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Abstract 

Some of the main users of statistical methods - economists, social scientists, 
and epidemiologists - are discovering that their fields rest not on statisti
cal but on causal foundations. The blurring of these foundations over the 
years follows from the lack of mathematical notation capable of distinguish
ing causal from equational relationships. By providing formal and natural 
explication of such relations, graphical methods have the potential to revolu
tionize how statistics is used in knowledge-rich applications. Statisticians, in 
response, are beginning to realize that causality is not a metaphysical dead
end but a meaningful concept with clear mathematical underpinning. The 
paper surveys these developments and outlines future challenges. 

1.1 A. Century of Denial 

Francis Galton's discovery of correlation, at the end of the nineteenth century 
[1.21 J, dazzled one of his disciples, Karl Pearson, generally considered the 
founder of modern statistics. The year 1911 saw publication of the third 
edition of Pearson's The Grammar of Science, which contained a new chapter 
titled 'Contingency and correlation - the insufficiency of causation'. This is 
how Pearson introduces the new topic: "Beyorid such discarded fundamentals 
as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana 
of modern science, namely, the category of cause and effect" [1.38, p. iv). And 
what does Pearson substitute for the archaic notion of causation? Correlations 
and contingency tables! He states ( ibid, p. 159), 

Such a table is termed a contingency table, and the ultimate scien
tific statement of description of the relation between two things can 
always be thrown back upon such a contingency table .... Once the 
reader realizes the nature of such a table, he will have grasped the 
essence of the conception of association between cause and effect. 

Thus, Pearson categorically denies the need for a concept of causal relation 
independent of or beyond correlation. He held this view throughout his life 
and, accordingly, did not mention causation in any of his technical papers. 
His objection to animistic concepts such as 'will' and 'force' was so fierce and 
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4 J. Pearl

his rejection of determinism so absolute that he exterminated causation from 
statistics before it had a chance to take root. 

Pearson's crusade influenced markedly the direction of statistical research 
and education in tlie twentieth century, also known as 'The Statistical Cen
tury'. The Encyclopedia of Statistical Science [1.28), for example, devotes 12 
pages to correlation but only two pages to causation, and one of those pages 
is spent demonstrating that 'correlation does not imply causation'. Given the 
dearth of doctoral theses, research papers, and textbook pages on causation, 
Pearson apparently still rules statistics. 

Modern statisticians acknowledge the stalemate over causality. Philip 
Dawid states, "Causal inference is one of the most important, most sub
tle, and most neglected of all the problems of statistics" [1.12]. Terry Speed 
declares "Considerations of causality should be treated as they have always 
been treated in statistics: preferably not at all, but if necessary, then with 
very great care" [1.44]. David Cox and Nanny Wermuth, in a book published 
in 1996, explain, "We did not in this book use the words causal or causality .
. . . Our reason for caution is that it is rare that firm conclusions about causal
ity can be drawn from one study" [1.11]. This caution about and avoidance 
of causality has influenced many fields that look to statistics for guidance, 
especially economics, the social sciences, and the health sciences. This state
ment from one leading social scientist is typical: "It would be very healthy 
if more researchers ,abandon thinking of and using terms such as cause and 
effect" [l.32]. 

How can we explain why statistics, the field that gave the world pow
erful ideas such as the testing of hypotheses and the design of experiment 
abandoned causation so easily and so early? One obvious explanation is that 
causation is much harder to measure than correlation. Correlations can be 
estimated directly in a single uncontrolled study, while causal conclusions re
quire either controlled experiments or causal assumptions of some kind, and 
these are hard to come by in a single study. But this explanation is simplistic. 
Statisticians are not easily deterred by difficulties or by the need to conduct 
several studies, if necessary; and children manage to learn cause-effect rela
tions without running controlled experiments. 

The answer lies deeper, and it has to do with the official language of 
statistics, namely, the language of probability. This should not come as a 
surprise to most of us, since the word cause is not in the vocabulary of 
probability theory. We cannot express in the language of probabilities the 
sentence "Mud does not cause rain"; all we can say is that the two events 
are mutually correlated, or dependent - meaning that if we find one, we can 
expect the other. Naturally, if we lack a language to express a certain concept 
explicitly, we cannot expect to develop scientific activity around that concept. 
"Every science is only so far exact as it knows how to express one thing by 
one sign", said Augustus de Morgan in 1858, explaining why logic made no 
progress from the time of Aristotle until the introduction of logical notation. 
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In statistics, a scientific handling of causality would require a language in 
which the causal relationship "Mud does not cause rain" receives symbolic 
representation that is clearly distinct from "Mud is independent of rain". 
Such a language, to the best of my knowledge, has not so far become part of 
standard statistical research. 

1. 2 Researchers in Search of a Language

Two languages for causality have in fact been proposed: path analysis or 
structural equation modeling (SEM) [1.49, 1.24) and Neyman and Rubin's 
potential-response model. The former has been adopted by economists and 
social scientists. :while the latter has been advocated by a small but icono
clastic group of statisticians [1.40] who refuse to sanction the official casting 
of causality out of the province of statistics. Unfortunately, neither of these 
languages has become part of standard statistical research - the structural 
equation framework because it has been greatly misused and inadequately 
formalized (1.17], and the potential-response framework because it has been 
only partially formalized 1 and, more significant,· because it rests on an eso
teric and seemingly metaphysical vocabulary of counterfactual variables that 
bears no apparent connection to ordinary understanding of cause-effect pro
cesses. 

Currently, SEM is used by many and understood by few, while potential
response models are understood by few and used by even fewer. The explana
tion for this state of affairs may serve as a classic illustration of the immense 
importance of mathematical notation in the development of the sciences. A 
brief sketch of the SEM episode follows. 

SEM was developed by geneticists [1.49] and economists [1.24] so that 
cause-effect information could be combined with statistical data to answer 
policy-related questions. Yet current SEM practitioners are constantly tor
mented by the · question, "Under what conditions can we give causal inter
pretation to identified structural coefficients?" Sewall Wright and Trygve 
Haavelmo would have answered simply, 'Always!' According to the founding 
fathers of SEM, the conditions that make a set of equations structural and 
a specific equation y = (3x + € identified are precisely those that make the 
causal connection between X and Y have no other value but (3. Amazingly, 
this basic underst�nding of SEM has all but disappeared from the literature 
on SEM, in both econometrics and the social sciences. 

Most SEM researchers today are of the opinion that extra ingredients are 
necessary for the conclusions of a SEM study to turn into legitimate causal 
claims. Kenneth Bollen , for example, states that a condition called 'isolation' 

1 Axiomatic formalization and proof of equivalence to structural equation models 
are given in [1.19, 1.20]. 
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or 'pseudo-isolation' is necessary. 2 Bullock, Harlow and Mulaik (1. 7) reiterate 
the necessity of isolation and lament: "confusion has grown concerning the 
correct use of and the conclusions that can be legitimately drawn from these 
[SEMJ methodologies". Social scientists are not alone in this; the econometric 
literature has no less difficulty dealing with the causal reading of structural 
parameters. Ed Leamer [1.30] observes, "It is my surprising conclusion that 
economists·know very well what they mean when they use the words 'exoge
nous,' 'structural' and 'causal', yet no textbook author has written adequate 
definitions." Attempts to overcome this formal deficiency with statistical vo
cabulary have led to complex definitions of causality [1.43] and exogeneity 
[1.15) that exacted a heavy toll before their limitations were brought to light 
(see [1.30, 1.1]. 

Current difficulties with the causal reading of econometric equations are 
captured by Steven LeRoy [1.31}: "It is a commonplace of elementary in
struction in economics that endogenous variables are not generally causally 
ordered, implying that the question 'What is the effect of Y1 on Y2' where 
Y1 and Y2 are endogenous variables is generally meaningless." According to 
LeRoy's recent proposal, causal relationships cannot be attributed to any 
variable whose causes have separate influence on the effect variable, thus 
denying causal reading to most of the structural parameters that economists 
labor to estimate and ruling out most policy variables in economics [1.3). 

Nancy Cartwright, a renowned philosopher of economics, addresses these 
difficulties by initiating a renewed attack on the tormenting question: " Why 
can we assume that we can read off causes, including causal order, from the 
parameters in equations whose exogenous variables are uncorrelated?" [1.9). 
Like the founders of SEM, Wright and Haavelmo, Cartwright recognizes that 
causes cannot be derived from statistical or functional relationships alone and 
that causal assumptions are prerequisite for validating any causal conclusion. 
Unlike them, however, she launches an all-out search for the assumptions 
that would endow the parameter /3 in a regression equation y = f3x + E

with a legitimate causal meaning and labors to prove that the assumptions 
she proposes are indeed sufficient. What is revealing in Cartwright's analysis 
is that she does not consider the answer Haavelmo would have provided 
( one that applies to models of any size and shape, including models with 
correlated exogenous variables): the assumptions needed for drawing causes 
from parameters are encoded in the syntax of the equations and can be read 

2 Bollen [1989, p. 44] defines pseudo-isolation as the orthogonality condition 
cov(x, 1:) = 0, where E is the error term in the equation y = f3x + E. This con
dition is neither necessary (as seen, for example, in the analysis of instrumental 
variables [1.6, pp. 409-413], and in Figure 6 (c, e) of [l.36]) nor sufficient (e.g. 
[1.9, p. 50]) unless causal meaning is already attached to (3. 
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off the associated graph as easily as a shopping list;3 they need not be searched 
for elsewhere, nor do they require specialized proofs of sufficiency. 

These examples· reflect an alarming tendency among economists and so
cial scientists to view a structural model as an algebraic object that carries 
functional and statistical assumptions but is void of causal content. 4 Per
haps the boldest expression of this trend has recently been voiced by Holland 
[1995]: "I am speaking, of course, about the equation: {y = a+bx+1:}. What 
does it mean? The only meaning I have ever determined for such an equa
tion is that it is a shorthand way of describing the conditional distribution 
of {y} given {x}." 5 A causality-free conception of SEM may explain both 
Cartwright's search for causal assumptions outside the model and the urge of 
SEM researchers to fortify the equations with extra conditions ( e.g. isolation) 
or ban the natural causal readings of the equations [1.31]. 

The founders of SEM expressed no such trepidation. Wright [1.50] did not 
hesitate to declare that "prior knowledge of the causal relations is assumed as 
prerequisite" in the theory of path coefficients, and Haavelmo [1.24] explicitly 
interpreted each structural equation as a statement about a hypothetical 

. controlled experiment. One wonders, therefore, what has happened to SEM 
over the past 50 years, and why the basic teachings of Wright and Haavelmo 
have been forgotten. 

I believe that the causal content of SEM has been allowed to gradually 
escape the consciousness of SEM practitioners mainly for the following rea
sons: 

1. SEM practitioners have sought to gain respectability for SEM by keep
ing causal assumptions implicit, since statisticians, the arbiters of re
spectability, abhor such assumptions because they are not directly test
able.

2. The algebraic, graph-less language that has dominated SEM research
lacks the notational facility needed for making causal assumptions, as
distinct from statistical assumptions, explicit. By failing to equip causal
relations with distinct mathematical notation, the founding fathers in
fact committed the causal foundation of SEM to oblivion. Their disciples
today are seeking foundational answers elsewhere.

3 Specifically, if G is the graph associated with a causal model that renders a 
certain parameter identifiable, then the assumptions sufficient for authenticating 
the causal reading of that parameter can be read off G as follows: Every missing 
arrow, say between X and Y, represents the assumption that X has no causal 
effect on Y once we intervene and hold the parents of Y fixed. Every missing 
bi-directed link between X and Y represents the assumption that there are no 
common causes for X and Y, except those shown in G.

4 Notable exceptions are [1.30] and [1.27, pp. 75-90].
5 Holland's interpretation stands at variance with the structural reading of the 

equation above [1.24], which is "In an ideal experiment where we control X to x
and any other set Z of variables (not containing X or Y) to z, Y is independent 
of z and is given by a+ bx+ t:" [1.36, p. 704].



8 J. Pearl

Let me elaborate on this last point. The founders of SEM understood 
quite well that the equality sign in structural models conveys the asymmet
rical relation 'is determined by', and hence it behaves more like an assign
ment symbol ( :=) in programming languages than like an ordinary algebraic 
equality. However, perhaps for reasons of mathematical purity ( to avoid the 
appearance of syntax sensitivity), they refrained from introducing a symbol 
to represent this asymmetry. 

According to Roy Epstein [1.16], Wright once gave a seminar on path 
coefficients to the Cowles Commission ( the breeding ground for SEM) in the 
1940s, but neither side saw particular merit in the other's methods. Why? 
After all, a diagram is nothing but a set of nonparametric structural equations 
in which, to avoid confusion, the equality signs are replaced with arrows. 

My explanation is that early econometricians were extremely careful 
mathematicians; they thought they could keep the mathematics in purely 
equational-statistical form and just reason about structure in their heads. 
Indeed, they managed to �b so surprisingly well, because they were truly 
remarkable individuals and could do it in their heads. The consequences be
gan to surface in the early 1980s, when their disciples began to mistake the 
equality sign for an algebraic equality and, suddenly, the 'so-called distur
bance terms' did not make any sense at all [1.39]. We are living with the sad 
end of this tale: by failing to cast their insights in mathematical notation, 
the founders of SEM brought about the current difficulties surrounding the 
interpretation of structural equations, as summarized by Holland's "What 
does it mean?" 6 

1.3 Graphs as a Mathematical Language 

Certain developments in the past decade promise to bring causality back into 
the mainstream of scientific investigation. These developments involve an im
proved understanding of the relationships between graphs and probabilities, 
on one hand, and between graphs and causality, on the other. The fundamen
tal change of the past decade is the emergence of graphs as a mathematical 
language for causality. By mathematical language, I do not mean simply 
a heuristic mnemonic device for displaying 'deeper' mathematical relation
ships but quite the opposite: graphs emerge as the fundamental notational 
system for concepts and relationships that are not easily expressed in any 
mathematical language ( e.g. equations or probabilities) other than graphs. 
Additionally, graphs can serve both as models for determining the truth of 
causal utterances and as a symbolic machinery for deriving such truths from 
other causal premises [1.19]. 

6 The teachings of current economists and philosophers who understand. the role 
of causality in SEM, among them Leamer [1.30], Woodward [1.48], Cartwright 
[1.8], Hoover [1.27] and Goldberger [1.22], are in danger of meeting a similar fate, 
unless their ideas are cast into mathematical symbols. 
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A concrete example will demonstrate the power and potential of the 
graphical language. One of the most frustrating issues in causal analysis has 
been the problem of covariate selection, for example, determining whether 
one can add a variate z to a regression equation without biasing the result. 
More generally, whenever we try to evaluate the effect of one factor (X) 
on another (Y), we wonder whether we should adjust our measurements for 
possible variations in some other variable, Z, sometimes called a covariate, 

concomitant, or conj ounder. Adjustment amounts to partitioning the popu
lation into groups that are homogeneous relative to Z, assessing the effect of 
X on Y in each homogeneous group, and, finally, averaging the results. 

The elusive nature of such an adjustment was recognized as early as 1899, 
when Pearson discovered what in modern terms is called Simpson's paradox, 
namely, that any statistical relationship between two variables may be re
versed or negated by including additional factors in the analysis. For exam
ple, we may find that students who smoke obtain higher grades than those 
who do not smoke; but, adjusting for age, smokers obtain lower grades than 
nonsmokers in every age group; but, further adjusting for family income, 
smokers obtain higher grades than nonsmokers in every income-age group; 
and so on.7

Despite a century of analysis, Simpson's reversal phenomenon continues 
to 'trap the unwary' [1.12], and the main question - whether an adjustment 
for a given covariate Z is appropriate in any given study - continues to be 
decided informally, on a case-by-case basis, with the decision resting on folk
lore and ·intuition rather than on hard mathematics. The standard statistical 
literature is remarkably silent on this issue and, aside from the common ad
vice that one should not adjust for a covariate that is affected by the putative 
cause (X), it provides no guidelines as to what covariates would be admissi
ble for adjustment and what assumptions would be needed for making this 
determination formally. 8 

In the potential-response framework, a crit,erion called 'ignorability' has 
been advanced [1.41], which reads: Z is an admissible covariate relative to the 
effect of X on Y if, for every x, the value that Y would obtain had X been x 
is conditionally independent of X, given Z. Needless to say, such a criterion 
merely paraphrases the problem in the language of counterfactuals without 
providing a working test for covariate selection. Since counterfactuals are not 
observable, and judgments about conditional independence of counterfactuals 

7 The classical case demonstrating Simpson's reversal is the study of Berkeley's 
alleged sex bias in graduate admission [1.5], where, overall, data show a higher 
rate of admission among male applicants but, when broken down by departments, 
data show a slight bias toward female applicants. 

8 This advice, which rests on the causal relationship 'not affected by' is, to the 
best of my knowledge, the only causal notion that has managed to find a place 
in statistics textbooks. The advice is, of course, necessary, but it is not sufficient. 
The other common guideline, that X should not precede Z [1.42, p. 326], is 
neither necessary nor sufficient. 
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are not readily assertable from ordinary understanding of causal processes, 
ignorability has remained a theoretical construct that has had only minor 
impact on practice. Practising epidemiologists, for example, well apprised of 
ignorability analysis via the admirable papers of Robins [1.40] and Green
land and Robins [l.23], are still debating the meaning of 'confounding' and 
often adjust for the wrong sets of covariates [1.47). Social scientists, likewise, 
despite a penetrating ignorability analysis of the Lord paradox ( a version of 
Simpson's paradox) by Holland and Rubin [1.25), are still struggling with 
various manifestations of this paradox in psychometric research [1.46]. 

In comparison, formulating the adjustment problem in the language of 
graphs has immediately yielded a general solution to the problem that is both 
natural and formal. The solution method invites the investigator to express 
causal knowledge (read: assumptions) in meaningful qualitative terms by us
ing arrows among quantities of interest, and, once the graph is completed, 
a simple procedure decides whether a proposed adjustment is appropriate 
relative to the quantity under evaluation. 

For example, the proc�dure described in the following five steps deter
mines whether a set of variables Z should be adjusted for when we we wish 
to evaluate the total effect of X on Y. The assumptions encoded in the initial 
graph were explicated in footnote 2, and Figure 1.1 illustrates the result of 
each step. 
Procedure:9

Input: Directed acyclic graph in which three· subsets of nodes are marked 
X,Y and Z.

Output: A decision whether the effect of X on Y can be determined by 
adjusting for Z.

Step 1. Exit with failure if any node in Z is a descendant of X.

Step 2. (simplification) Simplify the diagram by eliminating all nodes (and 
their. incident edges) that are not ancestors of either X or Y or Z.

Step 3. (moralization) Add an undirected edge between any two ancestors of 
Z which share a common child. 

Step 4. (pruning) .Eliminate all arrows emanating from X.

Step 5. (symmetrization) Strip the arrows from all directed edges. 
Step 6. (test) If, in the resulting undirected graph, Z intercepts all paths 

between X and Y, then Z is an appropriate _set of covariates for statistical 
adjustment. Else, Z should not be adjusted for. 

When failure occurs in Step 1, it does not mean that the measurement of Z 
cannot be useful for estimating the effect of X on Y; nonstandard adjustments 
might then be used instead of the standard method of partitioning into groups 

9 This procedure is an adaptation of the back-door criterion [1.35, 1.36] using the 
moralization test [1.29] of d-separation [1.34]. An equivalent procedure can be 
obtained from Theorem 7.1 of Spirtes et al. [1.45]. 



Problem: Test if Z1 and Z2 are 
sufficient measurements 
STEP 1: Z1 and Z2 should not 
be descendants of X 

STEP 3: Delete all arcs emanating 
fromX 

STEP 5: Strip arrow-heads 
from all edges 

1. Statistics, Causality, and Graphs 11 

STEP 2: Delete all non-ancestors 
of {X, Y,Z} 

STEP 4: Connect any two parents 
sharing a common child 

STEP 6: Delete Z1 and Z2 
Test: If X is disconnected from Y
in the remaining graph, then 
Z1 and Z2 are appropriate 
measurements 

Fig. 1.1. The graphical solution of the covariate-selection problem 
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homogeneous relative to Z (see [l.18]). Finally, if the objective of the study 
is to evaluate the 'direct', rather than the 'total' effect of X on Y, as is the 
case in the Berkeley example, then other graphical procedures are available 
to determine the appropriate adjustment (see [l.33]).10 

The example above is not an isolated case for which clarity and precision 
are gained through the use of graphical methods. In fact, the conceptual basis 
for SEM achieves a new level of mathematical precision and clarity through 
graphs. What makes a set of equations 'structural', what assumptions should 
be ascertained by the authors of such equations, and what policy claims are 
advertised by a given set of structural equations are some of the concerns not 
addressed formally in the economics literature [1.30] that now receive simple 
and mathematically precise answers. 

It turns out that the assumptions encoded in a causal graph are also 
sufficient for defining other notions that economists have found difficult to 
interpret - for example, defining when a variable is exogenous, when a variable 

· is an 'instrument', and wha,t those 'so-called disturbance terms' are.11 The
common definition for exogeneity, according to which X is exogenous for Y
whenever it is 'independent of the random terms of the system' [1.14, p. 169]
is ambiguous, because (1) the random terms are not fully defined [1.30] and
(2) in the case where the equation for Y contains variables other than X,

one must specify which random terms are to be considered. Such difficulties
prompted Engle et al. [1.15] to seek new definitions of exogeneity, outside
of the structural equation framework; however, the definition they finally
adopted (i.e. 'superexogeneity') turned out merely a complicated disguise of
the one they abandoned [1.1].

The potential-response model of Rubin, Holland and Robins also receives 
foundational support from the graphical representation. The unit-response 
function Y(x, u), which is taken as a primitive in the potential-response 
framework (read: the value that Y would have obtained in unit u had X been 
x), can now be given a more mathematical interpretation ( read: the solution 
for Y of a given set of simultaneous equations, which is obtained after delet
ing the equation for X and substituting the conditions U = u and X = x). 
Accordingly, rules of inference that in the potential-response framework must 
be taken as axioms turn into theorems in the graphical framework, the valid
ity of which rest on the equation-deletion semantics of Y(x, u). Robins' rule 
of consistency [1.40] 

X = x ==} Y(xY = Y 
is an example of such an axiom/theorem. 

10 Procedures for proper evaluation of the direct effect of X on Y should embody 
the requirement that other factors ( of Y) should be 'held constant' by external 
means, as distinct from the routine procedure of 'adjusting' for those factors. 

11 Readers will recognize the connection between exogeneity and the problem of 
covariate selection; a variable X is exogenous relative to Y if the effect of X on 
Y can be determined by regressing Y on X or, in other words, if the empty set 
of covariates Z = {O} is admissible according to the procedure above. 
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How do scientists predict the outcome of one experiment from the results 
of other experiments run under totally different conditions? Such transfers 
of experimental knowledge, although essential to scientific progress, involve 
inferences that cannot easily be formalized in the standard languages of logic, 
physics, or probability because these influences require a symbolic distinction 
between manipulative phrases, such as 'holding Z fixed', and observational 
phrases, such as 'conditioning on Z'. The standard algebras, including the 
algebra of equations, Boolean algebra, and probability calculus, are all geared 
to serve observational but not manipulative sentences. 

Graphs fill this linguistic gap. They provide both semantics and axiomatic 
characterization of manipulative statements of the form 'Changing X will not 
affect Y if we hold Z constant', and also serve as 'theorem provers' to facilitate 
the derivation of such sentences from other sentences (1.19]. 

1.4 The Challenge 

Recent progress in graphical methods and nonparametric structural model
ing has rendered causal analysis amiable to ordinary statistical techniques 
and accessible to rank-and-file researchers. Investigators can now articulate 
qualitative causal assumptions in a friendly formal language, combine these 
assumptions with statistical data, and derive new causal conclusions with 
mathematical precision. Simple methods are now available for solving the 
following problems: 

1. Deriving algebraic expressions for causal effect estimands, both total and
direct (1.36).

2. Selecting measurements ( covariates or confounders) to obtain unbiased
estimates of treatment effects from observational studies (provided cer
tain causal connections can be assumed nqnexistent) (see Section·l.3)

3. Predicting (or bounding) treatment effectiveness from trials with imper
fect compliance (1.10, 1.4, 1.37].

4. Estimating ( or bounding) counterfactual probabilities ( e.g. John was
treated and died, but would he have survived had he not been treated?)
(1.2].

Commenting on the state of logic prior to the advent of Boolean algebra,
Augustus de Morgan [1.13] observed, 

Every science that has thriven has thriven upon its own symbols: 
logic, the only science which is admitted to have made no improve
ments in century after century, is the only one which has grown no

symbols. 

Throughout the twentieth century, the study of causality in statistics has 
been conducted within the confines of probability calculus; it has grown no 
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symbols and has not thriven either. Given the dazzling progress of logic after 
the advent of Boolean notation, one cannot help but hope that similarly 
spectacular changes will attend causal modeling once graphical notation is 
accepted. 
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