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REASONING WITH 
CAUSE AND EFFECT

The subject of my lecture this evening is CAUSALITY.  It is not an 
easy topic to speak about, but it is a fun topic to speak about. It is 
not easy because, like religion, sex and  intelligence, causality 
was meant to be practiced, not analyzed. And it is fun, because,
like religion, sex and intelligence, emotions run high, examples
are plenty, there are plenty of interesting people to talk to, and 
above all, an exhilarating experience of watching our private 
thoughts magnified under the microscope of formal analysis. 
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David Hume
(1711–1776)

The modern study of  causation begins with the Scottish 
philosopher David Hume.
Hume has introduced to philosophy three revolutionary ideas that, 
today, are taken for granted by almost everybody, not only 
philosophers.
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HUME’S LEGACYHUME’S LEGACY

1. Analytical vs. empirical claims
2. Causal claims are empirical
3. All empirical claims originate 

from experience.

1. He made a sharp distinction between analytical and empirical 
claims --- the former are product of thoughts, the latter matter of fact.

2. He classified causal claims as empirical, rather than analytical.

3. He identified the source of all empirical claims with human experience, 
namely sensory input.

Putting (2) and (3) together have left philosophers baffled, for over two 
centuries, over two major riddles:



4

THE  TWO  RIDDLESTHE  TWO  RIDDLES
OF CAUSATIONOF CAUSATION

What empirical  evidence 
legitimizes a cause-effect 
connection?
What inferences can be drawn from 
causal information? and how?

What gives us in AI the audacity to hope that today, after 2 centuries of 
philosophical debate, we can say something useful on this topic, is the fact 
that, for us, the question of causation is not purely academic.
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We must build machines that make sense  of what goes on in 
their environment, so they can recover when things do not turn 
out exactly as expected. 
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““Easy, man! that hurts!”Easy, man! that hurts!”

The Art of
Causal Mentoring

And we must build machines that understand causal talk, when  
we have the time to teach them what we know about the world. 
Because the way WE COMMUNICATE about the world is through 
this strange language called causation.
This pressure to build machines that both learn about and reason
with cause and effect, something that David Hume did not 
experience, now casts new light on the riddles of causation, 
colored with engineering flavor. 
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1. How should a robot acquire causal 
information from the environment?

2. How should a robot process causal  
information received from its    
creator-programmer?

OLD  RIDDLES  IN  NEW  DRESSOLD  RIDDLES  IN  NEW  DRESS

I will not touch on the first riddle, because David Heckerman covered this 
topic on Tuesday evening, both eloquently and comprehensively.

I want to discuss primarily the second problem:

How we go from facts coupled with causal premises to conclusions that  we 
could  not obtain from either component alone.

On the surface, the second problem sounds trivial, take in the causal rules, 
apply them to the facts, and derive the conclusions by standard logical 
deduction.

But it is not as trivial as it sounds. The exercise of drawing the proper 
conclusions from causal inputs has met with traumatic experiences in AI.
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Input:
1. “If the grass is wet, then it rained”
2. “if we break this bottle, the grass 

will get wet”

Output:
“If we break this bottle, then it rained”

CAUSATION  AS  A CAUSATION  AS  A 
PROGRAMMER'S  NIGHTMAREPROGRAMMER'S  NIGHTMARE

One of my favorite example is the following:

(Wet grass example on slide).
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CAUSATION  AS  ACAUSATION  AS  A
PROGRAMMER'S  NIGHTMARE PROGRAMMER'S  NIGHTMARE 

(Cont.)  ( Lin, 1995)(Cont.)  ( Lin, 1995)
Input:

1. A suitcase will open iff both  
locks are open.

2. The right lock is open
Query:

What if we open the left lock?
Output:

The right lock might get closed.
Another troublesome example, which I first saw in Lin's paper of IJCAI-95 goes like 
that:  (Suitcase Example on slide) 
In these two examples, the strange output is derived from solid logical principles, 
chaining in the first, constraint-satisfaction in the second, yet, we feel that there is a 
missing ingredient there which the computer did not quite grasp, and that it has to do 
with causality.
Evidently there is some valuable information conveyed by causal vocabulary which is 
essential for correct understanding of the input. What is it that information? And what is 
that magic logic that should permit a computer to select the right information, and  what 
is the semantics behind such logic ?
It is this sort of questions that I would like to address in my talk this evening, because I 
know that many people in this community are dealing with such questions, and have 
made promising proposals for answering them.  Most notably are people working in 
qualitative physics, troubleshooting, planning under uncertainty, modeling behavior of 
physical  systems, constructing theories of action and change, and perhaps  even those 
working in natural language understanding, because our language is loaded with 
causal expressions.
Since 1990, I have examined many (though not all) of these proposals, together with 
others that have been suggested by philosophers and economists, and I have extracted 
from them a small set of basic principles which I would like to share with you tonight. I 
am now convinced, that the entire  story of causality unfolds from just three basic 
principles: 
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THE  BASIC  PRINCIPLESTHE  BASIC  PRINCIPLES

Causation = encoding of behavior 
under interventions

Interventions = surgeries on
mechanisms

Mechanisms = stable functional
relationships

= equations + graphs

1.  The central theme is to view causality a computational scheme devised to facilitate 
prediction of the effects of actions.

2. I use the term "INTERVENTION" here, instead of ACTION, to emphasize that the 
role of causality can best be understood if we view actions as external entities, 
originating from outside our theory, not as a mode of behavior within the theory.

To understand the three principles it is better to start from the end and go backwards.
(3) The world is organized in the form of stable mechanisms, or physical laws, 

which are sufficient for determining all event that are of interest to the 
modeler. The mechanisms are autonomous – like mechanical linkages in a 
machine, or logic gates in electronic circuits -- we can change one without 
changing the others.

(2) Interventions ALWAYS involve the breakdown of mechanism. I will call this 
breakdown a "surgery" to emphasize its dual painful/remedial character.

(1) Causality tells us which mechanism is to be surgically modified by any given 
action.

These principles can be encapsulated neatly and organized in a mathematical object 
called a CAUSAL MODEL.
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WHAT'S  IN  A  CAUSAL  MODEL?WHAT'S  IN  A  CAUSAL  MODEL?

Oracle that assigns truth value to causal
sentences:

Action  sentences: B if we do A.
Counterfactuals: ¬B ⇒ B if it were A.
Explanation: B occurred because of A.

Optional: with what probability?

The purpose of a model is to assign truth values to sentences in a 
given language. If models in standard logic assign truth values to 
logical formulas, causal models embrace a wider class of sentences, 
including those that we normally classify as CAUSAL.  What are those 
sentences?

Actions: B will be true if we do A.
Counterfactuals: B would be different if A were true 
Explanation: B because of A

There could be more, but I will concentrate on these three, because 
they are commonly used, and because I believe that all other causal 
sentences can be reduced to  these three.
The difference between action and counterfactuals is merely that the 
clash between the antecedant and the current state of affairs is
explicit.
To allay any fear that a causal model is some complicated 
mathematical object, let me exemplify the beast with two familiar 
examples.
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Z

YX

INPUT OUTPUT

CAUSAL  MODELS
WHY  THEY  ARE  NEEDED 

Here is a causal model we all remember from high-school -- a circuit diagram.
There are 4 interesting points to notice in this example:
(1) It qualifies as a causal model  -- because it contains the information to confirm 
or refute all action, counterfactual and explanatory sentences concerned with the 
operation of the circuit.
For  example, anyone can figure out what the  output would be like if  we  set Y to 
zero, or if we change this OR gate to a NOR gate or  if we perform any of the 
billions combinations of such actions.
(2) Logical functions (Boolean input-output relation) is insufficient for answering 
such queries
(3)These actions were not specified in advance, they do not have special names 
and they do not show up in the diagram.
In fact,  the great majority of the action queries that this circuit can  answer have 
never been considered by the designer of this circuit.
(4) So how does the circuit encode this extra information?
Through two encoding tricks:
4.1 The  symbolic units correspond to stable physical mechanisms

(i.e., the logical gates)
4.2 Each variable has precisely one mechanism that determines its value.
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GENETIC  MODELSGENETIC  MODELS
(S.  WRIGHT,  1920)(S.  WRIGHT,  1920)

As another  example, here is the first causal model that was put
down on paper:  Sewal Wright's path diagram, showing how the 
fur pattern of the litter guinea pigs is determined by various 
genetic and environmental factors. Again, (1) it qualifies as a 
causal model, (2) the algebraic equations in themselves do not 
NOT qualify, and (3) the extra information comes from having 
each variable determined by a stable functional mechanism 
connecting it to its parents in the diagram.
Now that we are on familiar grounds, let  us observe more closely 
the way a causal model encodes the information needed for 
answering causal queries.
Instead of a formal definition that you can find in the proceedings 
paper (Def. 1), I will illustrate the working of a causal model 
through another example, which can also be found in your 
proceedings -
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U (Court order)

D (Death)

B  (Riflemen)

C (Captain)

A

CAUSAL  MODELS  AT  WORKCAUSAL  MODELS  AT  WORK
(The  impatient  firing(The  impatient  firing--squad)squad)

Though not many of us have had direct experience with this story, 
it is nevertheless familiar and vivid.  It describes a tense moment 
in the life of a gentleman facing a firing squad.
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CAUSAL  MODELS  AT  WORKCAUSAL  MODELS  AT  WORK
(Glossary)(Glossary)

U: Court orders the execution
C: Captain gives a signal
A: Rifleman-A shoots
B: Rifleman-B shoots
D: Prisoner dies
=: Functional Equality (new symbol)

U

D

B

C

A

C=U

A=C B=C

D=A∨B

The meanings of the symbols is obvious from the story:
The only new symbol is the functional equality = which is 
borrowed here from Euler (around 1730's), meaning that the left 
hand side is determined by the right hand side and not the other
way around.
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SENTENCES  TO  BE  EVALUATEDSENTENCES  TO  BE  EVALUATED

S1. prediction: ¬A ⇒ ¬D
S2. abduction: ¬D ⇒ ¬C
S3. transduction: A ⇒ B
S4. action: ¬C ⇒ DA

S5. counterfactual: D ⇒ D{¬A}

S6. explanation: Caused(A, D)

U

D

B

C

A

This slide lists the sentences we  wish to evaluate. The simplest 
one are S1-S3 which are standard.
Next in difficulty are action sentences S4, -- requiring some  
causal information; next are  counterfactuals S5 -- requiring more 
detailed causal information, and the hardest being explanation 
sentences (S6) whose semantics is still not completely settled --
to be discussed at the last part of the lecture. 
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STANDARD  MODEL  FORSTANDARD  MODEL  FOR
STANDARD  QUERIESSTANDARD  QUERIES

S1.  (prediction): If rifleman-A
shot, the prisoner is dead,

A ⇒ D
S2.  (abduction): If the prisoner is 

alive, then the Captain did 
not signal, 

¬D ⇒ ¬C
S3.  (transduction): If rifleman-A

shot, then  B shot as well,
A ⇒ B

U

D

B

C

A
iff

iff

iff

≡OR

Sentences S1-S3 involve standard logical connectives, because 
they deal with inferences from beliefs to beliefs about a static
world.
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WHY  CAUSAL  MODELS?WHY  CAUSAL  MODELS?
GUIDE  FOR  SURGERYGUIDE  FOR  SURGERY

S4.  (action):
If the captain gave no signal 
and Mr. A decides to shoot,
the prisoner will die: 

¬C ⇒ DA,
and B will not shoot:

¬C ⇒ ¬BA

U

D

B

C

A

This is the first chance we have to witness what information a 
causal model provides on top of a logical model.
Shooting with no signal constitutes a blatant violation of one 
mechanism in the story: rifleman-A's commitment to follow the 
Captain's signal. Violation renders this mechanism inactive, 
hence we must excise the corresponding equation from the 
model, using this knife, and replace it by a new mechanism:   A = 
TRUE.
. 
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WHY  CAUSAL  MODELS?WHY  CAUSAL  MODELS?
GUIDE  FOR  SURGERYGUIDE  FOR  SURGERY

S4.  (action):
If the captain gave no signal 
and Mr. A decides to shoot,
the prisoner will die: 

¬C ⇒ DA,
and B will not shoot:

¬C ⇒ ¬BA

U

D

B

C

A
⇒TRUE

This  surgery also suppresses abduction; from seeing A shoot we 
can infer that B shot as well (recall A⇒B), but from MAKING A
shoot we can no longer infer what B does.
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MUTILATION  IN  SYMBOLICMUTILATION  IN  SYMBOLIC
CAUSAL  MODELSCAUSAL  MODELS

S4. (action): If the captain gave no signal and 
A decides to shoot, the prisoner will die and
B will not shoot, ¬C ⇒ DA & ¬BA

Model MA (Modify A=C):  
(U)

C = U (C)
A = C (A)
B = C (B)
D = A ∨ B (D)
Facts: ¬C
Conclusions:  ?

U

D
B

C

A

TRUE

Everything we do with graphs we can, of course, do with  
symbols. We need however be careful to distinguish facts from 
rules (domain constraints), and to mark the privileged element in 
each rule (the left-hand-side).
Here we see for the first time the role of causal order: Which 
mechanism should be excised by the action do(A)?  (note that A
appears in two equations) The answer: Excise the equation in 
which A is the  privileged variable. 
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MUTILATION  IN  SYMBOLICMUTILATION  IN  SYMBOLIC
CAUSAL  MODELSCAUSAL  MODELS

S4. (action): If the captain gave no signal and 
A decides to shoot, the prisoner will die and
B will not shoot, ¬C ⇒ DA & ¬BA

Model MA (Modify A=C):  
(U)

C = U (C)
(A)

B = C (B)
D = A ∨ B (D)
Facts: ¬C
Conclusions:  ?

A=C

U

D
B

C

A

TRUE

Once we create the mutilated model MA, we draw the conclusions 
by standard deduction and easily confirm:
S4: The prisoner will be dead -- D is true  in MA. 
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MUTILATION  IN  SYMBOLICMUTILATION  IN  SYMBOLIC
CAUSAL  MODELSCAUSAL  MODELS

S4. (action): If the captain gave no signal and 
A decides to shoot, the prisoner will die and
B will not shoot, ¬C ⇒ DA & ¬BA

Model MA (Modify A=C):  
(U)

C = U (C)
A (A)
B = C (B)
D = A ∨ B (D)
Facts: ¬C
Conclusions:  A, D, ¬B, ¬U, ¬C

A=C

U

D
B

C

A

TRUE

Once we create the mutilated model MA, we draw the conclusions 
by standard deduction and easily confirm:
S4: The prisoner will be dead -- D is true  in MA. 
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U

D

B

C

A

Abduction Action Prediction

S5. If the prisoner is dead, he would still be dead 
if A were not to have shot.  D⇒D¬A

33--STEPS  TO  COMPUTINGSTEPS  TO  COMPUTING
COUNTERFACTUALSCOUNTERFACTUALS

U

D

B

C

A
FALSE

TRUE

TRUE

U

D

B

C

A
FALSE

TRUETRUE

TRUE

Consider now our  counterfactual sentence
S5: If the prisoner is Dead, he would still be dead if A were not to 
have shot. D ==> D¬A

The antecedant {¬A} should still be treated as interventional 
surgery, but only after we fully account for the evidence given: D.
This calls for three steps
1 Abduction: Interpret the past in light of the evidence
2. Action: Bend the course of history (minimally) to account for the  
hypothetical antecedant (¬A).
3.Prediction: Project the consequences to the future.
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U

D

B

C

A

Abduction

P(S5). The prisoner is dead.  How likely is it that he would be dead 
if A were not to have shot.  P(D¬A|D) = ?

COMPUTING  PROBABILITIESCOMPUTING  PROBABILITIES
OF  COUNTERFACTUALSOF  COUNTERFACTUALS

Action

TRUE

Prediction
U

D

B

C

A
FALSE

P(u|D)

P(D¬A|D)

P(u) U

D

B

C

A
FALSE

P(u|D)
P(u|D)

Suppose we are not entirely  ignorant of U, but  can assess the 
degree of  belief P(u).
The same 3-steps apply to the computation of the counterfactual 
probability (that the prisoner be dead if A were not to have shot)
The only difference is that we now use the evidence to update 
P(u) into P(u|e), and draw probabilistic instead of logical 
conclusions.
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SYMBOLIC  EVALUATIONSYMBOLIC  EVALUATION
OF  COUNTERFACTUALSOF  COUNTERFACTUALS

Prove:  D ⇒D¬A
Combined Theory:  

(U)
C* = U C = U (C)
¬A* A = C (A)
B* = C* B = C (B)
D* = A* ∨ B* D = A ∨ B (D)
Facts:  D
Conclusions: U, A, B, C, D, ¬A*, C*, B*, D*

We can combine  the first two steps into one, if we use two 
models, M and MA, to represent the actual and hypothetical 
worlds, respectively.
(Reader: See proceeding paper for technical details)
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FALSE

TRUE

TRUE D*

B*

C*

A*

U

D

B

C

A

W

PROBABILITY  OF  COUNTERFACTUALSPROBABILITY  OF  COUNTERFACTUALS
THE  TWIN  NETWORKTHE  TWIN  NETWORK

P(Alive had A not shot | A shot, Dead) = 
P(¬D) in model <M¬A, P(u,w|A,D)> = 
P(¬D*|D) in twin-network

⇒

Graphically, the two models can be represented by two graphs 
sharing the U variables (called TWIN-NETWORK).
The Twin-model is particularly useful in probabilistic calculations, 
because we can simply propagate evidence (using Bayes-
network techniques) from the actual to the hypothetical network.
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CAUSAL  MODEL  (FORMAL)CAUSAL  MODEL  (FORMAL)
M = <U, V, F>  
U - Background variables
V - Endogenous variables
F - Set of functions {U ×V \Vi →Vi }

vi =fi (pai , ui )

Submodel: Mx = <U, V, Fx>, representing do(x)

Fx= Replaces equation for X with X=x
Actions and Counterfactuals:

Yx(u) = Solution of Y in Mx

or   <U, V, F, P(u)>

P(y | do(x))     P(Yx=y)∆=

Let us now summarize the formal elements involved in this causal
exercises.
(Reader: See proceedings paper for technical details) 



28

WHY  COUNTERFACTUALS?WHY  COUNTERFACTUALS?

Action queries are triggered by (modifiable) observations, 
demanding abductive step, i.e., counterfactual processing.

E.g., Troubleshooting
Observation: The output is low
Action query: Will the output get higher –

if we replace the transistor?
Counterfactual query: Would the output be higher –

had the transistor been replaced?

We have seen that  action queries can be answered in one step: Standard 
deduction on a mutilated submodel. Counterfactual queries, on the other 
hand, required a preparatory stage of abduction. The question naturally arises: 
who needs counterfactuals? and why spend time on computing such 
convoluted sentences? It turns out that counterfactuals are commonplace and 
pure action sentences are a fiction. Action queries are brought into focus  by 
certain undesired observations, potentially modifiable by the actions. The step 
of abduction, which is characteristic of counterfactual queries, cannot be 
disposed of, and must therefore precede the surgery step. This makes most 
action queries semantically identical to counterfactual queries.
The two sentences in this example from troubleshooting are equivalent: Both 
demand abductive step to account for the observation.
And this unfortunately complicates things a bit. In probabilistic analysis, 
functional specification is needed, conditional-probabilities alone are not 
sufficient for answering observation-triggered action queries. In symbolic 
analysis: abnormalities must be explicated in functional details; the catch-all 
phrase "AND NOT ABNORMAL p“ is not sufficient. 
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WHY  CAUSALITY? WHY  CAUSALITY? 
FROM  MECHANISMS  TO  MODALITYFROM  MECHANISMS  TO  MODALITY

Causality-free specification:

Causal specification:

Prerequisite:  one-to-one correspondence between
variables and mechanisms

action
name

mechanism
name ramifications

direct-effects
do(p) ramifications

This brings us to the million dollar question:  WHY CAUSALITY
So far we have discussed actions, counterfactuals, surgeries, mechanism, abduction etc, but is 
causality really necessary?
Indeed, if we know which mechanisms each action modifies, and the nature of the modification, we 
can avoid all talk of causation -- the ramification of each action can be obtained by simply 
MUTILATING then SIMULATING. The price we pay is that we need to specify an action, not by its 
direct effects but, rather, by the mechanisms which the action modifies.
For example, instead of saying "this action moves the coffee cup to location X" I would need to say 
"this action neutralizes the static friction of the coffee cup, and replaces it with a forward 
acceleration a for a period of 1 second, followed by deceleration for a period of 2 seconds ...".
This is awfully clumsy: Most mechanisms do not have names in non-technical languages, and 
when they do, the names do not match the granularity of ordinary language. Causality enables us 
to reason correctly about actions while keeping  the mechanism IMPLICIT. All we need to specify is 
the action's direct effects, the rest follows by mutilation-simulation.
But to figure out which mechanism deserves mutilation, there must be one-to-one correspondence 
between variables and mechanisms. Is that a realistic requirement?
In general, NO. A random collection of n equations on n variables would not enjoy this property. 
Even a resistive network (e.g., voltage divider) does not enjoy it. But from the fact that causal 
thinking is so pervasive in our language we may conclude that our understanding of the world is 
more structured, and that it does enjoy the 1-1 correspondence . We say: "raise taxes", "clean your 
face", "make him laugh“ and in general, do(p) and, miraculously, people  understand us without 
asking for mechanism name. (H. Simon devised a test for deciding when 1-1 correspondence 
exists, see proceedings paper)
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SURGERY  IN  STRIPS  STYLESURGERY  IN  STRIPS  STYLE

Action:  do(Vi = v*)
Current state:  Vi (u) = v

DELETE-LIST ADD-LIST

Vi = v Vi = v*
+ ramifications + ramifications

MECHANISM DELETE-LIST MECHANISM ADD-LIST

vi = fi(pai, ui) fi (⋅) = v*

Perhaps the best "AI proof" of the ubiquity of the modality do(p) is 
the existence of the language STRIPS, in which actions are 
specified via direct effects -- the ADD-LIST.
Let us compare causal surgeries to STRIPS surgeries. Both 
accept actions as modalities, both perform surgeries BUT: 
STRIPS perform the surgery on propositions (the DELETE-LIST) 
while causal theories, by exploiting their 1-1 correspondence, can 
infer the mechanism to be excised and performs the surgery on 
mechanisms, not on propositions. The result is that ramifications 
need not be specified, they can be inferred from the MUTILATE-
SIMULATE cycle. 



31

MID-STORY  OUTLINE

Background:
From Hume to robotics

Semantics and principles:
Causal models, Surgeries,
Actions and Counterfactuals

Applications I:
Evaluating Actions and Plans
from Data and Theories

Applications II:
Finding Explanations and
Single-event Causation

This brings us to our mid-story outline. We have talked about the 
story of causation from Hume to robotics, we have discussed the 
semantics of causal utterances and the principles behind the 
interpretation of action and counterfactual sentences, and now it 
is time to ask about the applications of these principles. 

I will talk about two types of applications, the first relates to the 
evaluation of actions and the second to finding explanations. 

The next slides provides a somewhat more elaborate list of these
applications. with slide 48 (Applications-II) 
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APPLICATIONSAPPLICATIONS

1.  Predicting effects of actions and policies
2.  Learning causal relationships from 

assumptions and data
3.  Troubleshooting physical systems and plans  
4.  Finding explanations for reported events
5.  Generating verbal explanations
6.  Understanding causal talk
7.  Formulating theories of causal thinking

Let us talk about item 1 for a minute. We saw that if we have a causal model M, 
then predicting the ramifications of an action is trivial -- mutilate and solve. 

If instead of a complete model we only have a probabilistic model, it is again 
trivial: we mutilate and propagate probabilities in the resultant causal network. 

The important point is that we can specify knowledge using causal vocabulary, 
and can handle actions that are specified as modalities. 

But what if we do not have even a probabilistic model? This is where item 2 
comes in. 

In certain applications we are lucky to have data that may supplement missing 
fragments of the model, and the question is whether the data available is 
sufficient for computing the effect of actions. 

Let us illustrate this possibility in a simple example taken from economics: 
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Example:  Policy analysis
Model underlying data Model for policy 

evaluation

INTERVENTION  AS  SURGERYINTERVENTION  AS  SURGERY

Economic conditions

Economic
consequences

Economic
consequences

Tax

Economic conditions

Tax

Economic policies are made in a manner similar to the way actions were taken in the 
firing squad story: Viewed from the outside, they are taken in response to economic 
indicators or political pressure, while viewed from the policy maker perspective, the 
next decision is chosen under the pretense of free will .... 

Like rifleman-A, the policy maker should and does consider the ramification of non-
routine actions that do not conform to the dictates of the model. 

If we knew the model, there would be no problem calculating the ramifications of each 
pending decision -- mutilate and predict -- but being ignorant of the functional 
relationships and the probability of u, and having only the skeleton of the causal graph 
in our hands, we hope to supplement this information with what we can learn from 
economical data. 

Unfortunately, economical data are taken under a wholesome graph, and we need to 
predict ramifications under a mutilated graph. Can we still extract useful information 
from such data? 

The answer is YES. As long as we can measure every variable that is a common 
cause of two or more other measured variables, it is possible to infer the probabilities 
of the mutilated model directly from those of the nonmutilated model REGARDLESS 
of the underlying functions. The transformation is given by the manipulation theorem 
described in the book by Spirtes Glymour and Schienes (1993). 
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PREDICTING  THE PREDICTING  THE 
EFFECTS  OF  POLICIESEFFECTS  OF  POLICIES

1.  Surgeon General (1964):
P (c | do(s)) ≈ P (c | s)

Smoking Cancer
2.  Tobacco Industry:

Genotype (unobserved)

Smoking Cancer
P (c | do(s)) = P (c)

3.  Combined:

Cancer

P (c | do(s)) = noncomputable

Smoking

In 1964, the Surgeon General issued a report linking cigarette smoking to death, cancer and most 
particularly, lung cancer. 

The report was based on non-experimental studies, in which a strong correlation was found between 
smoking and lung cancer, and the claim was that the correlation found is causal, namely: If we ban 
smoking, the rate of cancer cases will be roughly the same as the one we find today among non-
smokers in the population. 

These studies came under severe attacks from the tobacco industry, backed by some very 
prominent statisticians, among them Sir Ronald Fisher. 

The claim was that the observed correlations can also be explained by a model in which there is no 
causal connection between smoking and lung cancer. Instead, an unobserved genotype might exist 
which simultaneously causes cancer and produces an inborn craving for nicotine. 

Formally, this claim would be written in our notation as: P(cancer | do(smoke)) = P(cancer) stating 
that making the population smoke or stop smoking would have no effect on the rate of cancer cases. 

Controlled experiment could decide between the two models, but these are impossible, and now 
also illegal to conduct. 

This is all history. Now we enter a hypothetical era where representatives of both sides decide to 
meet and iron out their differences. 

The tobacco industry concedes that there might be some weak causal link between smoking, and 
cancer and representatives of the health group concede that there might be some weak links to 
genetic factors. Accordingly, they draw this combined model (no. 3 in the slide), and the question 
boils down to assessing, from the data, the strengths of the various links. 
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PREDICTING  THE PREDICTING  THE 
EFFECTS  OF  POLICIESEFFECTS  OF  POLICIES

1.  Surgeon General (1964):
P (c | do(s)) ≈ P (c | s)

Smoking Cancer
2.  Tobacco Industry:

Genotype (unobserved)

Smoking Cancer
P (c | do(s)) = P (c)

3.  Combined:

Cancer

P (c | do(s)) = noncomputable

Smoking

Or, speaking in mutilation language, the question boils down to assessing 
the effect of smoking in the mutilated model shown here, from data taken 
under the wholesome model shown before. 

They submit the query to a statistician and the answer comes back 
immediately: IMPOSSIBLE. Meaning: there is no way to estimate the 
strength for the causal links from the data, because any data whatsoever 
can perfectly fit either one of the extreme models shown in (1) and (2). 

So they give up, and decide to continue the political battle as usual. 
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PREDICTING  THE PREDICTING  THE 
EFFECTS  OF  POLICIESEFFECTS  OF  POLICIES

1.  Surgeon General (1964):
P (c | do(s)) ≈ P (c | s)

Smoking Cancer
2.  Tobacco Industry:

Genotype (unobserved)

Smoking Cancer
P (c | do(s)) = P (c)

3.  Combined:

Cancer

P (c | do(s)) = noncomputable

4.  Combined and refined:

P (c | do(s)) = computable

Smoking

Smoking CancerTar

Before parting, a suggestion comes up: perhaps we can resolve our 
differences if we measure some auxiliary factors, 

For example, since the causal link model is based on the understanding that 
smoking affects lung cancer through the accumulation of tar deposits in the 
lungs, perhaps we can measure the amount of tar deposits in the lungs of 
sampled individuals, and this might provide the necessary information for 
quantifying the links? 

Both sides agree that this is a reasonable suggestion, so they submit a new 
query to the statistician: Can we find the effect of smoking on cancer 
assuming that an intermediate measurement of tar deposits is available??? 

The statistician comes back with good news: IT IS COMPUTABLE 
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PREDICTING  THE PREDICTING  THE 
EFFECTS  OF  POLICIESEFFECTS  OF  POLICIES

1.  Surgeon General (1964):
P (c | do(s)) ≈ P (c | s)

Smoking Cancer
2.  Tobacco Industry:

Genotype (unobserved)

Smoking Cancer
P (c | do(s)) = P (c)

3.  Combined:

Cancer

P (c | do(s)) = noncomputable

4.  Combined and refined:

P (c | do(s)) = computable

Smoking

Smoking CancerTar

In other words, it is possible now to infer the effect of smoking in the 
mutilated model shown here (No. 4), from data taken under the original 
wholesome model: 
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PREDICTING  THE PREDICTING  THE 
EFFECTS  OF  POLICIESEFFECTS  OF  POLICIES

1.  Surgeon General (1964):
P (c | do(s)) ≈ P (c | s)

Smoking Cancer
2.  Tobacco Industry:

Genotype (unobserved)

Smoking Cancer
P (c | do(s)) = P (c)

3.  Combined:

Cancer

P (c | do(s)) = noncomputable

4.  Combined and refined:

P (c | do(s)) = computable

Smoking

Smoking CancerTar

This inference is valid as long as the data contains measurements of all 
three variables: Smoking, Tar and Cancer. 

Moreover, the solution can be obtained in close mathematical form, using 
symbolic manipulations that mimic the surgery semantics. 
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X1

U1

ZX2

U2

Y  Output

Hidden
dials

Visible
dials

Control
knobs

Problem: Find the effect of (do(x1), do(x2)) on Y, 
from data on X1, Z, X2 and Y.

LEARNING  TO  ACT  BY
WATCHING  OTHER  ACTORS

E.g.,
Process-control

The common theme in the past two examples was the need to predict the 
effect of our actions by watching the behavior of other actors (past policy 
makers in the case of economic decisions, and past smokers-nonsmokers in 
the smoking-cancer example). 

This is a recurring problem in many applications, and here are a couple of 
additional examples: 

In this example, we need to predict the effect of a plan (sequence of actions) 
after watching an expert control a production process. The expert observes 
dials which we cannot observe, though we know what quantities those dials 
indicate. 
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U1

LEARNING  TO  ACT  BY
WATCHING  OTHER  ACTORS

X1

ZX2

U2

Y  recovery/death

Patient’s
immune
status

Episodes
of PCP

Dosages 
Of Bactrim

Solution: P(y|do(x1), do(x2)) =Σz P(y|z, x1, x2) P(z|x1)

Patient’s 
historyE.g., Drug-management

(Pearl & Robins, 1985)

The second example (due to J Robins) comes from sequential treatment of AIDS patients. 

The variables X1 and X2 stand for treatments that physicians prescribe to a patient at two different 
times, Z represents observations that the second physician consults to determine X2, and Y 
represents the patient's survival. The hidden variables U1 and U2 represent, respectively, part of 
the patient history and the patient disposition to recover. Doctors used the patient's earlier PCP 
history (U1) to prescribe X1, but its value was not recorded for data analysis. 

The problem we face is as follows. Assume we have collected a large amount of data on the 
behavior of many patients and physicians, which is summarized in the form of (an estimated) joint 
distribution P of the observed four variables (X1, Z, X2, Y). A new patient comes in and we wish to 
determine the impact of the (unconditional) plan  (do(x1), do(x2)) on survival (Y), where x1 and x2 
are two  predetermined dosages of bactrim, to be administered at two prespecified times. 

Many of you have probably noticed the similarity of this problem to Markov Decision processes, 
where it is required to find an optimal sequence of action to bring about a certain response. The 
problem here is both simpler and harder. Simpler, because we are only required to evaluate a 
given strategy, and harder, because we are not given the transition probabilities associated with 
the elementary actions -- those need to be learned from data. As you can see on the bottom line, 
this task is feasible - the answer is expressible as a probabilistic quantity that is estimable for the 
data. 

How can this be accomplished? To reduce an expression involving do(x) to those involving 
ordinary probabilities we need a calculus for doing. A calculus that enables us to deduce behavior 
under intervention from behavior under passive observations. 

Do we have such a calculus? 
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The Science 
of Seeing

If we look at the history of science, we find to our astonishment that such a 
calculus does not in fact exist. It is true that Science rests on two 
components: One consisting of passive observations (epitomized by 
astronomy), and the other consisting of voluntary intervention, 



42

The  Art 
of  Doing

Represented here by the black smith from Gilbert's De Magnet (1600) 

But algebra was not equally fair to these two components. Mathematical 
techniques were developed exclusively to support the former (seeing) not 
the latter (doing) -- no calculus was developed to help this artisan make a 
better magnet. 
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Combining Seeing and Doing

Even in the laboratory, a place where the two components combine, the 
"seeing" part enjoys the benefits of algebra, whereas the "doing" part is at 
the mercy of the scientist's judgment. When actions change chemical from 
one test tube to another, a new set of equations becomes applicable, and 
algebraic techniques are useful for solving such equations. But there is no 
algebraic operation to represent the transfer from one test tube to another, 
and no algebra for selecting the correct set of equations when laboratory 
conditions change. Such selection has thus far relied on unaided scientific 
judgment. 
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NEEDED:  ALGEBRA  OF  DOINGNEEDED:  ALGEBRA  OF  DOING

Available: algebra of seeing
e.g., What is the chance it rained 

if we see the grass wet?
P (rain | wet)  = ? {=P(wet|rain) }
Needed: algebra of doing
e.g., What is the chance it rained 

if we make the grass wet?
P (rain | do(wet)) = ? {= P (rain)}

P(rain)
P(wet)

Let me convince you of this misbalance using a very simple example. 

If we wish to find the chance it rained, given that we "see" the grass wet, we can 
express our question in a formal sentence, and use the machinery of probability 
theory to transform the sentence into other expressions that are more convenient 
or informative. 

But suppose we ask a different question: "What is the chance it rained if we 
MAKE the grass wet?" 

We cannot even express our query in the syntax of probability, because the 
vertical bar is already taken to mean "given that we see". 

We know intuitively what the answer should be: P(rain),  because making the 
grass wet does not change the chance of rain. But can this intuitive answer, and 
others like it, be derived mechanically, so as to comfort our thoughts when 
intuition fails? 

The answer is YES, and it takes a new algebra, using the do(x) operator, for 
which we have a simple semantics in terms of surgeries. To make it into a 
genuine calculus, we also need to translate the surgery semantics into rules of 
inference. These are described in the next slide. 
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RULES  OF  CAUSAL  CALCULUSRULES  OF  CAUSAL  CALCULUS

Rule 1: Ignoring observations
P(y | do{x}, z, w) = P(y | do{x}, w)

Rule 2: Action/observation exchange
 P(y | do{x}, do{z}, w) = P(y | do{x},z,w)

Rule 3: Ignoring actions
 P(y | do{x}, do{z}, w) = P(y | do{x}, w)   

XG WX,|ZY )( if ⊥⊥

ZXGWXZY ),|( if ⊥⊥

)(
),|( if

WZXGWXZY ⊥⊥

The calculus consists of 3 rules that permit us to transform expressions 
involving actions and observations, into other expressions of this type. 

The first allows us to ignore an irrelevant observation, the third to ignore an 
irrelevant action, the second allows us to exchange an action with an 
observation of the same fact. 

What are those green symbols on the right? 

These are d-separation conditions in various subgraphs of the diagram that 
indicate when the transformation is legal. 

We will see them in action in the smoking-cancer example that was 
discussed earlier. 
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DERIVATION  IN  CAUSAL  CALCULUSDERIVATION  IN  CAUSAL  CALCULUS

Smoking Tar Cancer

P (c | do{s}) = Σt P (c | do{s}, t) P (t | do{s})

= Σs′ Σt P (c | do{t}, s′)  P (s′ | do{t}) P(t |s)

= Σt P (c | do{s}, do{t}) P (t | do{s})

= Σt P (c | do{s}, do{t}) P (t | s)

= Σt P (c | do{t}) P (t | s)

= Σs′ Σt P (c | t, s′)  P (s′) P(t |s)

= Σs′ Σt P (c | t, s′)  P (s′ | do{t}) P(t |s)

Probability Axioms

Probability Axioms

Rule 2

Rule 2

Rule 3

Rule 3

Rule 2

Genotype  (Unobserved)

Here we see how one can prove that the effect of smoking on cancer can be determined from 
data on three variables: Smoking, Tar and Cancer. 

The question boils down to computing P(cancer) under the hypothetical action do(smoking), 
from non-experimental data, namely, from expressions involving NO ACTIONS. Or: we need to 
eliminate the "do" symbol from the initial expression. 

The elimination proceeds like ordinary solution of algebraic equation -- in each stage, a new 
rule is applied, licensed by some subgraph of the diagram, until eventually leading to a formula 
involving only WHITE SYMBOLS, meaning an expression computable from non-experimental 
data. 

Now, if I were not a modest person, I would say that this is an amazing result. Watch what is 
going on here: we are not given any information whatsoever on the hidden genotype, it may be 
continuous or discrete, unidimensional or multidimensional. Yet, measuring an auxiliary variable 
TAR someplace else in the system, enables us to predict what the world would be like in the 
hypothetical situation where people were free of the influence of this hidden genotype. Data on 
the visible allows us to infer the effects of the invisible. Moreover, a person can also figure out 
the answer to the question: "I am about to smoke -- should I"? 

I think it is amazing, because I cannot do this calculation in my head. It demonstrates the 
immense power of having a formal language in an area that many respectable scientists prefer 
to see handled by unaided judgment. 
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AND

Exposure to    
Radiation      X

OR

Y  (Leukemia)

Enabling Factors

LEGAL  ATTRIBUTION:LEGAL  ATTRIBUTION:
WHEN  IS  A  DISEASE  WHEN  IS  A  DISEASE  DUEDUE TO EXPOSURE?TO EXPOSURE?

BUT-FOR criterion:  PN=P(Yx′ ≠ y | X = x,Y = y) > 0.5
Q. When is PN identifiable from P(x,y)?
A. No confounding + monotonicity

PN = [P(y | x) − P(y′ |x′ )] / P(y | x)

Q

Other causes
U

W  Confounding 
Factors

+ correction

We now demonstrate how causal calculus can answer questions of attribution, namely finding causes of effects, rather than effects of 
causes. 

The US army has conducted many nuclear experiments in Nevada in the period 1940-1955. Data taken over a period of 12 years 
indicate that fallout radiation apparently has resulted in high number of deaths from leukemia in children residing in South Utah. A law 
suit was filed. The question is: is the Army liable for THOSE DEATHS? 

According to a fairly common judicial standard, damage will be paid iff it is more probable than not that death would not have occurred
but for the action. Can we calculate this probability PN? 

The answer is Yes; PN is given by the formula on the bottom of this slide. But we must assume two conditions: 1. no confounding, and 
2. monotonicity (radiation cannot prevent leukemia). 

This result, although it is not mentioned explicitly in any textbooks on epidemiology, statistics or Law, is not as startling as some of its 
corollaries: 1. There is a simple correction term to this formula that accounts for confounding. 2. There is a test for monotonicity. 3. In 
the absence of monotonicity, the corrected formula still provides a lower bound on the probability of causation. 

Before I go to the topic of explanation, I would like to say a few words on the role of AI in such applications as statistics, public health, 
and social science. 

One of the reasons I find these areas to be fertile grounds to try out new ideas is that, unlike AI, tangible rewards can be reaped from 
solving relative small problems. Problems involving barely 4 to 5 variables, which we in AI regard as toy-problems, carry tremendous 
payoffs in public health and social science. 

Billions of dollars are invested each year on various public-health studies; is chocolate ice-cream good for you or bad for you, would red 
wine increase or decrease your heart rate?, etc. etc.. 

The same applies to the social sciences. Would increasing police budget decrease or increase crime rates? Is the Colorado school
incident due to TV violence or failure of public education? The Inter-university Consortium for Political and Social Research has 
distributed about 800 gigabytes worth of such studies in 1993 alone. 

Unfortunately the causal-analytical methodology currently available to researchers in these fields is rather primitive, and every 
innovation can make a tremendous difference. Moreover, the major stumbling block has not been statistical, but rather: CONCEPTUAL 
-- lack of semantics, and lack of formal machinery for handling causal knowledge and causal queries -- perfect for AI involvement. This 
has been changing recently as new techniques are beginning to emerge from AI laboratories. I predict that a quiet revolution will take 
place in the next decade in the way causality is handled in statistics, epidemiology, social science, economics, and business. While 
news of this revolution will never make it to DARPA's newsletter, and even NSF is not equipped to appreciate or support it, it will 
nevertheless have enormous intellectual and technological impact on our society. I spent many pages on these applications in my new 
book on causality (Cambridge University Press, 2000) and I hope this lecture gives you some of its flavor. 
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APPLICATIONSAPPLICATIONS--IIII

4. Finding explanations for reported events
5. Generating verbal explanations
6. Understanding causal talk
7. Formulating theories of causal thinking

We now come to one of the grand problems in AI:
Generating meaningful explanations
It is the  hardest of all causal tasks considered thus far, because 
the semantics of explanation is still debatable. I barely touched on 
this issue in the proceedings paper, but some promising solutions 
are currently in the making, and are described in greater detail in 
Chapter 10 of my forthcoming book. 
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Causal ExplanationCausal Explanation

““She handed me the fruit She handed me the fruit 
and I ate”and I ate”

The art of generating explanations is as old as mankind. 
According to the bible, it was Adam who first discovered the 
ubiquitous nature of causal explanation when he answered God's 
question with:
"She handed me the fruit and I ate" 
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Causal ExplanationCausal Explanation

““She handed me the fruit She handed me the fruit 
and I ate”and I ate”

““The serpent deceived me, The serpent deceived me, 
and I ate”and I ate”

Eve is quick to catch on:
“The serpent deceived me, and I ate”

Explanations here are used for exonerating one from blame, 
passing on the responsibility to others:

The interpretation therefore is counterfactual:
“Had she not given me the fruit, I would not have eaten.”
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ACTUAL  CAUSATION  ANDACTUAL  CAUSATION  AND
THE  COUNTERFACTUAL  TESTTHE  COUNTERFACTUAL  TEST

"We may define a cause to be an object followed by
another,..., where, if the first object had not been, the
second never had existed." 

Hume, Enquiry, 1748
Lewis (1973): "x CAUSED y" if x and y are true, and

y is false in the closest non-x-world.
Structural interpretation:

(i)   X(u)=x
(ii)  Y(u)=y
(iii) Yx′(u) ≠ y for x ′ ≠ x

The modern formulation of this concept start again with David 
Hume. It was given a possible-world semantics by David Lewis, 
and even simpler semantics using our structural-interpretation of 
counterfactuals.
Notice how we write, in surgery language, the sentence: 
"If the first object (x) had not been, the second (y) never had 
existed."

Yx'(u) ≠ y for x' ≠ x
Meaning: The solution for Y in a model mutilated by the operator
do(X=x') is not equal to y.
But this definition of "cause" is known to be  ridden with problems. 
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PROBLEMS  WITH  THEPROBLEMS  WITH  THE
COUNTERFACTUAL  TESTCOUNTERFACTUAL  TEST

1. NECESSITY –
Ignores aspects of sufficiency (Production) 
Fails in presence of other causes (Overdetermination)

2. COARSENESS –
Ignores structure of intervening mechanisms.
Fails when other causes are preempted (Preemption)

SOLUTION:
Supplement counterfactual test with Sustenance

I will first demonstrate these two problems by examples, and then provide a 
general solution using a notion called "Sustenance" which is easy to 
formulate in our structural-model semantics.
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THE  IMPORTANCE  OFTHE  IMPORTANCE  OF
SUFFICIENCY  (PRODUCTION)SUFFICIENCY  (PRODUCTION)

Observation: Fire broke out.
Question: Why is oxygen an awkward explanation?
Answer: Because Oxygen is (usually) not sufficient

P(Oxygen is sufficient) = P(Match is lighted) = low
P(Match is sufficient) = P(Oxygen present) = high

Oxygen Match

Fire

AND

Let us first look at the aspects of sufficiency (or production),
namely, the capacity of a cause to produce the effect in situations 
where the effect is absence.
In our example, both Match and Oxygen are necessary, and none 
is sufficient alone. So, why is Match considered an adequate 
explanation and Oxygen an awkward explanation? The 
asymmetry surfaces when we compute the  probability of 
sufficiency:

P(Oxygen is sufficient to produce  Fire) = low
P(Match is sufficient to produce Fire) = high

Recall: P(x is sufficient for y) = P(Yx = y|X≠x,Y≠y) which is well 
defined in our language.
Thus, we see that human judgment of explanation adequacy 
takes into account not merely how necessary a factor was for the
effect but also how sufficient it was. 
Another manifestation of sufficiency occurs in a phenomenon 
known as over-determination.
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Observation: Dead prisoner with two bullets.
Query: Was A a cause of death?
Answer: Yes, A sustains D against B.

OVERDETERMINATION:  
HOW  THE  COUNTERFACTUAL  TEST  FAILS?

U (Court order)

D (Death)

B  (Riflemen)

C (Captain)

A

Here, we consider each rifleman to be a cause of death.  Why?
The prisoner would have died without A.
The  answer  lies in the concept of SUSTENANCE:

Death would still occur even if for some reason
B's rifle gets stuck, but only it A occurs.

Sustenance is a fundamental concept that helps dissolve many (if
not all) of the  problems associated with actual causation. So let us 
see what it entails. 
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Observation: Dead prisoner with two bullets.
Query: Was A a cause of death?
Answer: Yes, A sustains D against B.

OVERDETERMINATION: 
HOW  THE  SUSTENANCE  TEST  SUCCEEDS?

U (Court order)

D (Death)

B  (Riflemen)

C (Captain)

A
⇓ False

Sustenance instructs us to imagine a new world, contrary to the 
scenario at hand, in which some structural contingencies are 
introduced. And in that contingency-inflicted world, we are to 
perform Hume's  counterfactual test. 
(Lewis talked about a related concept of "quasi dependence“ 
namely, counterfactual dependence if only "the surroundings 
were different".  Sustenance offers a formal explication of this
idea.)
Let us see formally how sustenance stands relative to necessity 
and sufficiency.
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NUANCES  IN  CAUSAL  TALK

y depends on x (in u)
X(u)=x, Y(u)=y, Yx′ (u)=y′

x can produce y (in u)
X(u)=x′, Y(u)=y′, Yx (u)=y

x sustains y relative to W=w′
X(u)=x, Y(u)=y, Yxw′ (u)=y, Yx′ w′ (u)=y′

Here we see the formal definitions of “dependence” (or 
necessity), “production” (or sufficiency) and “sustenance”.
The last condition Yx'w' (u)=y' weakens necessity by requiring that 
Y differ from y (under x'≠x) only under one special condition, 
when W is set to some w'.
But the third condition, Yxw (u)=y' substantially strengthens 
sufficiency, insisting that Y retain its value y (under x) for every 
setting of W = w. 
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y depends on x (in u)
X(u)=x, Y(u)=y, Yx′ (u)=y′

x can produce y (in u)
X(u)=x′, Y(u)=y′, Yx (u)=y

x x sustains y relative to W=w′
X(u)=x, Y(u)=y, Yxw′ (u)=y, Yx′ w′ (u)=y′

x caused y,
necessary for,
responsible for, 
y due to x, 
y attributed to x.

NUANCES  IN  CAUSAL  TALK

These  three aspects of causation have several manifestations in
causal talk.
The expressions on the right are associated with dependence (or 
necessity) 
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y depends on x (in u)
X(u)=x, Y(u)=y, Yx′ (u)=y′

x can produce y (in u)
X(u)=x′, Y(u)=y′, Yx (u)=y

x sustains y relative to W=w′
X(u)=x, Y(u)=y, Yxw′ (u)=y, Yx′ w′ (u)=y′

x causes y,
sufficient for,
enables,
triggers, 
brings about,
activates,
responds to,
susceptible to.

NUANCES  IN  CAUSAL  TALK

Notice that when production is invoked, the present tense is  
used: "x causes y", instead of "x caused y" 
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maintain,
protect,
uphold,
keep up,
back up,
prolong,
support,
rests on.

y depends on x (in u)
X(u)=x, Y(u)=y, Yx′ (u)=y′

x can produce y (in u)
X(u)=x′, Y(u)=y′, Yx (u)=y

x sustains y relative to W=w′
X(u)=x, Y(u)=y, Yxw′ (u)=y, Yx′ w′ (u)=y′

NUANCES  IN  CAUSAL  TALK

Finally, here are some expressions connected with the notion of 
sustenance.
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PREEMPTION:  HOW  THE
COUNTERFACTUAL  TEST  FAILS

Deceiving symmetry: Light = S1 ∨ S2

Light

Switch-2

Switch-1

ON

OFF

Which switch is the actual cause of light?  S1!

We now come to the 2nd difficulty with the counterfactual test, its 
failure to incorporate structural information.
If someone were to ask us what caused the light to be on, we 
would point to Switch-1. After all, S1 causes the current to flow 
through this wire, while S2 is totally out of the game.
On the other hand, the overall functional relationship between the 
switches and the light is deceptively symmetric:

Light = S1 ∨ S2 
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PREEMPTION:  HOW  THE
COUNTERFACTUAL  TEST  FAILS

Deceiving symmetry: Light = S1 ∨ S2

Which switch is the actual cause of light?  S1!

Light

Switch-2

Switch-1

ON

OFF

Turning Switch-1 off merely re-directs the current, but keeps the 
light on.
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PREEMPTION:  HOW  THE
COUNTERFACTUAL  TEST  FAILS

Deceiving symmetry: Light = S1 ∨ S2

Light

Switch-2

Switch-1

ON

OFF

Which switch is the actual cause of light?  S1!



63

PREEMPTION:  HOW  THE
COUNTERFACTUAL  TEST  FAILS

Deceiving symmetry: Light = S1 ∨ S2

Light

Switch-2

Switch-1

ON

OFF

Which switch is the actual cause of light?  S1!

Turning Switch-2 off has no effect whatsoever.
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PREEMPTION:  HOW  THE
COUNTERFACTUAL  TEST  FAILS

Deceiving symmetry: Light = S1 ∨ S2

Light

Switch-2

Switch-1

ON

OFF

Which switch is the actual cause of light?  S1!

The light turns off if and only if both switches are off.
This example is interesting because it is for the first time that we 
witness the effect of structure on our perception of actual 
causation.
Evidently, our mind takes into consideration, not merely input-
output relationships, but also the inner structure of the process 
leading from causes to effects. How? 
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ACTUAL CAUSATION
“x is an actual cause of y” in scenario u,
if x passes the following test:

1. Construct a new model Beam(u, w ′)
1.1 In each family, retain a subset of parents

that minimally sustains the child
1.2 Set the other parents to some value w ′

2. Test if x is necessary for y in Beam(u, w ′)
for some w ′

CAUSAL  BEAM
Locally  sustaining  sub-process

The  solution I would like to propose here (this is not in your 
proceedings but is explained in my book) is based on local 
sustenance relationships.
Given a causal model, and a specific scenario in this model,  we
construct a new model by pruning away, from every family, all 
parents except those that minimally sustain the value of the child.
I call such a model a causal beam.
In this new model we conduct the counterfactual test, and  we 
proclaim an event X=x the actual cause of Y=y if y depends on x. 
I will next demonstrate this construction using a classical example 
due to P. Suppes.
It is isomorphic to the two-switch problem, but more blood-thirsty. 
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X

dehydration  D

Y  death

C cyanide intake

P
Enemy -1
Poisons water

Enemy-2
Shoots canteen

THE  DESERT  TRAVELER
(After  Pat  Suppes)

A desert traveler T has two enemies. Enemy-1 poisons T's 
canteen, and Enemy-2, unaware of Enemy-1's action, shoots and 
empties the canteen. A week later, T is found dead and the two 
enemies confess to action and intention. A jury must decide 
whose action was the actual cause of T's death.
Enemy-1 claims: T died of thirst
Enemy-2 claims: I have only prolonged T's life. 
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THE  DESERT  TRAVELER
(The actual scenario)

dehydration D

Y death

C cyanide intake

Enemy -1
Poisons water

Enemy-2
Shoots canteen

P=1X=1

D=1 C=0

Y=1

Now let us construct the causal beam associated with the natural
scenario, in which  we have:
Death (Y=1), Dehydration (D=1) and no poisoning (C=0). 
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Inactive

dehydration D

Y death

C cyanide intake

Enemy -1
Poisons water

Enemy-2
Shoots canteen

Sustaining

THE  DESERT  TRAVELER
(Constructing a causal beam)

¬ X ∧ P

P=1X=1

D=1 C=0

Y=1

Consider the Cyanide  family. Since emptying the  canteen is 
sufficient for sustaining no Cyanide intake, regardless of 
poisoning, we label the link P→C “inactive”, and the link X→C
“sustaining”.
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dehydration D

y death

C cyanide intake

Enemy -1
Poisons water

Enemy-2
Shoots canteen

THE  DESERT  TRAVELER
(Constructing a causal beam)

C = ¬ X

P=1X=1

D=1 C=0

Y=1

The link P→C is inactive in the current scenario, which allows us 
to retain just one parent of C, with the functional relationship C 
=¬X.
We repeat this process on other parent-child families.
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Inactive

dehydration D

y death

C cyanide intake

Enemy -1
Poisons water

Enemy-2
Shoots canteen

Sustaining

=D ∨ C

THE  DESERT  TRAVELER
(Constructing a causal beam)

C = ¬ X

P=1X=1

D=1 C=0

Y=1

Next consider the Y-family (in the situation D=1, C=0).
Since dehydration would sustain death regardless of cyanide 
intake, we label the link C→Y “inactive” and the link D→Y
“sustaining”.
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dehydration D

y death

C cyanide intake

Enemy -1
Poisons water

Enemy-2
Shoots canteen

THE  DESERT  TRAVELER
(The final beam)

Y=X

C = ¬ X

Y=D

P=1X=1

D=1 C=0

Y=1

We drop the link  C→Y and we end up with a causal beam 
leading form shooting to death through dehydration.
In this final model we conduct the counterfactual test and find that 
the test is satisfied since Y = X.
This gives us the asymmetry we need to classify the shooter as 
the cause of death, not the poisoner, though none meets the 
counterfactual test for necessity on a global scale -- the 
asymmetry emanates from structural information. 
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Enemy-2
Shoots canteen

THE  ENIGMATIC  DESERT  TRAVELER
(Uncertain scenario)

dehydration D

y death

C cyanide intake

Enemy -1
Poisons water

UX
UP

X=1 P=1
time to first drink

u

Things will change of course, if the we do not know whether the 
traveler craved for  water before the shot.
Our uncertainty can be model by introducing a background 
variable, U, to represent the time when the traveler first reached 
for drink. 
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D = 1

y = 1

C = 0

X = 1 P = 1u = 1

CAUSAL  BEAM  FOR
THE  DEHYDRATED  TRAVELER

empty before drink

If the canteen was emptied before T drank, we have the 
dehydration scenario, as before. 
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D = 0

y = 1

C = 1

X = 1 P = 1u = 0

CAUSAL  BEAM  FOR
THE  POISONED  TRAVELER

drink before empty

On the other hand, if T drank before the canteen was emptied we 
have a new causal beam, in which Enemy-1 is classified as the  
cause of death.
If U is uncertain we can use P(u) to compute the probability P(x 
caused y), because the sentence "x was the actual cause of y" 
receives  definite truth-value in every u.
Thus, P(x caused y) =∑u | x caused y in u P(u)
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TEMPORAL  PREEMPTIONTEMPORAL  PREEMPTION

FireFire--1 is the1 is the actual causeactual cause of damageof damage

FireFire--22

House burnedHouse burned

FireFire--11

Yet,Yet, FireFire--1 1 fails the counterfactual testfails the counterfactual test

We come now to resolve the third objection against the 
counterfactual test -- temporal preemption.
Consider two fires advancing toward a house. If Fire-1 burned the 
house before Fire-2 we (and many juries nationwide) would 
consider Fire-1 "the actual cause'' for the damage, though Fire-2 
would have done the same if it were not for Fire-1. If we simply 
write the structural model as

H = F1 ∨ F2,
where H stands for "house burns down,'' the  beam method would 
classify each fire equally as a contributory cause, which is 
counterintuitive.
Here the second cause becomes ineffective only because the 
effect "has already happened" -- a temporal notion that cannot be 
expressed in  the  static causal model we have used thus far. 
Remarkably, the idea of a causal bean still gives us the correct
result if we use a dynamic model of the story. 
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S(x,t) = f [S(x,t-1), S(x+1, t-1), S(x-1,t-1)]

TEMPORAL  PREEMPTION  ANDTEMPORAL  PREEMPTION  AND
DYNAMIC  BEAMSDYNAMIC  BEAMS

x

x* House

t*
t

Dynamic structural equation are obtained when we index 
variables by time and ask for the mechanisms that determine their 
values.
For example, we may designate by S(x,t) the state of the field in 
location x and time t, and describe each variable S(x,t) as 
dependent on three other variables: the state of the adjacent 
region to the north, the state  of the adjacent region to the south 
and the previous state at the same location.
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DYNAMIC  MODEL  UNDER  ACTION:
do(Fire-1), do(Fire-2)

x

x* House

t*

Fire-1

Fire-2 t

To test which action was the cause of the damage, we first 
simulate the two actions at their corresponding times and 
locations, as shown in the slide.
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THE  RESULTING  SCENARIO

x

x* House

t*

Fire-1

Fire-2

S(x,t) = f [S(x,t-1), S(x+1, t-1), S(x-1,t-1)]

t

To apply the beam test to this dynamic model, we first need to 
compute the scenario that unfolds from these actions.
Applying the process-equations recursively, from left to right, 
simulates the propagation of the two fires, and gives us the actual 
value for each variable in this spatio-temporal domain.
Here, white represents unconsumed regions, red represents 
regions on fire, and brown represent burned regions. 
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THE  DYNAMIC  BEAM

Fire-1

Fire-2

x

x* House

t*

Actual cause:  Fire-1

t

We are now ready to construct the beam and conduct the test for 
causation.
The resulting beam is unique and is shown in the slide above.
The symmetry is clearly broken -- there is a dependence between 
Fire-1 and the conditions of the house x* at all times t ≥ t*; no 
such dependence exists for Fire-2.
Thus, the earlier fire is proclaimed the actual cause of the house 
burning.
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CONCLUSIONS
“I would rather discover one causal relation than be
King of Persia”

Democritus (430-380 BC)

Development of Western science is based on two 
great achievements: the invention of the formal 
logical system (in Euclidean geometry) by the Greek 
philosophers, and the discovery of the possibility to 
find out causal relationships by systematic 
experiment (during the Renaissance).

A. Einstein, April 23, 1953

I would like now to conclude this lecture by quoting two great 
scientists.
The first is Democritus, the father of the atomic theory of matter, 
who said: I would rather discover ONE causal relation than be 
King of Persia.
Admittedly, the political situation in Persia has changed 
somewhat from the time he made this statement, but I believe 
Democritus has a valid point in reminding us of the many 
application areas that could benefit from the discovery of even 
ONE causal relation, namely from the solution of ONE toy 
problem, on AI scale.
I have discussed these applications earlier, which include 
medicine, biology, economics, and social science, and I believe 
AI is in a unique position to help those areas, because only AI 
enjoys the combined strength of model-searching, learning and 
the logic of causation. 
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CONCLUSIONS
“I would rather discover one causal relation than be
King of Persia”

Democritus (430-380 BC)

Development of Western science is based on two 
great achievements: the invention of the formal 
logical system (in Euclidean geometry) by the Greek 
philosophers, and the discovery of the possibility to 
find out causal relationships by systematic 
experiment (during the Renaissance).

A. Einstein, April 23, 1953

The second quote is from Albert Einstein who, a year before his death,  
attributes the progress of Western Science to two fortunate events: The 
invention of formal logic by the Greek geometers, and the Galilean idea 
that causes could be discovered by experiments.
As I have demonstrated earlier, experimental science have not fully 
benefited from the power of formal methods --- formal mathematics was 
used primarily for analyzing passive observations, under fixed boundary 
conditions, while the design of new experiments, and the transitions 
between boundary conditions, have been managed entirely by the 
unaided human intellect.
The development of autonomous agents and intelligent robots requires a 
new type of analysis, in which the DOING component of science enjoys 
the benefit of formal mathematics, side by side with its observational 
component, a tiny glimpse of such analysis I have labored to uncover in 
this lecture. I am convinced that the meeting of these two components will 
eventually bring about another scientific revolution, perhaps equal in 
impact and profoundness to the one that  took place during the 
renaissance. AI will be the major player in this revolution, and I hope each 
of you take part in seeing it off the ground. 
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My next to final slide lists the cast of this show,--- a wonderful 
team of colleagues and students with whom I was fortunate to 
collaborate. Most of these names should be familiar to you from 
other stages and other shows, except perhaps Greenland and 
Robins, two epidemiologists who are currently carrying the 
banner of causal analysis in epidemiology. 
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I have borrowed many of these ideas from other authors, the 
most influential ones are listed here, while others are cited in the 
proceedings paper. I will only mention that the fundamental idea
that actions be conceived as modifiers of mechanisms, goes back 
to Jacob Marschak and Herbert Simon. Strotz and Wold were the 
first to represent actions by "wiping out" equations, and I would 
never have taken seriously the writings of these "early" 
economists if it were  not for Peter Spirtes’ lecture, 100 Miles from 
here, Uppsala, 1991, where I first learned about manipulations 
and manipulated graphs.
Thanks you all. 




