ORGANIZATIONAL BEHAVIOR AND HUMAN PERFORMANCE 28, 379—394 (1981)

Causal and Diagnostic Inferences: A Comparison
of Validity
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Decision-support technologies are founded on the paradigm that direct
judgments are less reliable and less valid than synthetic inferences produced
from more '‘fragmentary’" judgments. Moreover, certain types of fragments
are normally assumed to be more valid than others. In particular, judgments
about the likelihood of a certain state of affairs given a particular set of data
(diagnostic inferences) are routinely fabricated from judgments about the
likelihood of that data given various states of affairs (causal inferences), and
not vice versa. This study was designed to test the benefits of causal synthesis
schemes by comparing the validity of causal and diagnostic judgments against
'ground-truth’” standards. The results demonstrate that the validity of causal
and diagnostic inferences are strikingly similar; direct diagnostic estimates of
conditional probabilities were found to be as accurate as their synthetic coun-
terparts deduced from causal judgments. The reverse is equally true.
Moreover, these accuracies were found to be roughly equal for each causal
category tested. Thus, if the validity of judgments produced by a given mode of
reasoning is a measure of whether it matches the format of human semantic
memory, then neither one of the causal or diagnostic schema is a more univer-
sal or more natural format for encoding knowiedge about common, everyday
experiences. These findings imply that one should approach the “'divide and
conguer’’ ritual with caution; not every division leads to a conquest, even
when the atoms are cast in causal phrasings. Dogmatic decompositions per-
formed at the expense of conceptual simplicity may lead to inferences of lower
quality than those of direct, unaided judgments.

Most decision-aiding technologies are based on the assumption that
synthetic conclusions produced from *‘fragmentary’’ judgments are more
valid than direct, unaided inferences. Quoting Slovic, Fischhoff, and
Lichtenstein (1977):

Most of these decision aids rely on the principle of divide and conquer. This
*“decomposition’ approach is a constructive response to the problem of cognitive
overload. The decision aid fractionates the total problem into a series of structur-
ally related parts, and the decision maker is asked to make subjective assessments
for only the small components. Such assessments are presumabiy simpler and more
manageable than assessing more global entities. Research showing that decompo-
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sition improves judgment has been reported by Armstrong, Denniston, & Gordon
(1975), Gettys, Michel, Steiger, Kelley, & Peterson (1973), and by Edwards, Phil-
lips, Hayes, & Goodman (1968). (pp. 17-18)

A close look at decision-aiding techniques reveals that the structuring
procedures that are used fall into three major categories: cascading,
aggregation, and inversion. Cascading entails the chaining of a sequence
of local relations r,(x,, x,), FolX9, X3y oy Fpe Xy, Xp) tO produce a global
relation R(x,, x,). Aggregation combines the relations r(y, x,), 7(v, x,), . . .,
r(v, x,) to form R[y, (x,, x,, .. ., x,)]. Inversion entails converting the
direction of certain relations to an easier format, e.g., r,(x, y) is converted
to ry(y, x).

A typical example of cascading is involved when we wish to infer the
consequence of a long sequence of actions. This inference is normally
done by separately considering the effect of each individual action in the
chain predicated upon the conditions created by the sequence that pre-
cedes it, then computing the overall effect by some formal rule. Another
example is that of inferring the consequence of actions intertwined with a
sequence of uncertain events. In the practice of decision analysis, the
quality of actions is invariably inferred from Jjudgments about the likeli-
hood of the actions’ consequences cascaded by judgments about the de-
sirability of those consequences. Decision analysts seldom accept direct
Jjudgments about preferences on actions.

Aggregation is best exemplified by the task of assessing the cumulative
impact of a large set of data on a given set of hypotheses. If the assess-
ment task is complex, it may be helpful to assess separately the likelihood
ratios for each individual datum, then aggregate these ratios by some
normative rule (usually multiplication) to synthesize the overall joint im-
pact. The synthetic conclusion is generally assumed to be more valid than
that obtained by making a direct judgment of the Jjoint impact of all the
data (Edwards er al., 1968).

The most prevalent example of inversion is the decision analysts’ pref-
erence for expressing the linkage between evidence and a hypothesis in
causal phrasings. Judgments about the likelihood of a certain hypothesis
given a set of data (diagnostic inferences) are routinely synthesized from

Jjudgments about the likelihood of that data given various states of affairs
(causal inferences), and nor vice versa. The following set of examples
illustrates the prevalence of this practice.

In the context of medical diagnosis, we find:

It is more expedient to ask the physician to estimate simpler probabilities and then
use Bayes’ theorem to evaluate the desired probabilities. The simpler probabilities
can be classified into two types: the prior and the identification probabilities. The
priors are the probabilities which the doctor assigns to each of the four diseases
before any new tests are performed. The identification probabilities are the prob-
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abilities that the pathologist says disease J. given that the boy has disease i.
(Ginsberg & Offensend, 1968, p. 360)

In a business management environment, we find an example of a deci-
sion maker who attempts to infer the probability that a stee] industry
strike is about to break out from the fact that his competitor is not pre-
paring for one (Morris, 1968). Morris automatically assumes that the de-
sired probability ought not to be assessed directly but rather should be
obtained from a Bayes inversion of beliefs such as, **if in fact there will be
no strike, the probability of this competitor’s preparing for no strike is .40;
the probabilities that he will be preparing for a 30-, 45-, or 90-day strike
are .20, respectively” (p. 59). In the area of political situation assessment,
we are shown an intelligence analyst evaluating the intent of Country A to
develop an independent nuclear weapons production capability within the
next 5 years (Decisions and Designs, Inc., 1973). The analyst in this
setting is instructed to derive the desired conclusion by first quantifying
such “‘elementary’’ beliefs as: If Country A has the given intention, there
will be an increase in the Nuclear R&D Program: if that program is in-
creased, there will be an increase in the use of nuclear material: ete.
(Chap. 14, pp. 5-10). Presumably these causal beliefs facilitate more
valid quantification than their diagnostic equivalents, e.g., an increase in
the use of nuclear material suggests an increase in the Nuclear R&D
Program.

Causality is an elusive concept, one loaded with philosophical difficul-
ties. While a time precedence relationship would invariably hold be-
tween a cause and its effect, time precedence is by no means a sufficient
condition for causality. To our knowledge, no attempt to give a precise
definition of causality based entirely on nonpsychological concepts has
been completely satisfactory. At the same time, causal relations are very
common and fairly intelligible in ordinary human discourse. We rarely
find two persons sharing a common heritage who disagree on cause—ef-
fect directionality,

Understandably, the causal/evidential distinction has not been explic-
itly identified among the giossary of tools employed by decision analysts.
However, the examples cited above clearly demonstrate that this distinc-
tion tacitly controls the actual practice of decision analysis over a wide
variety of problem domains. The distinction also has a strong influence
over the structuring of aggregation procedures; the assumption of condi-
tional independence among variables (permitting multiplications of likeli-
hood ratios) is usually upheld when the condition is perceived as the cause
and the variables as its manifestations. Conditional independence is rarely
assumed when the condition is perceived as a supporting piece of evi-
dence for the remaining variables.
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While the experiments of Armstrong et ql. (1975), Gettys et al.
(1973), and Edwards ey al. (1968) were directed toward verifying the ben-
efit of cascading and aggregation, this paper focuses on the issue of
causal/diagnostic inversion. Human preference for causal relations may
come from the fact that in many cases we can associate P(manifesta-

“foul’|weather is “fair’’) as a stable property, inherent with the indi-
cator’s mechanism, a quantity that can be measured in isolation regard-
less of other factors. The quantity P(weather is **fair’’ indicator reads
“foul’’), on the other hand, depends on both the indicator’s mechanism
and the general weather conditions in that neighborhood and, therefore,
appears harder to assess. This asymmetry also underlies the celebrated
urn model (Raiffa, 1970) and is typical to many statistical applications
where P(datalhypothesis) is obtained by computation from a so-called
statistical mode! like the assumption that a set of observations is normally
distributed (Edwards et al., 1968). However, it is not at ajl clear whether
any bias in favor of causal schema exists in cases where a parametric
statistical model is not obvious and where both P(datalhypothesis) and
P(hypothesis{data) are inferred by recalling various segments of human
memory about everyday experiences. '
Tversky and Kahneman (1977) indeed detected what they called
“"causal biases" in decision making. They showed that subjects perceive

valid inferences still remains.

Aside from its psychological interest, this question has also acquired
technological import. One application has already been alluded to, that of
guiding the procedures used by decision analysts in eliciting likelihood
estimates. The second application concerns organization of knowledge-
based computer €xpert systems (Feigenbaum, 1977). In this latter appli-
cation judgments from experts are encoded in the form of heuristic rules

which are later combined to yield expert-like conclusions, explanations,

and interpretations. The appropriate format for these fragmentary judg-
ments is still subject to debate. Some knowledge-based systems (e.g.,
Shortliffe’s MYCIN, 1976) insist on diagnostic inputs. Others (e.g., Ben-
Bassat’s MEDAS, 1980) require the more traditional causal Jjudgments.
The issue is whether experts, such as physicians, find it more comfortable

“
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to estimate the likelihood of a disease given a set of symptoms or to evalu-
ate the likelihood that a given disease be accompanied by a certain set of
symptoms. Comfort aside, which form of input yields more valid
therapeutical recommendations?

The experiment reported in this paper was designed to shed light on
some of these issues. The problem of testing judgment validity, which has
long been exacerbated by the lack of suitable criteria for measuring the
quality of judgments about real-life experiences, was circumvented by
““creating’’ our own ground-truth data.

METHOD
Subjects

One hundred seven undergraduate engineering students and 58
graduate students from various departments at UCLA participated in this
study. The undergraduates, who were enrolled in one of two upper-level
undergraduate engineering classes, served in the experiment as part of an
in-class lecture. The graduate students were recruited via advertisements
posted around the campus and in the campus newspaper, and they were

_paid according to the accuracy of their judgments.

Materials

The undergraduates participated in the first phase of the study. Their
task was to answer 24 yes/no questions concerning their activities and
beliefs; the answers provided the data base (ground truth) for the estima-
tion phase which followed. The questions were of two types: *'X ques-
tions’’ and ‘Y questions,’’ equal in number and randomly ordered on the
questionnaire., Each X query questioned a condition, activity, or belief
considered by the experimenters to be a causal agent for a condition,
activity, or belief specified in one ¥ query. For example, since the color of
a person’s eyes is perceived to be influenced by that person’s parents, not
vice versa, X may represent the event of a mother having blue eyes and ¥
may denote the condition of her daughter having blue eyes. Four
categories of causal relations were employed: (1) genetic causality, where
a genetic condition specified by the X question serves as a cause of the
condition designated by the Y question: (2) training causality, where the X
condition provides training for the ¥ activity; (3) habit-forming causality,
where the X condition serves as a habit-forming agent for the behavior
specified by the ¥ condition; and finally, (4) self-interest causality, where
the X question defines a particular self-interest that leads to the belief
unveiled by the ¥ question. Table 1 shows the four causal categories and
the corresponding X and Y questions for each category.

The questions regarding the definition of causality (see Introduction)
have prompted a separate pilot study aimed at verifying whether subjects
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TABLE |
CAUSAL AND DiaGNoOSTIC ASSERTIONS USED FOR COMPILING THE DATA Base

X Questions

Y Questions

Genetic causality
. Mother has blue eyes.
2. At least one of student’s parents
is left-handed.
3. Student is a male over S ft 9 in.

Training causality
4. Student took musical lessons as
a child.
3. Student ran or jogged reguiarly
in high school.

6. Student took typing in high school.

Habit-forming causality
7. Student attended church regularly
in high school.
8. Student is currently married.
9. Student’s father was "*handy"
around home.

Self-interest causality

10. Student finds it financially
difficult to complete his college
studies

11. Student’s family finds medical
expenses constitute a substantial
burden.

12. Student closely follows UCLA
football.

Student has blue eyes.

Student is left-handed.
Student played on high school
basketball team.

Student currently plays a musical
instrument,

Student currently runs or jogs
regularly.

Student types =40 words/min now.

Student attends church regularly
now,
Student is wearing a wedding ring.
Student changes his own oil in
his car.

Student favors UCLA increasing
financial aid at expense of larger
classes.

Student favors nationalized medical-
care pian.

Student favors UCLA building
on-campus football stadium,

perceived the X conditions to be causal agents for the Y conditions. One
hundred five students were asked to identify the direction of causality in
the 12 X~Y conditions shown in Table 1. For each of the 12 pairs, Ap-
pendix 1 lists the percentage of subjects who identified X as the causal
agent for Y. Clearly, there was almost complete agreement regarding
the cause—effect directionality,

The data compiled from the undergraduates’ responses served as the
estimation targets in the second phase of the experiment. In this phase,
the graduate students’ task was to estimate the proportion of under-
graduates responding in particular ways on the questionnaire. For a given
X —Y relation, each graduate student was instructed to estimate either a
causal triplet or a diagnostic triplet. When estimating the causal triplet,
the estimator first considered P(X) (e.g., "*What percentage of people said
their mother had blue eyes?""), then P(Y)X) (e.g., **What percentage of the
people who said their mother had blue eyes also said they themselves
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have blue eyes?""), and then P( Y[ X) (e.g., " What percentage of the people
who said their mother did nor have blue eyes said they themselves have
blue eyes?'"), In assessing a diagnostic triplet, the student first estimated
P(Y) (e.g., **What percentage of people said they have blue eyes?”’), then
PX|Y) (e.g., **What percentage of the people who said they have blue
eyes said their mother also had blue eyes?’"), and then P(X[?) (e.g.,
""What percentage of the peopie who said they do 707 have blue eyes said
their mother had blue eyes?’). Note that the three components of each
triplet represent statistically independent quantities and, moreover, that
every component can be deduced from the three members of the opposing
triplet via Bayes’ theorem.

Procedure

The undergraduates answered the gquestionnaire during a regularly
scheduled class meeting. The graduate students were assembled in groups
ranging in size from 4 to 15 persons. Before they began the task, the
graduate students were told about the nature of the estimations they
would be making, and about the “'pay scale’” which was dependent on the
proximity of their estimates to the actual proportions computed from the
undergraduates’ responses. Since people tend to be easily confused be-
tween conditional probabilities and joint probabilities, special care was
exercised to ensure that subjects thoroughly understood the meaning of
the statement, *‘the percentage of people who said X who also said ¥.”
Subjects were explicitly told to think only of the population of those
persons who said X and to estimate the proportion of those who said ¥
among this population. These instructions were accompanied by Venn
diagrams depicting these proportions and were followed by an actual
numerical example.

Half of the graduate students estimated causal triplets for odd-
numbered X ~Y relations and diagnostic triplets for even-numbered rela-
tions. For the other half of the subjects, this pattern was reversed. Each
graduate student estimated one triplet for each of the 12 relations, thus
making a total of 36 probability estimates. The estimators were given as
much time as needed to contemplate the estimates required. Most of the
students took between 20 and 30 min to complete the task.

RESULTS AND DISCUSSION

The task of evaluating Jjudgment validity requires a choice of a validity
criterion. A variety of criteria has been proposed and utilized for measur-

' The responses to the football stadium question of 33 graduate students were deleted from
the data analysis because of an inadvertent discrepancy between the wording of the ques-
tions posed to those s‘ubjects and the wording of the corresponding question given to the
undergraduates in the first phase of the study.
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ing the degree of disparity between a given actual proportion P, and an
estimate P, of that proportion (Pearl, 1978). We have examined both the
quadratic error,

Q =P, - P,y : (D
and the logarithmic error,
L =P,logP,/P,+ (1 ~P,)log(l - P(1 — P,).

Both gave rise to practically identical patterns, so this paper will present
data based on the quadratic error only.

For each query we took Q, the arithmetic mean of the quadratic errors
across subjects, as a measure of the inaccuracy of the corresponding
estimate. These mean quadratic errors, along with the actual proportions
and mean estimates, are shown in Table 2. These estimates are called
direct estimates to distinguish them from synthetic estimares, which will
be discussed later.

Table 2 reflects a slight tendency for the mean estimates to regress to-
ward the .50 probability level in relation to the actual probability. That is,
in 65% of the cases, the proportions were actually ‘*more extreme’’ (closer
to .00 or 1.00) than their associated estimates. This effect is more apparent
in Fig. 1, which displays the relationship between the actual proportions
(along the horizontal axis) and their associated estimates (along the verti-
cal axis). <

By and large, one cannot detect a marked difference in accuracy be-
tween causal estimates (i.e., P(Y]X) and P.(YX)) and their diagnostic
counterparts (i.e., P (X|Y) and P(X|Y)). In Fig. 1, for example, where
accuracy is reflected by proximity 1. the diagonal line, the two families of
estimates appear equally dispersed. However, such a comparison is not
entirely reliable. Since the values of the actual proportions P,(Y]X) are
generally smaller than those of P,(X|Y), a direct comparison between their
estimates may not reflect true differences in validity. An estimation error
in the neighborhood of P = .50 is far less severe than an error of equal
magnitude near the extremes (.00 and 1.00). On four of the X — Y relations
the actual proportions P,(Y]X) and P ,(X|Y) are fairly close to one another
(within .15). In all four cases P Y|X) is at least slightly more accurate than
P X|Y), lending some support to the hypothesis that causal reasoning
leads to better inference making than diagnostic reasoning. However, if
the same procedure is employed with the PY]X) estimate (invoking
causal reasoning) and the P (X |Y) estimate (based on diagnostic reason-
ing), only 3 of the 7 comparisons show an advantage for P,(Y|X). Since the
difference between causal and diagnostic reasoning in these 11 compari-
sons is generally of small magnitude, there is not a noticeable advantage
for the former, as had been anticipated.
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F16. 1. Mean estimates versus actual proportions,

Another way to circumvent the “apples versus oranges’’ difficulty is to
synthesize causal and diagnostic estimates that can be compared on equal
ground. To do this we aggregated subjects’ estimates by Bayes’ theorem
to calculate synthetic estimates according to the following equations:

P(X) =PLX|V)PY) + PX| D) [1 - Py n], (2)
PUY) =P{Y|X) P(X) + P(Y|X)[1 - P(X)], (3)
Pur|p < BEDED, / @

Pyx| v =PI P )

P(Y)
[l - P(X|D] P(1)

”s(Y'X)=[1-Pe(Xm]Pe<Y>+[1~Pe<Xl?)][1—Pe(Y>]’ ©
Px|T) [1 - P(Y|X)] PaX) -
s i-pPiYI0]PO 1 —PLY| O] [1-Px)]"

Note that the synthetic estimates in (2), (4), and (6) should be regarded as
diagnostic since they are deduced from diagnostic inputs. Similarly, the

estimates constructed by formulas (3), (5), and (7) are causal.

Furthermore, the synthetic estimates are more reflective of the trans-
formations employed by common decision analysis procedures. For
example, formula (5) represents the celebrated transformation from prior
to posterior which was pioneered (posthumously) by Reverend Bayes in
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1761 as a means to infer the ““probability of causes.™ It has since become
almost a ritual to assume that this transformation automatically produces
more valid judgments than the direct estimate P (X|1).

Table 3 shows the mean quadratic error, 0, for both the direct estimate
and the synthetic estimate for each of the four conditional probabilities.
The direct estimates for P(Y]X) and P(¥]X) involve causal reasoning and
the direct estimates for P(X|Y) and P(X|Y) involve diagnostic reasoning,
while this relationship reverses when the synthetic estimates are consid-
ered.

Also shown is an indicator called the normalized error difference which
gives a measure of the significance of the difference between the direct
estimate and the synthetic estimate. It was computed by the formula

=(n)1‘/,2(édiagnostic - Qcausal) (8)

2 2 u2 ?
T~ causal + o diagnoslic)

normalized error difference

where Qdiagnostic and Qcausa, stand for the mean quadratic error across
subjects for either the direct or synthetic estimates, as appropriate, and o*
represents the variance of those quadratic errors. One property of this
normalized error difference is rather obvious: Its value is made increas-
ingly positive when the validity of the causal estimate becomes signifi-
cantly greater than that of the diagnostic estimate, and negative when the
reverse is true. Clearly, since the same actual proportion applies to both
the direct estimate and the synthetic estimate for a particular probability,
the ‘‘apples versus oranges’’ problem is eliminated.

Across all estimates, there are nine instances where the normalized
error difference is significant at the .05 level according to a standard
two-tailed ¢ distribution. In six of these cases, it is the causal estimate that
is better than the diagnostic, which leaves three cases in which the diag-
nostic is better. Thus, there is little evidence in these data for the superi-
ority of causal reasoning over diagnostic reasoning. In fact, only one of
the problems (musical instrument) shows a positive normalized error dif-
ference for all four conditional probabilities, while one other problem
(typing) has a negative normalized error difference for all four condi-
tionals.

Aside from comparing causal and diagnostic estimates, Table 3 also
enables us to compare the validities of direct versus synthetic estimates.
A suspicion that the latter may be more valid than the former could be
based on the argument that each synthetic estimate combines the output
of three knowledge sources. If these were independent mental processes
in the sense that the estimator providing them would consult different data
or invoke different procedures for their production, then one would be
justified in hypothesizing superiority for synthetic estimates over their
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direct counterparts. Comparing the data, one finds that in five of the nine
significant cases, synthetic estimates are better than their direct counter-
parts.

Table 4 shows the mean quadratic errors for direct estimates and syn-
thetic estimates with questions grouped according to the type of causality
implied in the X - Y relations. These were obtained by averaging the quad-
ratic errors overthe X — Y relations within each causal category. In general,
genetic relations induce slightly more accurate estimates than do training
and habit-forming relations, while self-interest relations induce the worst
estimates of all. This pattern is true for both direct estimates and synthetic
estimates. For each causality category the synthetic estimates are more
valid than the direct estimates of P(X|Y), and less valid for P(Y]X). In each
case, the more valid estimates are those based on causal reasoning, a fact
which lends support to the conjecture that causal reasoning is more natu-
rally invoked in interpreting common observations. However, when con-
sidering the other four columns (P(X), P(Y), P(Y|X), P(X|Y)), the pattern
of results no longer reflects causal superiority.

CONCLUSIONS

Admittedly, having ourselves adhered to the belief that causal reason-
ing is a more natural mode of inference making, we were somewhat sur-
prised that the results do not show a stronger validity differential in this
direction. Taking Table 3, for example, the overall mean of the normal-
ized error difference is equal to .25, which clearly does not support the
hypothesis of general causal superiority. In the few X —Y relations where
significant valid: ;v differentials were detected, there was not a sizable bias
favoring the causal mode. Thus, if the validity of judgments produced by a
given mode of reasoning is a measure of whether that mode matches the
format of human semantic memory, then neither the causal nor diagnostic
schema is a more universal or more natural format for encoding knowl-
edge about common, everyday experiences. It appears that semantic
memory contains both causal schema and diagnostic schema. The choice
of which schema to invoke for a particular observational relation may
depend on the nature of the relation, the anticipated mode of usage, and
the level of training or familiarity of the observer.

These findings imply that one should approach the ‘‘divide and con-
quer’’ ritual with caution; not every division leads to a conquest, even
when the resultant atoms are cast in causal phrasings. Forced transfor-
mations from diagnostic to causal judgments performed at the expense of
conceptual simplicity may lead to inferences of lower quality than direct,
“*holistic’’ judgments,
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APPENDIX 1
One hundred and five subjects answered the following question:

For each of the following pairs of actions or conditions. please put a check by the
one which you'judge to be the cause of the other. Please make one check per pair.

The percentage of subjects judging the directions of causality to match
those of Table | is listed below:

Blue eyes 97%
Left-handed 90%
Basketball 91%
Musical instrument 95%
Running 94%
Typing 99%
Church 94%
Wedding ring 91%
Repairs 97%
Financial aid 94%
Medical care 95%
Football 95%
Overall ' 95%
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