
Joseph Y. Halpern and Judea Pearl

ABSTRACT

We propose a new definition of actual causes, using structural equations to model
counterfactuals. We show that the definition yields a plausible and elegant account
of causation that handles well examples which have caused problems for other defini-
tions and resolves major difficulties in the traditional account.
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1 Introduction

What does it mean that an event C actually caused event E? The problem of
defining ‘actual cause’ goes beyond mere philosophical speculation. As Good
([1993]) and Michie ([1999]) argue persuasively, in many legal settings what
needs to be established (for determining responsibility) is exactly such ‘cause
in fact’. A typical example (Wright [1988]) considers two fires advancing
toward a house. If fire 4 burned the house before fire B, we (and many juries
nationwide) would consider fire 4 ‘the actual cause’ for the damage, even
supposing that the house would definitely have been burned down by fire B,
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if it were not for 4. Actual causation is also important in artificial intelligence
(AI) applications. Whenever we undertake to explain a set of events that
unfold in a specific scenario, the explanation produced must acknowledge
the actual cause of those events. The automatic generation of adequate

explanations, a task essential in planning, diagnosis, and natural language
processing, therefore requires a formal analysis of the concept of actual cause.

The philosophy literature has been struggling with this problem of defining
causality since at least the days of Hume ([1739]), who was the first to identify
causation with counterfactual dependence. To quote Hume ([1748, section
VIII]): “‘We may define a cause to be an object followed by another ...

~where, if the first object had not been, the second never had existed.”

Among modern philosophers, the counterfactual interpretation of causal-
ity continues to receive most attention, primarily as a result of the work of
David Lewis ([1973]). Lewis has given counterfactual dependence formal
underpinning in possible-world semantics and has equated actual causation
with the transitive closure of counterfactual dependencies. C is classified as a
cause of £ if Cis linked to £ by a chain of events each directly depending on
its predecessor. However, Lewis’s dependence theory has encountered many
difficulties (see Collins, Hall, and Paul [2004]; Hall and Paul [unpublished];
Pearl [2000]; Sosa and Tooley [1993]) for some recent discussion). The prob-
lem is that effects may not always counterfactually depend on their causes,
either directly or indirectly, as the two-fire example illustrates. In addition,
causation is not always transitive, as implied by Lewis’s chain-dependence
account (see Example 4.3).

Here we give a definition of actual causality cast in the language of struc-
tural equations. The basic idea is to extend the basic notion of counterfactual
dependency to allow ‘contingent dependency’. In other words, while effects
may not always counterfactually depend on their causes in the actual situ-
ation, they do depend on them under certain contingencies. In the case of the
two fires, for example, the house burning down does depend on fire 4 under
the contingency that firefighters reach the house any time between the actual
arrival of fire 4 and that of fire B. Under that contingency, if fire 4 had not
been started, the house would not have burned down. The house burning
down also depends on fire 4 under the contingency that fire B was not star-
ted. But this leads to an obvious concern: the house burning down also
depends on fire B under the contingency that fire 4 was not started. We do
not want to consider this latter contingency. Roughly speaking, we want to
allow only contingencies that do not interfere with active causal processes.
Our formal definition of actual causality tries to make this precise.

In Part II of the paper (Halpern and Pearl [2005]), we give a definition of
(causal) explanation using the definition of causality. An explanation adds
information to an agent’s knowledge; very roughly, an explanation of ¢ is
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"a minimal elaboration of events that suffice to cause ¢ even in the face of
uncertainty about the actual situation.

The use of structural equations as a model for causal relationships is
standard in the social sciences and seems to go back to the work of Sewall

Wright in the 1920s (see Goldberger [1972] for a discussion); the particular
framework that we use here is due to Pearl ([1995]) and is further developed
in Galles and Pearl ([1997]); Halpern ([2000]); Pearl ([2000]). Although it is
hard to argue that our definition (or any other definition, for that matter) is
the ‘right’ definition, we show that it deals well with the difficulties that have
plagued other approaches in the past, especially those exemplified by the
rather extensive compendium of Hall and Paul (Junpublished]).

According to our definition, the truth of every claim must be evaluated
relative to a particular model of the world; that is, our definition allows us
to claim only that C causes E in a (particular context in a) particular struc-
tural model. It is possible to construct two closely related structural models
such that C causes E in one and C does not cause E in the other. Among other
things, the modeler must decide which variables (events) to reason about and
which to leave in the background. We view this as a feature of our model, not
a bug. It moves the question of actual causality to the right arena—debating
which of two (or more) models of the world is a better representation of those
aspects of the world that one wishes to capture and reason about. This,
indeed, is the type of debate that goes on in informal (and legal) arguments
all the time.

There has been extensive discussion about causality in the philosophy
literature. To keep this article to manageable length, we spend only minimal
time describing other approaches and comparing ours with them. We refer
the reader to Hall and Paul (Junpublished]); Pearl ([2000]); Sosa and Tooley
([1993]); Spirtes et al. ([1993]) for details and criticism of the probabilistic and
logical approaches to causality in the philosophy literature. (We do try to
point out where our definition does better than perhaps the best-known
approach, due to Lewis [1973, 2000], as well as some other recent
approaches—Hall ([2000]); Paul ([1998]); Yablo ([2002]), in the course of
discussing the examples.)

There has also been work in the AI literature on causality. Perhaps
the closest to this are articles by Pearl and his colleagues that use the
structural-model approach. The definition of causality in this article was
inspired by that in an earlier article by Pearl ([1998]) in which actual causality
is defined in terms of a construction called a causal beam. The definition was
later modified somewhat (see Pearl [2000], ch. 10). The modifications were in
fact largely due to the considerations addressed in this article. The definition
given here is more transparent and handles a number of cases better (see
Example A.3 in the appendix).
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Tian and Pearl ([2000]) give results on estimating (from empirical data)
the probability that C is a mecessary cause of E—that is, the probability
that £ would not have occurred if C had not occurred. Necessary causality
is related to but different from actual causality, as the definitions should

make clear. Other work (e}g., Heckerman and Shachter [1995]) focuses on
when a random variable X is the cause of a random variable Y; by way of
contrast, we focus on when an event such as X = x causes an event such as
Y = y. Considering when a random variable is the cause of another is perhaps
more appropriate as a prospective notion of causality: could X potentially be a
cause of changes in Y. Our notion is more appropriate for a retrospective
-~ notion of causality: given all the information relevant to a given scenario,
was X = x the actual cause of Y = y in that scenario? Many of the subtleties
that arise when dealing with events simply disappear if we look at causality at
the level of random variables. Finally, there is also a great deal of work in Al
on formal action theory (see e.g. Lin [1995]; Sandewall [1994]; Reiter [2001]),
which is concerned with the proper way of incorporating causal relationships
into a knowledge base so as to guide actions. The focus of our work is quite
different; we are concerned with extracting the actual causality relation from
such a knowledge base, coupled with a specific scenario.

The best ways to judge the adequacy of an approach are the intuitive
appeal of the definitions and how well it deals with examples; we believe
that this article shows that our approach fares well on both counts.

The remainder of the article is organized as follows. In the next section,
we review structural models. In Section 3 we give a preliminary definition
of actual causality and show in Section 4 how it deals with some examples
of causality that have been problematic for other accounts. We refine the
definition slightly in Section 5 and show how the refinement handles further
examples. We conclude in Section 6 with some discussion.

2 Causal models: a review

In this section we review the basic definitions of causal models, as defined in
terms of structural equations, and the syntax and semantics of a language for
reasoning about causality. We also briefly compare our approach with the
more standard approaches to modeling causality used in the literature.

2.1 Causal models

The description of causal models given here is taken from Halpern ([2000]);
the reader is referred to Galles and Pearl ([1997]); Halpern ([2000]); Pearl
(J2000]) for more details, motivation, and intuition.

The basic picture here is that we are interested in the values of random
variables. If X is a random variable, a typical event has the form X = x.
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(In terms of possible worlds, this just represents the set of possible worlds
where X takes on value x, although the model does not describe the set of
possible worlds.) Some random variables may have a causal influence on
__others. This influence is modeled by a set of structural equations. Each equa-

tion represents a distinct mechanism (or law) in the world, one that may be
modified (by external actions) without altering the others. In practice, it
seems useful to split the random variables into two sets, the exogenous vari-
ables, whose values are determined by factors outside the model, and the
endogenous variables, whose values are ultimately determined by the exogen-
ous variables. It is these endogenous variables whose values are described by
the structural equations.

Formally, a signature S is a tuple (U4, V, R), where U is a set of exo-
genous variables, V is a set of endogenous variables, and R associates with
every variable Y € U U V a nonempty set R(Y) of possible values for ¥V
(i.e. the set of values over which Y ranges). In most of this article
(except the appendix) we assume that V is finite. A causal model (or
structural model) over signature S is a tuple M = (&, F), where F
associates with each variable X € V a function denoted Fy such that
Fy : (xyeu R(U)) X (Xyey—1x; R(Y)) — R(X). Fy determines the value of
X given the values of all the other variables in ¢/ U V. For example, if
Fx(Y, Z, Uy = Y + U (which we usually write as X = Y + U), then if
Y =3 and U = 2, then X = 5, regardless of how Z is set. These equations
can be thought of as representing processes (or mechanisms) by which values
are assigned to variables. Hence, like physical laws, they support a counter-
factual interpretation. For example, the equation above claims that in the
context U = u, if ¥ were 4, then X would be u + 4 (which we write as
(M, w)E[Y « 4)(X = u + 4)), regardless of what values X, Y, and Z actually
take in the real world.

The function F defines a set of (modifiable) structural equations relating
the values of the variables. Because Fy is a function, there is a unique value of
X once we have set all the other variables. Notice that we have such functions
only for the endogenous variables. The exogenous variables are taken as
given; it is their effect on the endogenous variables (and the effect of the
endogenous variables on each other) that we are modeling with the structural
equations.

The counterfactual interpretation and the causal asymmetry associated
with the structural equations are best seen when we consider external inter-
ventions (or spontaneous changes) under which some equations in F are
modified. An equation such as x = Fy (i, y) should be thought of as saying
that in a context where the exogenous variables have values i, if Y were setto y
by some means (not specified in the model), then X would take on the value x,
as dictated by Fy. The same does not hold when we intervene directly on X
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such an intervention amounts to assigning a value to X by external means,
thus overruling the assignment specified by Fy. In this case, Y is no longer
committed to tracking X according to Fy. Variables on the left-hand side of
equations are treated differently from ones on the right-hand side.

For those more comfortable with thinking of counterfactuals in terms of
possible worlds, this modification of equations may be given a simple ‘closest
world’ interpretation: the solution of the equations obtained by replacing the
equation for Y with the equation Y = y, while leaving all other equations
unaltered, gives the closest ‘world’ to the actual world where ¥ = y. In this
possible-world interpretation, the asymmetry embodied in the model says
- that if X = x-in the closest world to-w where Y =y, it does not follow that
Y = y in the closest worlds to w where X = x. In terms of structural equations,
this just says that if X = x is the solution for X under the intervention ¥ = y,
it does not follow that ¥ = y is the solution for Y under the intervention
X = x. Each of two interventions modifies the system of equations in a dis-
tinct way; the former modifies the equation in which Y stands on the left,
whereas the latter modifies the equation in which X stands on the left.

In summary, the equals sign in a structural equation differs from algebraic
equality; in addition to describing an equality relationship between variables,
it acts as an assignment statement in programming languages, since it speci-
fies the way variables’ values are determined. This should become clearer in
our examples.

Example 2.1 Suppose that we want to reason about a forest fire that could be
caused by either lightning or a match lit by an arsonist. Then the causal
model would have the following endogenous variables (and perhaps others):

e F for fire (F = 1 if there is one, F = 0 otherwise);
e L for lightning (L = 1 if lightning occurred, L = 0 otherwise);
e ML for match lit (ML = 1 if the match was lit, ML = 0 otherwise).

The set U of exogenous variables includes conditions that suffice to render all
relationships deterministic (whether the wood is dry, whether there is enough
oxygen In the air for the match to light, etc.). Suppose that i is a setting of the
exogenous variables that makes a forest fire possible (i.e. the wood is suffi-
ciently dry, there is oxygen in the air, and so on). Then, for example,
Fr(ii, L, ML) is such that F = 1 if either L = 1 or ML = 1. Note that although
the value of F depends on the values of L and ML, the value of L does not
depend on the values of F and ML. O

As we said, a causal model has the resources to determine counterfactual
effects. Given a causal model M = (S, F), a (possibly empty) vector X of
variables in V), and vectors ¥ and # of values for the variables in X and U,
respectively, we can define a new causal model denoted My, . over the
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signature Sy = U,V — X’,Rb_})f My, is called a submodel of M by
Pearl ([2000]). Intuitively, this is the causal model that results when the
variables in X are set to ¥ by by some external action that affects only the
variables in .X; we do not model the action or its causes explicitly. Formally,

Mz =Sz, F x %), where F 5 “* is obtained from Fy by setting the
values of the variables in X to ¥. For example, if M is the structural model
describing Example 2.1, then the model M. o has the equation F' = ML.
The equation for F in M;._o no longer involves L; rather, it is determined
by setting L to 0 in the equation for F in M. Moreover, there is no equation
for L in My .

It may seem strange that we are trying to understand causality using causal
models, which clearly already encode causal relationships. Our reasoning is
not circular. Our aim is not to reduce causation to noncausal concepts but to
interpret questions about causes of specific events in fully specified scenarios
in terms of generic causal knowledge such as what we obtain from the
equations of physics. The causal models encode background knowledge
about the tendency of certain event types to cause other event types (such
as the fact that lightning can cause forest fires). We use the models to deter-
mine the causes of single (or token) events, such as whether it was arson that
caused the fire of 10 June 2000, given what is known or assumed about that
particular fire.

Notice that, in general, there may not be a unique vector of values that
simultaneously satisfies the equations in My _.; indeed, there may not be a
solution at all. For simplicity in this article, we restrict attention to what are
called recursive (or acyclic) equations. This is the special case where there is
some total ordering < of the variables in V such that if X < Y, then Fy
is independent of the value of ¥; that is, Fy(..., y, ...) = Fy(..., V,...)
for all y, y € R(Y). Intuitively, if a theory is recursive, there is no feedback.
If X < Y, then the value of X may affect the value of Y, but the value of Y has
no effect on the value of X. We do not lose much generality by restricting
ourselves to recursive models (i.e. ones whose equations are recursive). As
suggested in the latter half of Example 4.2, it 1s always possible to timestamp
events to impose an ordering on variables and thus construct a recursive
model corresponding to a story. In any case, in the appendix we sketch the
necessary modifications of our definitions to deal with nonrecursive models.

It should be clear that if M is a recursive causal model, then there is always
a unique solution to the equations in My_ ., given a setting # for the variables
in U (we call such a setting i a context). We simply solve for the variables in

the order given by <.

! We are implicitly identifying the vector X with the subset of V consisting of the variables in X .

R|,_yz is the restriction of R to the variables in V — X.
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Figure 1. A simple causal network.

We can describe (some salient features of) a causal model M using a causal
network. This is a graph with nodes corresponding to the random variables
in ¥V and an edge from a node labeled X to one labeled Y if Fy depends on

the value of X. This graph is a dag—a directed, acyclic graph (i.e. a graph
with no cycle of directed edges). The acyclicity follows from the assumption
that the equations are recursive. Intuitively, variables can have a causal effect
only on their descendants in the causal network; if Y is not a descendant of X,
then a change in the value of X has no effect on the value of Y. For example,
the causal network for Example 2.1 has the form of Figure 1. We remark that
we occasionally omit the exogenous variables U from the causal network.

These causal networks, which are similar in spirit to the Bayesian networks
used to represent and reason about dependences in probability distributions
(Pearl [1988]), will play a significant role in our definitions. They are quite
similar in spirit to Lewis’s ([1973]) neuron diagrams, but there are significant
differences as well. Roughly speaking, neuron diagrams display explicitly the
functional relationships (among variables in V) for each specific context .
The class of functions represented by neuron diagrams is limited to those
described by ‘stimulatory’ and ‘inhibitory’ binary inputs. Causal networks
represent arbitrary functional relationships, although the exact nature of
the functions is specified in the structural equations and is not encoded in
the diagram. The structural equations carry all the information we need to
do causal reasoning, including all the information about belief, causation,
intervention, and counterfactual behavior.

As we shall see, there are many nontrivial decisions to be made when
choosing the structural model. One significant decision is the set of variables
used. As we shall see, the events that can be causes and those that can be
caused are expressed in terms of these variables, as are all the intermediate
events. By way of contrast, in the philosophy literature, these events can be
created on the fly, as it were. We return to this point in our examples.

Once the set of variables is chosen, it must be decided which are exogenous
and which are endogenous. The exogenous variables to some extent encode
the background situation, which we wish to take for granted. Other implicit
background assumptions are encoded in the structural equations themselves.
Suppose that we are trying to decide whether a lightning bolt or a match was
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the cause of the forest fire, and we want to take for granted that there is
sufficient oxygen in the air and the wood is dry. We could model the dryness
of the wood by an exogenous variable D with values 0 (the wood is wet) and 1
(the wood is dry).? By making D exogenous, its value is assumed to be given

and out of the control of the modeler. We could also take the amount of
oxygen as an exogenous variable (e.g. there could be a variable O with two
values—O for insufficient oxygen, and 1 for sufficient oxygen); alternatively,
we could choose not to model oxygen explicitly at all. For example, suppose
we have, as before, a random variable ML for match lit and another variable
WB for wood burning, with values 0 (it is not) and 1 (it is). The structural
_equation Fyp would describe the dependence of WB on D and ML. By
setting Fyy(1,1) = 1, we are saying that the wood will burn if the match is
lit and the wood is dry. Thus, the equation is implicitly modeling our
assumption that there is sufficient oxygen for the wood to burn.

We remark that according to the definition in Section 3, only endogenous
variables can be causes or be caused. Thus, if no variables encode the pres-
ence of oxygen, or if it is encoded only in an exogenous variable, then oxygen
cannot be a cause of the wood burning. If we were to explicitly model the
amount of oxygen in the air (which certainly might be relevant if we were
analyzing fires on Mount Everest), then Fy 5 would also take values of O as
an argument, and the presence of sufficient oxygen might well be a cause of
the wood burning.?

Besides encoding some of our implicit assumptions, the structural equa-
tions can be viewed as encoding the causal mechanisms at work. Changing
the underlying causal mechanism can affect what counts as a cause. Section 4
provides several examples of the importance of the choice of random vari-
ables and the choice of causal mechanism. It is not always straightforward to
decide what the ‘right’ causal model is in a given situation, nor is it always
obvious which of two causal models is ‘better’ in some sense. These may be
difficult decisions and often lie at the heart of determining actual causality in
the real world. Nevertheless, we believe that the tools we provide here should
help in making principled decisions about those choices.

2.2 Syntax and semantics

To make the definition of actual causality precise, it is helpful to have a logic
with a formal syntax. Given a signature S = (U, V, R), a formula of the form

2 Of course, in practice, we may want to allow D to have more values, indicating the degree of

dryness of the wood, but that level of complexity is unnecessary for the points we are trying to
make here.

If there are other variables in the model, these would be arguments to Fyp as well; we have
ignored other variables here just to make our point.
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X = x, for X € Vand x € R(X), is called a primitive event. A basic causal
Sformula (over S) is one of the form [Y; «— yy,..., Y « yile, where ¢ is a
Boolean combination of primitive events, Yi,..., Y, are distinct variables
in V, and y; € R(Yy).

Such a formula is abbreviated as [Y«j]¢. The special case where k = 0
is abbreviated as ¢. Intuitively, [Y7 < y1,..., Yr < yile says that ¢ holds
in the counterfactual world that would arise if ¥; were set to y;, i =1,...,k.
A causal formula is a Boolean combination of basic causal formulas.*

A causal formula ¢ is true or false in a causal model, given a context.
We write (M,#) E ¢ if ¢ is true in causal model M given context .’
(M, i) E [Y — FYX = x) if the variable X has value x in the unique (since

we are dealing with recursive models) solution to the equations in My _; in
context # (i.e. the unique vector of values for the exogenous variables that
simultaneously satisfies all equations F. ZY J, Z eV - 7, with the variables
in U set to @). (M,#) E [Y «— ¥]p for an arbitrary Boolean combination ¢ of
formulas of the form X = % is defined similarly. We extend the definition
to arbitrary causal formulas, that is, Boolean combinations of basic causal
formulas, in the obvious way.

Note that the structural equations are deterministic. We can make sense
out of probabilistic counterfactual statements, even conditional ones (the
probability that X would be 3 if Y7 were 2, given that Y is in fact 1) in this
framework (see Balke and Pearl [1994]), by putting a probability on the set of
possible contexts. This will not be necessary for our discussion of causality,
although it will play a more significant role in the discussion of explanation.

3 The definition of cause

With all this notation in hand, we can now give a preliminary version of the
definition of actual cause (‘cause’ for short). We want to make sense out of
statements of the form ‘event A is an actual cause of event ¢ (in context #)’.°
As we said earlier, the context is the background information. While this has
been left implicit in some treatments of causality, we find it useful to make it

4 If we write — for conditional implication, then a formula such as [Y « y]¢ can be written as
Y =y — ¢: if Y were y, then ¢ would hold. We use the present notation to emphasize the fact
that although we are viewing ¥ « y as a modal operator, we are not giving semantics using the
standard possible-worlds approach.

> We remark that in Galles and Pearl ([1997]) and Halpern ([2000]), the context # does not
appear on the left-hand side of F; rather, it is incorporated in the formula ¢ on the right-
hand side (so that a basic formula becomes X (i) = x). Additionally, Pearl ([2000]) abbreviated
(M, i) E[Y — FI(X=x)as X, (1) = x. The presentation here makes certain things more explicit,
although they are technically equivalent.

& Note that we are using the word ‘event’ here in the standard sense of ‘set of possible worlds’
(as opposed to ‘transition between states of affairs’); essentially we are identifying events with
propositions.
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explicit. The picture here is that the context (and the structural equations) are
given. Intuitively, they encode the background knowledge. All the relevant
events are known. The only question is picking out which of them are the
causes of ¢ or, alternatively, testing whether a given set of events—can be -
considered the cause of ¢.’

The types of events that we allow as actual causes are ones of the form
X1=x1 A\~ A Xj = xp—that is, conjunctions of primitive events. We typic-
ally abbreviate this as X = X. The events that can be caused are arbitrary
Boolean combinations of primitive events. We might consider generalizing
further to allow disjunctive causes. We do not believe that we lose much by

disallowing disjunctive causes here. Since for causality we are assuming that
the structural model and all the relevant facts are known, the only reasonable
definition of ‘4 or B causes ¢’ seems to be that ‘either A4 causes ¢ or B
causes ¢’. There are no truly disjunctive causes once all the relevant facts
are known.®

Definition 3.1 (Actual cause; preliminary version) X = ¥ is an actual cause of
@ in (M, #) if the following three conditions hold:

ACL. (M,#) = (X =X) A ¢. (That is, both X = ¥ and ¢ are true in the
actual world.)

AC2. There exists a partition (Z, W) of V with X € Z and some setting
(X', W) of the variables in (X, W) such that if (M, %) £ Z = z* for
all Z € Z, then both of the following conditions hold:

(a) (M, i) E [X X, We—ii']-¢. In words, changing (X, W) from
(X, W) to (X', W) changes ¢ from true to false.

(b) (M, i) E [X—Z%, W —W,Z'—7*]p for all subsets W' of W and
all subsets Z’ of Z. In words, setting any subset of variables in W
to their values in #’ should have no effect on @, as long as X is
kept at its current value X, even if all the variables in an arbitrary
subset of Z are set to their original values in the context 7.

AC3. X is minimal; no subset of X satisfies conditions AC1 and AC2.
Minimality ensures that only those elements of the conjunction
X = X that are essential for changing ¢ in AC2(a) are considered
part of a cause; inessential elements are pruned. ]

We use both past tense and present tense in our examples (‘was the cause’ versus ‘is the cause’),
with the usage depending on whether the scenario implied by the context i is perceived to have
taken place in the past or to persist through the present.

®  Having said that, see the end of Example 3.2 for further discussion of this issue. Disjunctive
explanations seem more interesting, although we cannot handle them well in our framework;
these are discussed in Part II,
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Although we have labeled this definition ‘preliminary’, it is actually very
close to the final definition. We discuss the final definition in Section 5, after
we have considered a few examples.

The core of this definition lies in AC2. Informally, the variables in Z

should be thought of as describing the ‘active causal process’ from X to ¢
(also called ‘intrinsic process’ by Lewis [1986, Appendix D]).° These are the
variables that mediate between X and ¢. Indeed, we can define an active
causal process from X = X to ¢ as a minimal set Z that satisfies AC2. We
would expect that the variables in an active causal process are all on a path
from a variable in X to a variable in ¢. This is indeed the case. Moreover, it

can easily be shown that the variablesin-an-active causal process all change -
their values when (X, W) is set to (¥, @) as in AC2. Any variable that does
not change in this transition can be moved to W, while retaining its value in
w/—the remaining variables in Z will still satisfy AC2. (See the appendix for a
formal proof.) AC2(a) says that there exists a setting X' of X that changes ¢
to —¢, as long as the variables not involved in the causal process (W) take on
value w. AC2(a) is reminiscent of the traditional counterfactual criterion
of Lewis ([1973]), according to which ¢ would be false if it were not for X
being X. However, AC2(a) is more permissive than the traditional criterion;
it allows the dependence of ¢ on X to be tested under special circumstances in
which the variables W are held constant at some setting it’. This modification
of the traditional criterion was proposed by Pearl ({1998, 2000]) and was
named structural contingency—an alteration of the model M that involves
the breakdown of some mechanisms (possibly emerging from external action)
but no change in the context #. The need to invoke such contingencies will be
made clear in Example 3.2, and it is further supported by the examples of
Hitchcock ([2001]).

AC2(b), which has no obvious analogue in the literature, is an attempt to
counteract the ‘permissiveness’ of AC2(a) with regard to structural contin-
gencies. Essentially, it ensures that X alone suffices to bring about the change
from ¢ to —¢; setting W to W merely eliminates spurious side effects that tend
to mask the action of X. It captures the fact that setting W to W does not
affect the causal process by requiring that changing the values of any subset
of the variables in 7 from # to # has no effect on the value of ¢.!° More-
over, although the values in the variables Z involved in the causal process
may be perturbed by the change, the perturbation has no impact on the value

?  Recently, Lewis ([2000]) has abandoned attempts to define ‘intrinsic process’ formally. Pearl’s
‘causal beam’ (Pearl [2000], p. 318) is a special kind of active causal process, in which AC2(b)
is expected to hold (with Z = z*) for all settings % of ¥, not necessarily the setting #' used in
AC2(a).

19 This version of AC2(b) differs slightly from that in an earlier version of this article (Halpern and
Pearl [2001]). See Section A.2 for more discussion of this issue.
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of ¢. The upshot of this requirement is that we are not at liberty to conduct
the counterfactual test of AC2(a) under an arbitrary alteration of the model.
The alteration considered must not affect the causal process. Clearly, if
the contingencies considered are limited to ‘freezing’ variables at their actual

value (a restriction used by Hitchcock [2001]), so that (M, #) W =W, then
AC2(b) is satisfied automatically. However, as the examples below show,
genuine causation may sometimes be revealed only through a broader class
of counterfactual tests in which variables in W are set to values that differ
from their actual values.

Pearl ([2000]) defines a notion of contributory cause in addition to actual
cause. Roughly speaking, if AC2(a) holds only with W = W/ =+ W, then X=3x
is a contributory cause of ¢; actual causality holds only if W = . Interest-
ingly, in all our examples in Section 4, changing W from w to # has no impact
on the value of the variables in Z. That is, (M, ) E [W—#|(Z = z*) for all
Z € Z. Thus, to check AC2(b) in these examples, it suffices to show that
(M, ) E [X—ZX, W—i']p. We provide an example in the appendix to show
that there are cases where the variables in Z can change value, so the full
strength of AC2(b) is necessary.

We remark that, like the definition here, the causal beam definition
(Pearl [2000]) tests for the existence of counterfactual dependency in an aux-
iliary model of the world, modified by a select set of structural contingencies.
However, whereas the contingencies selected by the beam criterion depend
only on the relationship between a variable and its parents in the causal
diagram, the current definition selects the modifying contingencies based
on the specific cause and effect pair being tested. This refinement permits
our definition to avoid certain pitfalls (see Example A.3) that are associated
with graphical criteria for actual causation. In addition, the causal beam
definition essentially adds another clause to AC2, placing even more stringent
requirements on causality. Specifically, it requires

AC2(c). (M, F[X « % W «— #']e for all settings @’ of W.

AC2(c) says that setting X to ¥ is enough to force ¢ to hold, independent of
the setting of W.!! We say that X = % strongly causes ¢ if AC2(c) holds in
addition to all the other conditions. As we shall see, in many of our examples,
causality and strong causality coincide. In the cases where they do not
coincide, our intuitions suggest that strong causality is too strong a notion.

AC3 is a minimality condition. Heckerman and Shachter ([1995]) have
a similar minimality requirement; Lewis ([2000]) mentions the need for
minimality as well. Interestingly, in all the examples we have considered,
AC3 forces the cause to be a single conjunct of the form X = x. Although

11 Pearl] ([2000]) calls this invariance sustenance.
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it is far from obvious, Eiter and Lukasiewicz ([2002]) and, independently,
Hopkins ([unpublished]) have shown that this is in fact a consequence of
our definition. However, it depends crucially on our assumption that the
set )V of endogenous variables is finite; see the appendix for further discussion

of this issue. As we shall see, it also depends on the fact that we are using
causality rather than strong causality.

How reasonable are these requirements? One issue that some might
find inappropriate is that we allow X = x to be a cause of itself. While we
do not find such trivial causality terribly bothersome, it can be avoided by
requiring that X = ¥ A —¢ be consistent for X = ¥ to be a cause of ¢. More
_significantly, is it appropriate to invoke structural changes in the definition
of actual causation? The following example may help illustrate why we
believe it is.

Example 3.2 Suppose that two arsonists drop lit matches in different parts
of a dry forest, and both cause trees to start burning. Consider two scenarios.
In the first, called the disjunctive scenario, either match by itself suffices
to burn down the whole forest. That is, even if only one match were lit,
the forest would burn down. In the second scenario, called the conjunctive
scenario, both matches are necessary to burn down the forest; if only one
match were lit, the fire would die down before the forest was consumed.
We can describe the essential structure of these two scenarios using a causal
model with four variables:

e an exogenous variable U that determines, among other things, the motiva-
tion and state of mind of the arsonists. For simplicity, assume that R(U) =
{uo0, 10, Uo1, u11}; if U = uy, then the first arsonist intends to start a fire
iff i = 1 and the second arsonist intends to start a fire iff j = 1. In both
scenarios U = uyy;

e endogenous variables ML; and ML,, each either 0 or 1, where ML; = 0 if
arsonist i does not drop the lit match and ML; = 1 if he does, for i = 1,2;

¢ an endogenous variable FB for forest burns down, with values 0 (it does
not) and 1 (it does).

Both scenarios have the same causal network (see Figure 2); they differ only
in the equation for FB. For the disjunctive scenario we have Frg(u, 1, 1) =
Frp(u,0,1) = Frg(u, 1, 0) = 1 and Fpg(u, 0, 0) = 0 (where u € R(U)); for the
conjunctive scenario we have Fpp (1, 1, 1) = 1 and Frg (1, 0, 0) = Frp (4, 1, 0) =
Frp(u, 0, 1) = 0. In general, we expect that the causal model for reasoning
about forest fires would involve many other variables—in particular, vari-
ables for other potential causes of forest fires such lightning and unattended
campfires. Here we focus on that part of the causal model that involves forest
fires started by arsonists. Since for causality we assume that all the relevant
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U
ML, ML,

FB

Figure 2. The causal network for M; and M.

facts are given, we can assume here that it is known that there were no
unattended campfires and there was no lightning, which makes it safe to
ignore that portion of the causal model. Denote by M; and M, the (portion

of the) causal models associated with the disjunctive and conjunctive scen-
arios, respectively. The causal network for the relevant portion of My and M,
is described in Figure 2.

Despite the differences in the underlying models, each of ML; = 1 and
ML, = 1is a cause of FB = | in both scenarios. We present the argument
for ML, = 1 here. To show that ML, = 1 is a cause in M; let Z = {ML,,FB},
so W = {ML,}. It is easy to see that the contingency ML, = 0 satisfies the
two conditions in AC2. AC2(a) is satisfied because, in the absence of
the second arsonist (ML, = 0), the first arsonist is necessary and sufficient
for the fire to occur (FB = 1). AC2(D) is satisfied because, if the first match
is lit (ML, = 1) the contingency ML, = 0 does not prevent the fire from
burning the forest. Thus, ML, = 1 is a cause of FB = 1 in M;. (Note that
we needed to set ML, to 0, contrary to fact, in order to reveal the latent
dependence of FB on ML;. Such a setting constitutes a structural change
in the original model, since it involves the removal of some structural
equations.)

To see that ML; = 1 is also a cause of FB = 1 in M,, again let Z =
{MLy,FB} and W = {ML,}. Since (M>, ) E [ML, < 0, ML, — 1](FB=0),
AC2(a) is satisfied. Moreover, since the value of ML, required for AC2(a) is
the same as its current value (i.e. w = w), AC2(b) is satisfied trivially.

This example also illustrates the need for the minimality condition AC3.
For example, if lighting a match qualifies as the cause of fire, then lighting
a match and sneezing would also pass the tests of ACl and AC2 and awk-
wardly qualify as the cause of fire. Minimality serves here to strip ‘sneezing’
and other irrelevant, overspecific details from the cause.

It might be argued that allowing disjunctive causes would be useful in this
case to distinguish M, from M, as far as causality goes. A purely counter-
factual definition of causality would make ML, =1 Vv ML, = 1 a cause of
FB=1in M, (since, if ML, =1V ML, = 1 were not true, then ¥B = 1 would
not be true) but would make neither ML; = 1 nor ML, = 1 individually a
cause (since, for example, if ML; = 1 were not true in M;, FB = 1 would
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still be true). Clearly, our definition does not enforce this intuition. As is
well known (and as the examples in Section 4 show) purely counter-
factual definitions of causality have other problems. We do not have a
strong intuition as to the best way to deal with disjunction in the context

of causality and believe that disallowing it is reasonably consistent with
intuitions.

This example shows that causality and strong causality do not always coin-
cide. It is not hard to check that ML, and ML, are strong causes of F'B in
both scenarios. However, for ML; to be a strong cause of FB in the conjunct-
ive scenario, we must include ML, in Z (so that W is empty); if ML, is in w,
then AC2(c) fails. Thus, with strong causality, it is no longer the case that we
can take Z to consist only of variables on a path between the cause (ML; = 1
in this case) and the effect (FB = 1).

Moreover, suppose that we change the disjunctive scenario slightly by
allowing either arsonist to have guilty feelings and call the fire department.
If one arsonist calls the fire department, then the forest is saved, no matter
what the other arsonist does. We can model this by allowing ML, and ML, to
have a value of 2 (where ML, = 2 if arsonist i calls the fire department). If
either is 2, then FB = 0. In this situation, it is easy to check that now neither
MLy = 1 nor ML, = 1 by itself is a strong cause of FB = 1 in the disjunctive
scenario. ML, = 1 A ML, = 1 is a cause, but it seems strange that in the
disjunctive scenario, we should need to take both arsonists dropping a lit
match to (strongly) cause the fire, just because we allow for the possibility
that an arsonist can call the fire department. Note that this also shows that,
in general, strong causes are not always single conjuncts. ]

This is a good place to illustrate the need for structural contingencies in the
analysis of actual causation. The reason we consider ML, =1 to be a cause of
FB =1 in M, is that if ML, had been 0, rather than 1, FB would depend on
ML,. In words, we imagine a situation in which the second match is not lit,
and we then reason counterfactually that the forest would not have burned
down if it were not for the first match.

Although ML, = 1 is a cause of FB = 1 in both the disjunctive and con-
junctive scenarios, the models M; and M, differ in regard to explanation, as
we shall see in Part II of this article. In the disjunctive scenario, the lighting of
one of the matches constitutes a reasonable explanation of the forest burning
down; not so in the conjunctive scenario. Intuitively, we feel that if both
matches are needed for establishing a forest fire, then both ML; = 1 and
ML, = 1 together would be required to explain fully the unfortunate fate
of the forest; pointing to just one of these events would only beg another
‘How come?” question and would not stop any serious investigating team
from continuing its search for a more complete answer.
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Finally, we remark on a contrastive extension to the definition of cause.
When seeking a cause of ¢, we are often interested not just in the occurrence
versus nonoccurrence of ¢, but also in the manner in which ¢ occurred, as
opposed to some alternative way in which ¢ could have occurred (Hitchcock

[1996]). We say, for example, ‘X = x caused a fire in June as opposed to a fire
in May.” If we assume that there is only enough wood in the forest for one
forest fire, the two contrasted events, ‘fire in May’ and ‘fire in June’, exclude
but do not complement each other (e.g. neither rules out a fire in April.)
Definition 3.1 can easily be extended to accommodate contrastive causation.
We define ‘x caused ¢, as opposed to ¢’°, where ¢ and ¢ are incompatible but
not exhaustive, by simply replacing —¢ with ¢’ in condition AC2(a) of
the definition.

Contrast can also be applied to the antecedent, as in ‘Susan’s running
rather than walking to music class caused her fall.” There are actually two
interpretations of this statement. The first is that Susan’s running is a cause
of her falling; moreover, had she walked, then she would not have fallen.
The second is that while Susan’s running is a cause of her falling, Susan’s
walking also would have caused her to fall, but she did not in fact walk.
We can capture both interpretations of ‘X = x, rather than X = x' for
some value x' # x, caused ¢ (in context # in structure M)’. The first is
(1) X = x is a cause of ¢ in (M, i) and (2) (M, i) E [X+—X']—¢; the second
is (1') X = x is a cause of ¢ in (M, %) and (2') AC2(b) holds for X = x’ and ¢.
That is, the only reason that X = x’ is not the cause of ¢ is that X = x is not
in fact what happened in the actual world.'* (More generally, we can make
sense of ‘X = x rather than Y = y caused ¢’.) Contrasting both the antecedent
and the consequent components is straightforward and allows us to interpret
sentences of the form: ‘Susan’s running rather than walking to music class
caused her to spend the night in the hospital, as opposed to her boyfriend’s
apartment.’ ’

4 Examples

In this section we show how our definition of actual causality handles some
examples that have caused problems for other definitions.

Example 4.1 The first example is due to Bennett (and appears in Sosa and
Tooley [1993], pp. 222-3). Suppose that there was a heavy rain in April and
electrical storms in the following two months, and in June the lightning took
hold. If it had not been for the heavy rain in April, the forest would have

12 As Christopher Hitchcock [private communication, 2000] has pointed out, one of the roles of
such contrastive statements is to indicate that R(X), the set of possible values of X, should
include x'. The sentence does not make sense without this assumption.
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caught fire in May. The question is whether the April rains caused the forest
fire. According to a naive counterfactual analysis, they do, since if it had not
rained, there would not have been a forest fire in June. Bennett says “That is
~ unacceptable. A good enough story of events and of causation might give us

reason to accept some things that seem intuitively to be false, but no theory
should persuade us that delaying a forest’s burning for a month (or indeed a
minute) is causing a forest fire.’

In our framework, as we now show, it is indeed false to say that the
April rains caused the fire, but they were a cause of there being a fire in
June, as opposed to May. This seems to us intuitively right. To capture the
situation, it suffices to use a simple model with three endogenous random
variables:

e AS for ‘April showers’, with two values—O0 standing for did rof rain heavily
in April and 1 standing for rained heavily in April;

e ES for ‘electric storms’, with four possible values: (0,0) (no electric storms
in either May or June), (1,0) (electric storms in May but not June), (0,1)
(storms in June but not May), and (1,1) (storms in both May and June);

e F for ‘fire’, with three possible values: 0 (no fire at all), 1 (fire in May),
or 2 (fire in June).

We do not describe the context explicitly, either here or in the other examples.
Assume its value i is such that it ensures that there is a shower in April, there
are electric storms in both May and June, there is sufficient oxygen, there are
no other potential causes of fire (such as dropped matches), no other inhib-
itors of fire (alert campers setting up a bucket brigade), and so on. That is, we
choose # so as to allow us to focus on the issue at hand and to ensure that the
right things happened (there was both fire and rain).

We will not bother writing out the details of the structural equations—they
should be obvious, given the story (at least, for the context i); this is also the
case for all the other examples in this section. The causal network is simple:
there are edges from AS to Fand from ES to F. It is easy to check that each of
the following holds.

e AS = 1 is a cause of the June fire (F = 2) (taking W = {ES} and
Z = {AS, F}) but not of fire (F = 2 V F = 1). That is, April showers are
not a cause of the fire, but they are a cause of the June fire.

o £S = (1, 1) is a cause of both F =2 and (F =1 V F = 2). Having electric
storms in both May and June caused there to be a fire.

e AS =1 N ES = (1, 1) is not a cause of F = 2, because it violates the
minimality requirement of AC3; each conjunct alone is a cause of F = 2.
Similarly, AS =1 A ES = (1, 1)is not a cause of (F =1V F = 2). O
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Although we did not describe the context explicitly in Example 4.1, it
still played a crucial role. If we decide that the presence of oxygen is relevant
then we must take this factor out of the context and introduce it as an
explicit endogenous variables. Doing so can affect the causality picture (see

Example 4.3). The next example already shows the importance of choosing an
appropriate granularity in modeling the causal process and its structure.

Example 4.2 The following story from Hall ([2004]) is an example of
preemption, where there are two potential causes of an event, one of which
preempts the other. An adequate definition of causality must deal with
preemption in all of its guises.

Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s
rock gets there first, shattering the bottle. Since both throws are perfectly
accurate, Billy’s would have shattered the bottle had it not been preempted
by Suzy’s throw.

Common sense suggests that Suzy’s throw is the cause of the shattering,
but Billy’s is not. This holds in our framework too, but only if we model
the story appropriately. Consider first a coarse causal model, with three
endogenous variables:

e ST for ‘Suzy throws’, with values 0 (Suzy does not throw) and 1 (she does);
e BT for ‘Billy throws’, with values 0 (he does not) and 1 (he does);

e BS for ‘bottle shatters’, with values 0 (it does not shatter) and 1 (it does).

Again, we have a simple causal network, with edges from both ST and BT to
BS. In this simple causal network, BT and ST play absolutely symmetric
roles, with BS = ST V BT, there is nothing to distinguish BT from ST.
Not surprisingly, both Billy’s throw and Suzy’s throw are classified as causes
of the bottle shattering in this model.

The trouble with this model is that it cannot distinguish the case where
both rocks hit the bottle simultaneously (in which case it would be reasonable
to say that both S7'= 1 and BT =1 are causes of BS = 1) from the case where
Suzy’s rock hits first. The model has to be refined to express this distinction.
One way is to invoke a dynamic model (Pearl [2000, p. 326]); this is discussed
below. A perhaps simpler way to gain expressiveness is to allow BS to be three
valued, with values 0 (the bottle does not shatter), 1 (it shatters as a result of
being hit by Suzy’s rock), and 2 (it shatters as a result of being hit by Billy’s
rock). We leave it to the reader to check that ST = 1 is a cause of BS = 1,
but BT = 1 is not (if Suzy had not thrown but Billy had, then we would have
BS = 2). Thus, to some extent, this solves our problem. But it borders on
cheating; the answer is almost programmed into the model by invoking the
relation ‘as a result of’, which requires the identification of the actual cause.
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—Figure 3. The rock-throwing example.

A more useful choice is to add two new random variables to the model:

e BH for ‘Billy’s rock hits the (intact) bottle’, with values 0 (it does not) and 1
(it does);

e SH for ‘Suzy’s rock hits the bottle’, again with values 0 and 1.

With this addition, we can go back to BS being two valued. In this model,
we have the causal network shown in Figure 3, with the arrow SH — BH
being inhibitory; BH = BT A ~SH (i.e. BH = 1 iff BT =1 and SH = 0). Note
that, to simplify the presentation, we have omitted the exogenous variables
from the causal network in Figure 3; we do so in some of the subsequent
figures as well. In addition, we have given the arrows only for the particular
context of interest, where Suzy throws first. In a context where Billy throws
first, the arrow would go from BH to SH rather than going from SH to BH,
as it does in the figure.

Now it is the case that ST = 1 is a cause of BS = 1. To satisfy AC2, we
choose W = {BT} and w' = 0 and note that because BT is set to 0, BS will
track the setting of ST. Also note that BT = 1 is not a cause of BS = 1; there
is no partition Z U W that satisfies AC2. Attempting the symmetric choice
W = {ST} and w' = 0 would violate AC2(b) (with Z' = {BH}) because ¢
becomes false when we set ST = 0 and restore BH to its current value of 0.

This example illustrates the need for invoking subsets of Z in AC2(b).
(Additional reasons are provided in Example A.3 in the appendix.)
(M,il) B [X — % W — W]e holds if we take Z = {BT,BH} and W =
{ST,SH}, and thus without the requirement that AC2(b) hold for all subsets
of Z, BT = 1 would have qualified as a cause of BS = 1. Insisting that ¢
remains unchanged when both W is set to #/ and Z' is set to z* (for an
arbitrary subset Z' of Z) prevents us from choosing contingencies W that
interfere with the active causal paths from X to ¢.

This example also emphasizes an important moral. If we want to argue in a
case of preemption that X = x is the cause of ¢ rather than ¥ = y, then there
must be a random variable (BH in this case) that takes on different values
depending on whether X = x or ¥ = y is the actual cause. If the model does
not contain such a variable, then it will not be possible to determine which
one is in fact the cause. This is certainly consistent with intuition and the way
we present evidence. If we want to argue (say, in a court of law) that it was
X’s shot that killed C rather than Y’s, then we present evidence such as
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the bullet entering C from the left side (rather than the right side, which is
how it would have entered had Y’s shot been the lethal one). The side from
which the shot entered is the relevant random variable in this case. Note
that the random variable may involve temporal evidence (if Y’s shot had

been the lethal one, the death would have occurred a few seconds later),
but it certainly does not have to. This is indeed the rationale for Lewis’s
([1973]) criterion of causation in terms of a counterfactual-dependence
chain. We shall see, however, that our definition goes beyond this criterion.

It may be argued, of course, that by introducing the intermediate variables
SH and BH in Hall’s story, we have also programmed the desired answer
-~ into the problem; after all,-it-is-the shattering of the bottle, not SH, which
prevents BH. Pearl ([2000, section 10.3.5]) analyzes a similar late-preemption
problem in a dynamic structural equation model, where variables are time
indexed, and shows that the selection of the first action as an actual cause of
the effect follows from conditions (similar to) AC1-AC3 even without speci-
fying the owner of the hitting rock. We now present a simplified adaptation
of this analysis.

Let ¢, 15, and 73 stand, respectively, for the time that Suzy threw her rock,
the time that Billy threw his rock, and the time that the bottle was found
shattered. Let H; and BS; be variables indicating whether the bottle is hit (H))
and was shattered (BS;) at time #; (where i = 1, 2, 3 and #; < 1, < t3), with
values 1 if hit (respectively, shattered), 0 if not. Roughly speaking, if we let T;
be a variable representing ‘someone throws the rock at time ¢ and take BS
to be vacuously false (i.e. always 0), then we would expect the following time-
invariant equations to hold for all times ¢; (not just ¢, £, and #3):

H,' - Ti A “LBS,'_l
BS;, = BS;_1 V H,.

That is, the bottle is hit at time ¢, if someone throws the rock at time ¢; and the
bottle was not already shattered at time #;. Similarly, the bottle is shattered at
time ¢; either if it was already shattered at time #;_; or it was hit at time ¢,

Since in this case we consider only times ¢y, ¢5, and ¢5;, we get the following
structural equations, where we have left in the variable 75 to bring out the
essential invariance:

Hy =8T

BS, = H;

H, = BT N —BS,
BS, = BS;V Hy
H; = T3 A —BS,

BS3 = BS, V Hs.
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Figure 4. Time-invariant rock throwing.

The diagram associated with this model is shown in Figure 4. In addition to
these generic equations, the story also specifies that the context is such that

ST=1,BT =1,T; =0.

The causal network in Figure 4 describes the situation.

It is not hard to show that ST = 1 is a cause of BS; = 1 (taking W = {BT'}
in AC2 and w = 0). BT = 1 is not a cause of BS3 = 1; it fails AC2(b) for every
partition Z U W. To see this, note that to establish counterfactual dependence
between BS3 and BT, we must assign H, to Z, assign BS; to W, and impose
the contingency BS; = 0. But this contingency violates condition AC2(b),
since it results in BS; = 0 when we restore H, to 0 (its current value).

Two features are worth emphasizing in this example. First, Suzy’s throw is
declared a cause of the outcome event BS; = 1 even though her throw did not
hasten, delay, or change any property of that outcome. This can be made
clearer by considering another outcome event, J, = ‘Joe was unable to drink
his favorite chocolate cocktail from that bottle on Tuesday night’. Being a
consequence of BS3, J, will also be classified as having been caused by Suzy’s
throw, not by Billy’s, although J4; would have occurred at precisely the same
time and in the same manner had Suzy not thrown the rock. This implies that
hastening or delaying the outcome cannot be taken as the basic principle for
deciding actual causation, a principle advocated by Paul ([1998]).

Second, Suzy’s throw is declared a cause of BS3 = 1 even though there is no
counterfactual dependence chain between the two (i.e. a chain 4; — 4, — - -
— Ay where each event is counterfactually dependent on its predecessor).
The existence of such a chain was proposed by Lewis ([1973]) as a necessary
criterion for causation in cases involving preemption.'® In the actual context,
BS, doesnot depend (counterfactually) on either BS| or on Hy; the bottle would
be shattered at time ¢, even if it were unshattered at time ¢; (since Billy’s rock
would have hit it), as well as if it were hit (miraculously) at time 7,. O

3 Lewis ([1986, Appendix D]) later amended this criterion to deal with problematic cases similar

to that presented here.
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Example 4.3 Can not performing an action be (part of) a cause? Consider
the following story, again taken from (an early version of) Hall ([2004]):

Billy, having stayed out in the cold too long throwing rocks, contracts
~a serious but nonfatal disease. He is hospitalized and treated on Monday, —
so is fine Tuesday morning.

But now suppose the doctor does not treat Billy on Monday. Is the doctor’s
omission to treat Billy a cause of Billy’s being sick on Tuesday? It seems that
it should be, and indeed it is according to our analysis. Suppose that # is the
context where, among other things, Billy is sick on Monday and the situation
is-such that the doctor forgets to administer the medication Monday. (There
is much more to the context #, as we shall shortly see.) It seems reasonable
that the model should have two random variables:

e MT for ‘Monday treatment’, with values 0 (the doctor does not treat Billy
on Monday) and 1 (he does);

e BMC for ‘Billy’s medical condition’, with values 0 (recovered) and
I (still sick).

Sure enough, in the obvious causal model, MT = 0 is a cause of BMC = 1.
This may seem somewhat disconcerting at first. Suppose there are 100
doctors in the hospital. Although only one of them was assigned to Billy (and
he forgot to give medication), in principle, any of the other 99 doctors could
have given Billy his medication. Is the fact that they did not give him the
medication also part of the cause of him still being sick on Tuesday?

In the particular model that we have constructed, the other doctors’ failure
to give Billy his medication is not a cause, since we have no random variables
to model the other doctors’ actions, just as we had no random variable in
Example 4.1 to model the presence of oxygen. Their lack of action is part of
the context. We factor it out because (quite reasonably) we want to focus on
the actions of Billy’s doctor. If we had included endogenous random variables
corresponding to the other doctors, then they too would be causes of Billy’s
being sick on Tuesday.

With this background, we continue with Hall’s modification of the original
story.

Suppose that Monday’s doctor is reliable, and administers the medicine
first thing in the morning, so that Billy is fully recovered by Tuesday after-
noon. Tuesday’s doctor is also reliable and would have treated Billy if
Monday’s doctor had failed to ... And let us add a twist: one dose of
medication is harmless, but two doses are lethal.

Is the fact that Tuesday’s doctor did not treat Billy the cause of him being
alive (and recovered) on Wednesday morning?
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MT — TT

NS

BMC

Figure 5. Billy’s medical condition.

The causal model for this story is straightforward. There are three random
variables: MT for Monday’s treatment (1 if Billy was treated Monday,
0 otherwise), TT for Tuesday’s treatment (1 if Billy was treated Tuesday,
0 otherwise), and BMC for Billy’s medical condition (0 if Billy is fine both
Tuesday morning and Wednesday morning; 1 if Billy is sick Tuesday morn-

ing, fine Wednesday morning; 2 if Billy is sick both Tuesday and Wednesday
morning; 3 if Billy is fine Tuesday morning and dead Wednesday morning).
We can then describe Billy’s condition as a function of the four possible
combinations of treatment/nontreatment on Monday and Tuesday.

In the causal network corresponding to this causal model, shown in
Figure 5, there is an edge from MT to T7, since whether the Tuesday treat-
ment occurs depends on whether the Monday treatment occurs, and edges
from both MT and TT to BMC, since Billy’s medical condition depends on
both treatments.

In this causal model, it is true that MT = 1 is a cause of BMC = 0, as we
would expect—because Billy is treated Monday, he is not treated on Tuesday
morning, and thus recovers Wednesday morning. MT = 1 is also a cause
of TT = 0, as we would expect, and 77 = 0 is a cause of Billy’s being alive
(BMC =0V BMC =1V BMC = 2). However, MT = 1 is not a cause of
Billy’s being alive. It fails condition AC2(a): setting MT = O still leads to
Billy’s being alive (with W = (). Note that it would not help to take
W = {TT}. For if TT = 0, then Billy is alive no matter what M7 is, while
if TT = 1, then Billy is dead when MT has its original value, so AC2(b) is
violated (with Z' = 0).

This shows that causality is not transitive, according to our def-
initions. Although MT = 1 is a cause of 77 = 0 and 77 = 0 is a cause of
BMC =0V BMC=1V BMC =2, MT =1 is not a cause of BMC =0V
BMC =1V BMC = 2. Nor is causality closed under right weakening: MT = 1
is a cause of BMC = 0, which logically implies BMC =0 V BMC =1V
BMC = 2, which is not caused by MT = 1.4

14 1 ewis ([2000]) implicitly assumes right weakening in his defense of transitivity. For example, he
says ‘it is because of Black’s move that Red’s victory is caused one way rather than another.
That means, I submit, that in each of these cases, Black’s move did indeed cause Red’s victory.
Transitivity succeeds.” But there is a critical (and, to us, unjustifiable) leap in this reasoning. As
we already saw in Example 4.1, the fact that April rains cause a fire in June does not mean that
they cause the fire.
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Hall ([2000, 2004]) discusses the issue of transitivity of causality and
suggests that there is a tension between the desideratum that causality be
transitive and the desideratum that we allow causality as a result of the failure
of some event to occur. He goes on to suggest that there are actually two

concepts of causation: one corresponding to counterfactual dependence and
the other corresponding to ‘production’, whereby A causes B if A helped
to produce B. Causation by production is transitive; causation by dependence
is not.
Our definition certainly has some features of both counterfactual depend-
ence and of production—AC2(a) captures some of the intuition of counter-
_factual dependence (if 4 had not happened then B would not have happened

if W = #) and AC2(b) captures some of the features of production (4 forced
B to happen, even if W = ). Nevertheless, we do not require two separate
notions to deal with these concerns.

Moreover, whereas Hall attributes the failure of transitivity to a distinction
between presence and absence of events, according to our definition the
requirement of transitivity causes problems whether or not we allow causality
as a result of the failure of some event to occur. It is easy enough to construct
a story whose causal model has precisely the same formal structure as
that above, except that 77 = 0 now means that the treatment was given
and TT = 1 means it was not (Billy starts a course of treatment on Monday
which, if discontinued once started, is fatal ...). Again, we do not get trans-
itivity, but now it is because an event occurred (the treatment was given) not
because it failed to occur.

Lewis ([1986, 2000]) insists that causality is transitive, partly to be able
to deal with preemption (Lewis [1986]). As Hitchcock ([2001]) points out,
our account handles the standard examples of preemption without needing
to invoke transitivity, which, as Lewis’s own examples show, leads to
counterintuitive conclusions. ]

Example 4.4 This example considers the problem of what Hall calls double
prevention. Again, the story is taken from Hall ([2004]):

Suzy and Billy have grown up, just in time to get involved in World War III.
Suzy is piloting a bomber on a mission to blow up an enemy target, and
Billy is piloting a fighter as her lone escort. Along comes an enemy fighter
plane, piloted by Enemy. Sharp-eyed Billy spots Enemy, zooms in, pulls the
trigger, and Enemy’s plane goes down in flames. Suzy’s mission is undis-
turbed, and the bombing takes place as planned.

Does Billy deserve part of the cause for the success of the mission? After all,
if he hadn’t pulled the trigger, Enemy would have eluded him and shot down
Suzy. Intuitively, it seems that the answer is yes, and the obvious causal
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model gives us this. Suppose we have the following random variables:
e BPT for ‘Billy pulls trigger’, with values O (he does not) and 1 (he does);
e LE for ‘Enemy eludes Billy’, with values 0 (he does not) and 1 (he does);

e LSS for ‘Enemy shoots Suzy’,“wi'th values 0 (he does not) and 1 (he does);
e SST for ‘Suzy shoots target’, with values 0 (she does not) and 1 (she does);
e T'D for ‘target destroyed’, with values 0 (it is not) and 1 (it is).

The causal network corresponding to this model 1s just

BPT — LE — LSS — SST — TD.

In this model, BPT =1 is a cause of TD = 1. Of course, SST = 1 is a cause
of TD =1 as well. It may be somewhat disconcerting to observe that BPT = |
is also a cause of SST = 1. It seems strange to think of Billy being a cause of
Suzy doing something she was planning to do all along. Part of the problem is
that according to our definition (and all other definitions of causality that we
are aware of), if 4 enables B, then A is a cause of B. Arguably another part of
the problem with BPT = 1 being a cause of SST =1 and 7D =1 is that it
seems to leave Suzy out of the picture altogether. We can bring Suzy more
into the picture by having a random variable corresponding to Suzy’s plan or
intention. Suppose that we add a random variable SPS for ‘Suzy plans to
shoot the target’, with values 0 (she does not) and 1 (she does). Assuming that
Suzy shoots if she plans to, we then get the causal network shown in Figure 6,
where now SST depends on both LSS and SPS. In this case, it is easy to
check that each of BPT = 1 and SPS = 1 is a cause of 7D = 1.

Hall suggests that further complications arise if we add a second fighter
plane escorting Suzy, piloted by Hillary. Billy still shoots down Enemy, but
if he had not, Hillary would have. The natural way of dealing with this is
to add just one more variable, HPT, representing Hillary’s pulling the trigger
iff LE = 1 (see Figure 7), but then, using the naive counterfactual criterion,

SPS

BPT — LE —% LSS — S§T —* 1D

Figure 6. Blowing up the target.

HPT SPS

NN

BPT — LE — LSS — SST — 1D

Figure 7. Blowing up the target (refined version).
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one might conclude that the target will be destroyed (7D = 1) regardless of
Billy’s action, and BPT = 1 would lose its ‘actual cause’ status (of 7D = 1).
Fortunately, our definition goes beyond this naive criterion and classifies
BPT =1 as a cause of TD = 1, as expected. ThlS can be seen by noting

that the partition 7= {BPT,LE,LSS,SST, TD}, W ={HPT,SPS} satis-
fies conditions AC1-AC3 (with w' such that HPT = 0 and SPS = 1). The
intuition rests, again, on structural contingencies; although Billy’s action
seems superfluous under ideal conditions, it becomes essential under a
contingency in which Hillary would fail in her mission to shoot Enemy.
This contingency is represented by setting HPT to 0 (in testing AC2(a)),
irrespective of LE. - O

5 A more refined definition

We labeled our definition ‘preliminary’, suggesting that there are some
situations it cannot deal with. The following example illustrates the problem.

Example 5.1 Consider Example 4.2, where both Suzy and Billy throw a rock
at a bottle, but Suzy’s hits first. Now suppose that there is a noise which causes
Suzy to delay her throw slightly, but that she still throws before Billy. Suppose
that we model this situation using the approach described in Figure 4, adding
three extra variables, N (where N = 0 if there is no noise and N = 1 if there is
a noise), H, s (which is 1 if the bottle is hit at time #; 5, where #; < #;.5 < t,, and
0 otherwise) and BS; s (which is 1 if the bottle is shattered at time #; s and
0 otherwise). In the actual situation, there is a noise and the bottle shatters at
t15,50 N=1, Hi 5 =1, and BS;5 = 1. Just as in Example 4.2, we can show
that Suzy’s throw is a cause of the bottle shattering and Billy’s throw is not.
Not surprisingly, N = 1 is a cause of BS;s = 1 (without the noise, the bottle
would have shattered at time 1). Somewhat disconcertingly though, N =1 is
also a cause of the bottle shattering. That is, N = 1 is a cause of BS3 = 1.
This seems unreasonable. Intuitively, the bottle would have shattered
whether or not there had been a noise. However, this intuition is actually
not correct in our causal model. Consider the contingency where Suzy’s
throw hits the bottle. If N = 1 and BS; = 0, then the bottle does shatter at
t; 5. Given this, it easily follows that according to our definition, N =11is a
cause of BS; = 1.I° O

The problem here is caused by what might be considered an extremely
unreasonable scenario: if N = 1 and BS; = 0, the bottle does not shatter
despite being hit by Suzy’s rock. Do we want to consider such scenarios?
That is up to the modeler. Intuitively, if we allow such scenarios, then the
noise ought to be a cause; if not, then it should not.

15 We thank Chris Hitchcock for bringing this example to our attention.



870 Joseph Y. Halpern and Judea Pearl

It is easy to modify our preliminary definition so as to be able to capture
this intuition. We take an extended causal model to now be a tuple (S, F, &),
where (S, F) i1s a causal model, and & is a set of allowable settings for the
endogenous variables. That is, if the endogenous variables are X3,..., X,

then (xy,...,x,) € £if X] = xy,..., X, = x,, is an allowable setting. We say
that a setting of a subset of the endogenous variables is allowable if it can be
extended to a setting in £. We then slightly modify clauses AC2(a) and (b) in
the definition of causality to restrict to allowable settings. In the special case
where & consists of all settings, this definition reduces to the definition we
gave in Section 3. We can deal with Example 5.1 in extended causal models by
disallowing settings where BS; = 0 A H; = 1. This essentially puts us back in
the original setting. The following example further illustrates the need to be
able to deal with ‘unreasonable’ settings.

Example 5.2 Fred has his finger severed by a machine at the factory (FS = 1).
Fortunately, Fred is covered by a health plan. He is rushed to the hospital,
where his finger is sewn back on. A month later, the finger is fully functional
(FF = 1). In this story, we would not want to say that FS = 1 is a cause of
FF = 1 and, indeed, according to our definition, it is not, since FF = 1
whether or not FS = 1 (in all contingencies satisfying AC2(b)).

However, suppose we introduce a new element to the story, representing a
nonactual structural contingency: Larry the Loanshark may be waiting out-
side the factory with the intention of cutting off Fred’s finger as a warning to
him to repay his loan quickly. Let LL represent whether or not Larry is
waiting and let LC represent whether Larry cuts off Fred’s finger. If Larry
cuts off Fred’s finger, he will throw it away, so Fred will not be able to get it
sewn back on. In the actual situation, LL = LC = 0; Larry is not waiting and
Larry does not cut off Fred’s finger. So, intuitively, there seems to be no harm
in adding this fanciful element to the story. Or is there? Suppose that if Fred’s
finger is cut off in the factory, then Larry will not be able to cut off the finger
himself (since Fred will be rushed off to the hospital). Now F'S = 1 becomes a
cause of FF = 1. For in the structural contingency where LL = 1, if FS = 0
then FF = 0 (Larry will cut off Fred’s finger and throw it away, so it will
not become functional again). Moreover, if F'S = 1, then LC = 0 and FF = 1,
just as in the actual situation.'®

If we really want to view Larry’s cutting off Fred’s finger as totally fanciful,
then we simply disallow all settings where LL = 1. On the other hand,
if having fingers cut off in a way that they cannot be put on again is rather

16 We thank Eric Hiddleston for bringing this example to our attention. The example is actually a
variant of one originally due to Kvart ([1991)), although Kvart’s example did not include Larry
the Loanshark and was intended to show a violation of transitivity.
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commonplace, then it seems more reasonable to view the accident as a cause
of Fred’s finger being functional a month after the accident. O

In extended models, it is also straightforward to deal with problems of
causation by omission.

Example 5.3 Hall and Paul (Junpublished]) give an example due to Sarah
McGrath suggesting that there may be a difference between causation by
omission and causation by commission:

Suppose Suzy goes away on vacation, leaving her favorite plant in the
hands of Billy, who has promised to water it. Billy fails to do so. The
plant dies—but would not have, had Billy watered it. ... Billy’s failure to
water the plant caused its death. But Vladimir Putin also failed to water
Suzy’s plant. And, had he done so, it would not have died. Why do we also
not count his omission as a cause of the plant’s death?

Billy is clearly a cause in the obvious structural model. So is Vladimir Putin,
if we do not disallow any settings and include Putin watering the plant as
one of the endogenous variables. However, if we simply disallow the setting
where Vladimir Putin waters the plant, then Billy’s failure to water the plants
is a cause, and Putin’s failure is not. We could equally well get this result by
not taking Putin’s watering the plant as one of the endogenous variables in
the model. (Indeed, we suspect that most people modeling the problem would
not include this as a random variable.)

Are we giving ourselves too much flexibility here? We believe not. It is up
to a modeler to defend her choice of model. A model which does not allow us
to consider Putin watering the plant can be defended in the obvious way: that
it is a scenario too ridiculous to consider. On the other hand, if Suzy’s sister
Maggie (who has a key to the house) also came by to check up on things, then
it does not seem so unreasonable for Suzy to get slightly annoyed at Maggie
for not watering the plant, even if she was not supposed to be the one
responsible for it. Intuitively, it seems reasonable not to disallow the setting
where Maggie waters the plant. ]

Considering only allowable settings plays a more significant role in our
framework than just that of allowing us to ignore fanciful scenarios. As the
following example shows, it helps clarify the relationship between various
models of a story.

Example 5.4 This example concerns what Hall calls the distinction between
causation and determination. Again, we quote Hall ([2000]):

The engineer is standing by a switch in the railroad tracks. A train
approaches in the distance. She flips the switch, so that the train travels
down the right-hand track instead of the left. Since the tracks reconverge
up ahead, the train arrives at its destination all the same ...
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Again, our causal model gets this right. Suppose we have three random
variables:

e F' for ‘flip’, with values 0 (the engineer does not flip the switch) and
1 (she does);

e T for ‘track’, with values 0 (the train goes on the left-hand track) and
1 (it goes on the right-hand track);

e 4 for ‘arrival’, with values 0 (the train does not arrive at the point of
reconvergence) and 1 (it does).

Now, it is easy to see that flipping the switch (F = 1) causes the train to go
down the left-hand track (7" = 0), but does not cause it to arrive (4 = 1),
because of AC2(a)—whether or not the switch is flipped, the train arrives.

However, our proposal goes one step beyond this simple picture. Suppose
that we model the tracks using rwo variables:

e LT for ‘left-track’, with values 1 (the train goes on the left-hand track) and
0 (it does not go on the left-hand track);

e RT for ‘right-track’, with values 1 (the train goes on the right-hand track)
and O (it does not go on the right-hand track).

The resulting causal diagram is shown in Figure 8; it is isomorphic to a class
of problems that Pearl ([2000]) calls ‘switching causation’. It seems reasonable
to disallow settings where RT = LT = 1; a train cannot go down more than
one track. If we do not disallow any other settings, then, lo and behold, this
representation classifies /' = 1 as a cause of 4. At first sight, this may seem
counterintuitive: can a change in representation turn a noncause into a cause?

It can and it should! The change to a two-variable model is not merely
syntactic but represents a profound change in the story. The two-variable
model depicts the tracks as two independent mechanisms, thus allowing one
track to be set (by action or mishap) to false (or true) without affecting the
other. Specifically, this permits the disastrous mishap of flipping the switch
while the left track is malfunctioning. More formally, it allows a setting where
F =1 and RT = 0. Such abnormal settings are imaginable and expressible in
the two-variable model, but not in the one-variable model. Of course, if we

/\
\/

Figure 8. Flipping the switch.
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disallow settings where F =1 and RT = 0, or where F = 0 and LT = 0, then we
are essentially back at the earlier model. The potential for such settings is
precisely what renders F = 1 a cause of 4 in the model of Figure 8.7

Is flipping the switch a legitimate cause of the train’s arrival? Not in ideal
U P

situations; where all mechanisms work asspecified: But-this is not what caus-
ality (and causal modeling) are all about. Causal models earn their value in
abnormal circumstances, created by structural contingencies, such as the pos-
sibility of a malfunctioning track. It is this possibility that should enter our
mind whenever we decide to designate each track as a separate mechanism
(i.e. equation) in the model and, keeping this contingency in mind, it should
not be too odd to name the switch position a cause of the train arrival

(or non-arrival). O

Example 5.4 gives some insight into the process of model construction.
Although there is no way of proving that a given model is the ‘right’
model, it is clearly important for a model to have enough random variables
to express what the modeler considers to be all reasonable situations. On the
other hand, by allowing for the possibility of restricting the set of possible
settings in the definition of causality, we do not penalize the modeler for
inadvertently having too many possible settings.

Example 5.5 The next pair of examples were introduced by Schaffer ([2000])
under the name trumping preemption. To quote Schaffer:

Imagine that it is a law of magic that the first spell cast on a given day
match the enchantment that midnight. Suppose that at noon Merlin casts a
spell (the first that day) to turn the prince into a frog, that at 6:00 PM
Morgana casts a spell (the only other that day) to turn the prince into a
frog, and that at midnight the prince becomes a frog.

Clearly Merlin is a cause of the enchantment. What about Morgana? There is
an intuition that Merlin should be the only cause, since his spell ‘trumps’
Morgana’s. Can this be captured in a causal model?

A coarse-grained model for this story has three variables:

e Mer, with values 0 (Merlin did not cast a spell), 1 (Merlin cast a prince-to-
frog spell in the morning), and 2 (Merlin cast a prince-to-frog spell in the
evening);'®

e Mor, with values 0, 1, 2, with interpretations similar to those for Mer;

e F, the outcome, with values 0 (prince) or 1 (frog).

'”" This can be seen by noting that condition AC2 is satisfied by the partition Z = {F, LT, A},
W = {LT?}, and choosing w' as the setting LT = 0.

¥ The variable could take on more values, allowing for other spells that Merlin could cast and
other times he could cast them, but this would not affect the analysis.
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It is important to note that the diversity of answers in these examples do
not reflect undisciplined freedom to tinker with the model so as to get t
desired answer. Quite the contrary; it reflects an ambiguity in the origin
specification of the story, which our definition helps disambiguate. Each

the-models considered reflects a legitimate interpretation of the storyim terr
of a distinct model of the soldier’s attention-getting strategy. For examp;
Figure 10 describes the corporal’s strategy as a single input—output mecha
ism, with no intermediate steps. Figure 11 refines that model into a two-ste
process where the corporal first determines whether the major is silent
speaking and, in the latter case, follows the major’s command. Naturall
the major should be deemed the cause of advancing (in our scenario) give

this strategy. We can also imagine a completely different strategy where tl
sergeant, not the major, will be deemed the cause of advancing. If the corpor
first determines whether or not there is conflict between the two commande
and then, in case of no conflict, pays full attention to the sergeant (perha;
because his dialect is clearer or his posture less intimidating), it would mal
perfect sense then to say that the sergeant was the cause of advancin
Structural-equation models provide a language for formally representir
these fine but important distinctions, and our definition translates these di
tinctions into different classifications of actual causes. [

Example 5.6 Consider an example originally due to McDermott ([1995]), an
also considered by Collins ([2000]), Lewis ([2000]), and Hitchcock ([2001]
A ball is caught by a fielder. A little further along its path there is a solid wa
and, beyond that, a window. Does the fielder’s catch cause the window {
remain unbroken? As Lewis [2000] says,

We are ambivalent. We can think: Yes—the fielder and the wall betwee
them prevented the window from being broken, but the wall had nothin
to do with it, since the ball never reached the wall; so it must have been tt
fielder. Or instead we can think: No—the wall kept the window saf
regardless of what the fielder did or didn’t do.

Lewis argues that our ambivalence in this case ought to be respected, an
both solutions should be allowed. We can give this ambivalence form:
expression in our framework. If we make both the wall and the fielder endc
genous variables, then the fielder’s catch is a cause of the window being safi
under the assumption that the fielder not catching the ball and the wall nc
being there is considered a reasonable scenario. Note that if we also have
variable for whether the ball hit the wall, then the presence of the wall is not
cause for the window’s being safe in this case; the analysis is essentially th
same as that of the Suzy-Billy rock-throwing example in Figure 3.%° On th

% We thank Chris Hitchcock for making this point.



Causes and Explanations. Part I: Causes 877

other hand, if we take it for granted the wall’s presence (either by making the
wall an exogenous variable, not including it in the model, or not allowing
situations where it does not block the ball if the fielder does not catch it), then
the fielder’s catch is not a cause of the window being safe. It would remain

Jha alds myr afery 1Moene

safe no-matter what the fielder did, in-any structural-contingency.

This example again stresses the importance of the choice of model, and
thinking through what we want to vary and what we want to keep fixed.
(Much the same point is made by Hitchcock [2001].) O

This is perhaps a good place to compare our approach with that of Yablo
([2002]). The approaches have some surface similarities. They both refine the
standard notion of counterfactual dependence. We consider counterfactual

dependence under some (possibly counterfactual) contingency. Yablo con-
siders counterfactual dependence under the assumption that some feature
of (or events in) the actual world remains fixed. The problem is, as Yablo
himself shows, that for any X = ¥ and ¢ that actually happens, we can find
some feature of the world that we can hold fixed such that ¢ depends on
X = . Take ¢ to be the formula X = ¥ & ¢. If X = ¥ and ¢ are both true
in the actual situation, then so is . Moreover, under the assumption that s
holds, ¢ depends counterfactually on X = X. In the closest world to the actual
world where X = X A ¢ holds, ¢ must hold, while in the closest world to
the actual world where X # X A ¢ holds, —¢ must hold. To counteract such
difficulties, Yablo imposes a requirement of ‘naturalness’ on what can be
held fixed. With these requirement, a more refined notion of causation is
that X = % is a cause of ¢ if there is some ¢ true in the actual world that
can be held fixed so as to make ¢ counterfactually depend on X = X,
and no other ‘more natural’ ¢/ can be found that makes the dependence
‘artificial’. While Yablo does give some objective criteria for naturalness,
much of the judgment is subjective, and it is not clear how to model it form-
ally. In other words, it is not clear what relationships among variables and
events must be encoded in the model in order to formally decide whether one
event is ‘more natural’ than another, or whether no other ‘more natural’ event
can be contrived. The analogous decisions in our formulation are managed
by condition AC2(b), which distinguishes unambiguously between admissible
and inadmissible contingencies. In addition, it restricts the form of con-
tingencies; only contingencies of the form W =  are allowed and not, for
example, contingencies such as X = Y.

6 Discussion

We have presented a formal representation of causal knowledge and a prin-
cipled way of determining actual causes from such knowledge. We have
shown that the counterfactual approach to causation, in the tradition of
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Hume and Lewis, need not be abandoned; the language of counterfactuals,
once supported with structural semantics, can yield a plausible and elegant
account of actual causation that resolves major difficulties in the traditional
account.

The essential principles of our account include

e using structural equations to model causal mechanisms and counterfactuals;

e using uniform counterfactual notation to encode and distinguish facts,
actions, outcomes, processes, and contingencies;

e using structural contingencies to uncover latent counterfactual dependencies;

e careful screening of these contingencies to avoid tampering with the causal
processes to be uncovered.

Our approach also stresses the importance of careful modeling. In particu-
lar, it shows that the choice of model granularity can have a significant effect
on the causality relation. This perhaps can be viewed as a deficiency in the
approach. We prefer to think that it shows that the internal structures of the
processes assumed to underlie causal stories play a crucial role in our judg-
ment of actual causation and that it is important therefore to properly cast
such stories in a language that represents those structures explicitly. Our
approach is built on just such a language.

As the examples have shown, much depends on choosing the ‘right’ set of
variables with which to model a situation, which ones to make exogenous,
and which to make endogenous. While the examples have suggested some
heuristics for making appropriate choices, we do not have a general theory
for how to make these choices. We view this as an important direction for
future research. (See Hitchcock [2003] for some preliminary discussion of the
issue of finding ‘good’ models.)

While we do feel that it should be possible to delineate good guidelines for
constructing appropriate models, ultimately the choice of model is a subject-
ive one. The choice of which variables to focus on and which to ignore (i.e.
the choice of exogenous and endogenous variables) and the decision as to
which contingencies to take seriously (i.e. which settings to take as allowable)
is subjective and depends to some extent on what the model is being used for.
(This issue arises frequently in discussions of causality and the law, e.g.
Hart and Honoré [1985].) By way of contrast, most of the work in the
philosophy literature seems to implicitly assume that, in any given situation,
there is one correct answer as to whether 4 is a cause of B. Rather than
starting with a model, there are assumed to be events in the world; new events
can be created to some extent as needed, leading to issues such as ‘fragility’ of
events and how fine-grained events should be (see e.g. Lewis [2000]; Paul
[2000]).
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Of course, as we mentioned before, we cannot prove that our definition of
causality is ‘right’. However, the fact that it deals so well with the many
difficult examples in the literature does provide some support for the reason-
ableness of the definition. Further support is provided by the ease with which

it can be extended to define other notions, such as explanation (see Part IT of
this article) and responsibility and blame (Chockler and Halpern [2004]).

A. Appendix: Some Technical Issues

In this appendix, we consider some technical issues related to the definition of
causality.

A.1 The active causal process

We first show that, without loss of generality, the variables in the set Z in
condition AC2 of the definition of causality can all be taken to be on a path
from a variable in X to a variable in ¢. In fact, they can, without loss of
generality, be assumed to change value when X is set to X and W is set to w'.
More formally, consider the following strengthening of AC2:
AC2'. There exists a partition (Z, W) of V with X C Z and some
setting (X', w') of the variables in (X, W) such that, if (M, ) £ Z =
z* for Z € Z, then

(a) (M,ii) E[X¥ — X, W — W](~@ A Z # z*) for all Z € Z;
(b) (M, ) E[X « % W « #,Z — Z¥]¢ for all subsets Z' of Z.

As we now show, we could have replaced AC2 by AC2’; it would not have
affected the notion of causality. Say that X = X is an actual cause' of ¢ if
AC1, AC2, and AC3 hold.

Proposition A.1 X = X is an actual cause of ¢ iff X = X is an actual cause’ of ¢.

Proof: The ‘if’ direction is immediate, since AC2' clearly implies AC2. For the
‘only if’ direction, suppose that X = X is a cause of ¢. Let (Z, W) be the
partition of V and (X', W) the setting of the variables in (X, W) guaranteed
to exist by AC2. Let 7' C 7 consist of variables Z € Z such that
(M, i) E[X — X, W — W(Z # z¥). Let W' =V — Z'. Notice that W’ is
a superset of W. Moreover, a priori, W’ may contain some variables in X,
although we shall show that this is not the case. Let W’ be a setting of the
variables in I/ that agrees with i/ on the variables in WandforZe Znw',
sets Z to z* (its original value). Note that if there is a variable V' € xXnw,
then the setting of V'is the same in X', X, and w". Thus, even if X and W’ bave
a nonempty intersection, the models My _ 5 7.5 and My _ o 5 g are well
defined. Since Z = z* in the unique solution to the equations in My _ 3 .
and the equations in My ;5. it follows that (a) the equations in
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My s g and Mg o 5. 5 have the same solutions and (b) the
equations in My_; 5 5 and My .. o have the same solutions. Thus,
M) E[X —2W —#=p AN (Z # z¥) for all ZeZ and
(M,#) E[X — %W — Wl A (Z = z¥%) for all Ze Z'. That is, AC2

~ (and hence AC2) holds for the pair (Z/, W'). It follows that W' NX =0,
for otherwise X = % is not a cause of ¢: it violates AC3. Thus, 7Z'OX ,
and X = X is a cause’ of ¢, as desired. ]

Proposition A.1 shows that, without loss of generality, the variables in Z
can be taken to be ‘active’ in the causal process, in that they change value
when the variables in X do. This means that each variable in Z must be a
descendant of some variable in X in the causal graph. The next result shows
that, without loss of generality, we can also assume that the variables in Z
are on a path from a variable in X to a variable that appears in ¢. Recall
that we defined an active causal process to consist of a minimal set Z that
satisfies AC2.

Proposition A.2 Al the variables in an active causal process corresponding to
a cause X = X for ¢ in (M, i) must be on a path from some variable in X to a
variable in ¢ in the causal network corresponding to M.

Proof: Suppose that Z is an active causal process, (Z, W) is the partition
satisfying AC2 using the setting (¥, w'). By Proposition A.1, all the variables
in Z must be descendants of a variable in X. Suppose that some variable
Z € Z is not on a path from a variable in X to a variable in ¢. That
means there is no path from Z to a variable in ¢. It follows that there is
no path from Z to a variable Z' € Z that is on a path from a variable in X
to a variable in ¢. Thus, changing the value of Z cannot affect the value of ¢
nor of any variable Z' € Z. Let Z' = Z — {Z} and W' = W U {Z}. Extend
w to W' by assigning Z to its original value z* in context (M, ). It is now
immediate from the preceding observations that (Z', W’) is a partition satis-
fying AC2 using the setting (¥, #”). This contradicts the minimality of Z.
L]

A.2 A closer look at AC2(b)

Clause AC2(b) in the definition of causality is complicated by the need to
check that ¢ remains true if X is set to %, any subset of the variables in ¥
is set to W/, and all the variables in an arbitrary subset Z' of Z are set to
their original values Z* (i.e. the values they had in the original context, where
X = ¥ and W = ). This check would be simplified considerably if, for each
variable z € Z and each subset W' of Vf/, we have that Z = z* when X = X
and W'=#; that s, if we require in AC2(b) that
(M, u) E [X =%, W —#](Z = z*) for all variables Z € Z and all subsets W’ of
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W. (Note that this requirement would imply the current requirement.) This
stronger requirement holds in all the examples we have considered so far.
However, the following example shows that it does not hold in general.

— Example A.3 Imagine that a vote takes place. For simplicity, two people vote.
The measure is passed if at least one of them votes in favor. In fact, both of

them vote in favor, and the measure passes. This version of the story is almost
identical to the disjunctive scenario in Example 3.2. If we use V; and V), to
denote how the voters vote (V; = 0 if voter i votes against and V; = 1 if she
votes in favor) and P to denote whether the measure passes (P = 1 if it passes,
P =0 if it does not), then in the context where V; = V, = 1, it is easy to see that

each of ;7 =1 and V, = 1 is a cause of P = 1. However, suppose we now
assume that there is a voting machine that tabulates the votes. Let M represent
the total number of votes recorded by the machine. Clearly M = V, + V, and
P = 1iff M > 1. The causal network in Figure 12 represents this more refined
version of the story. In this more refined scenario, V; = 1 and V, = 1 are still
both causes of P = 1. Consider V; = 1. Take Z= {V1,M, P} and W = V.
Much like the simpler version of the story, if we choose the contingency V, =0,
then P is counterfactually dependent on V7, so AC2(a) holds. To check that
this contingency satisfies AC2(b), note that setting V| to 1 and ¥, to O results
in P = 1, even if we also set M to 2 (its current value). However, if we had
insisted in AC2(b) that (M,u) & [X«—X, W—w](Z = z*) for all variables
Z € Z (which in this case means that M would have to retain its original
value of 2 when V; = 1 and V5, = 0), then neither 7 = 1 nor ¥, = 1 would be
a cause of P =1 (although V; =1 A ¥, = 1 would be a cause of P = 1). Since,
in general, one can always imagine that a change in one variable produces
some feeble change in another, we cannot insist on the variables in Z remain-
ing constant; instead, we require merely that changes in Z not affect . [J

We remark that this example is not handled correctly by Pearl’s causal
beam definition. According to the causal beam definition, there is no cause -
for P = 1! It can be shown that if X = x is an actual (or contributory) cause
of Y = y according to the causal beam definition given in Pearl ([2000]), then
it is an actual cause according to the definition here. As Example A.3 shows,
the converse is not necessarily true.

Figure 12. An example showing the need for AC2(b).
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Another complicating factor in AC2(b) is that the requirement must hold
for all subsets I’ of W. In a preliminary version of this article (Halpern and
Pearl, [2001]), we required only that AC2(b) hold for W. That is, the condi-
tion we had was

AC2Y). (M, i) = (X3, Weit!, Z'7*]p for all subsets Z of Z.

However, as Hopkins and Pearl (J2003]) pointed out, AC2(b’) is too permiss-
ive. To use their example, suppose that a prisoner dies either if 4 loads B’s
gun and B shoots or if Cloads and shoots his gun. Taking D to represent the
prisoner’s death and making the obvious assumptions about the meaning of
the variables, we have that D =1 iff (4 =1 A B=1) V(C = 1). Suppose that

in the actual context u, 4 loads B’s gun, B does not shoot, but C does load
and shoot his gun, so that the prisoner dies. Clearly C = 1is a cause of D = 1.
We would not want to say that 4 = 1 is a cause of D = 1, given that B did
not shoot (i.e. given that B = 0). However, with AC2(b’), 4 = 1 is a cause of
D =1. For we can take W = {B, C} and consider the contingency where B = 1
and C = 0. It is easy to check that AC2(a) and AC2(b’) hold for this contin-
gency, so under the old definition, 4 = 1 was a cause of D = 1. However,
AC2(b) fails in this case, for (M, u) E [4 «— 1, C « 0}(D = 0).

A.3 Causality with infinitely many variables

Throughout this article, we have assumed that V, the set of exogenous vari-
ables, is finite. Our definition (in particular, the minimality clause AC3) has
to be modified if we drop this assumption. To see why, consider the following
example.

Example A.4 Suppose that V = {Xj, X, X5, ..., Y}. Further assume that the
structural equations are such that ¥ = 1 iff infinitely many of the X}’s are 1;
otherwise ¥ = 0. Suppose that in the actual context, all of the X;’s are 1 and,
of course, so is Y. What is the cause of Y = 1?

According to our current definitions, it is actually not hard to check that
there is no event which is the cause of ¥ = 1. For suppose that A,y X; =118
a cause of Y = 1, for some subset I of the natural numbers. If 7is finite, then to
satisfy AC2(a), we must take W to be a cofinite subset of the X; (i.e. W must
include all but finitely many of the X;). But then if we set all but finitely many of
the X;'sin ¥ to 0 (as we must to satisfy AC2(a) if /is finite), AC2(b) fails. On the
other hand, if I is infinite and there exists a partition (Z, W) such that AC2(a)
and (b) hold, then if I is the result of removing the smallest element from 7, it is
easy to see that A,cy X; = 1 also satisfies AC2(a) and (b), so AC3 fails. ]

Example A.4 shows that the definition of causality must be modified if
YV is infinite. It seems that the minimality condition AC3 should be modified.
Here is a suggested modification:

AC3'. If any strict subset X’ of X satisfies conditions AC1 and AC2, then
there is a strict subset X” of X’ that also satisfies AC1 and AC2.



Causes and Explanations. Part I: Causes 883

It is easy to see that AC3 and AC3 agree if V is finite. Roughly speaking,
AC3' says that if there is a minimal conjunction that satisfies AC1 and AC2,
then it is a cause. If there is no minimal one (because there is an infinite
descending sequence), then any conjunction along the sequence qualifies as

a cause.
If we use AC3 instead of AC3, then in Example A.4, Aer X; = 1 is a cause
of Y =1 as long as 7 is infinite. Note that it is no longer the case that we can
restrict to a single conjunct if V is infinite.
We do not have sufficient experience with this definition to be confident
that it is indeed just what we want, but it seems like a reasonable choice.

A.4 Causality in nonrecursive models

We conclude by considering how the definition of causality can be modified
to deal with nonrecursive models. In nonrecursive models, there may be more
than one solution to an equation in a given context, or there may be none.
In particular, that means that a context no longer necessarily determines
the values of the endogenous variables. Earlier, we identified a primitive
event such as X = s with the basic causal formula [[(X = x), that is, with
the special case of a formula of the form [Y7 « yy, ..., Y < yi]e with &k = 0.
(M, E [)(X = x) if X = x in all solutions to the equations where U = . It
seems reasonable to identify [ (X = x) with X = x if there is a unique solution
to these equations. But it is not so reasonable if there may be several solutions
or no solution. What we really want to do is to be able to say that X = x
under a particular setting of the variables. Thus, we now take the truth of a
primitive event such as X = x relative not just to a context, but to a complete
description (@, ¥) of the values of both the exogenous and the endogenous
variables. That is, (M,i,V) F X = x if X has value x in V. Since the truth
of X = x depends on just ¥, not 7, we sometimes write (M,V) F X = x. We
extend this definition to Boolean combinations of primitive events in the
standard way. We then define (M, 4,7) F [f’ — Ve if (M, V) E ¢ for all solu-
tions (i, V') to the equations in M ey Since the truth of [V « FJ(X = x)
depends only on the context # and not on Vv, we typically write
(M,d) E[Y — FI(X = x).

The formula (Y5 (X = x) is the dual of [Y—3|(X = x); that is, it
is an abbreviation of —[Y«J|(X # x). It is easy to check that
(M, i,7) E (Y9 (X = x) if in some solution to the equations in M ey
in context i, the variable X has value x. For recursive models, it is
immediate that [Y«—J(X = x) is equivalent to (?e—)‘i’)(X = Xx), since all
equations have exactly one solution.

With these definitions in hand, it is easy to state our definition of
causality for arbitrary models. Note it is now taken with respect to a tuple
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(M, i, V), since we need the values of the exogenous variables to define the
actual world.

Definition A.5 X = X is an actual cause of ¢ in (M, i, %) if the following three
__conditions hold:

ACl. (M, EX =3 Ae.

AC2. There exists a partition (Z, W) of V with X C Z and some setting
(#,#) of the variables in (X, W) such that if (M,#,7V) E Z = 7*,
then the following conditions hold:

(a) (M, i) E (XX, Weit')=ep.

(b) (M, i) E [Xe3, Wi/, Z'—Z*]e for all subsets Z' of Z. (Note
that in part (a) we require that the value of ¢ change only in some
solution to the equations, while in (b) we require that it stay true
in all solutions.)

AC3. X is minimal; no subset of X satisfies conditions AC1 and AC2. []

While this seems like the most natural generalization of the definition of
causality to deal with nonrecursive models, we have not examined examples
to verify that this definition gives the expected result, partly because all the
standard examples are most naturally modeled using recursive models.
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