TECHNICAL REPORT
R-254
February 1998

Finding Minimal D-separators

Jin Tian Azaria Paz
Cognitive Systems Laboratory Department of Computer Science
Computer Science Department Technion IIT
University of California, Los Angeles Haifa 32000
Los Angeles, CA 90095 USA Israel
jtian@cs.ucla. edu paz@cs. Technion. AC.IL

Judea Pearl

Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles

Los Angeles, CA 90095 USA

judea@cs.ucla.edu

Abstract

We address the problem of finding a minimal separator in a di-
rected acyclic graph (DAG), namely, finding a set Z of nodes that
d-separates a given pair of nodes, such that no proper subset of Z
d-separates that pair. We analyze several versions of this problem
and offer polynomial algorithms for each. These include: finding a
minimal separator from a restricted set of nodes, finding a minimum-
cost separator, and testing whether a given separator is minimal. We
confirm the intuition that any separator which cannot be reduced by
a single node must be minimal.

1 Introduction

The problem of finding a small set of variables that renders other sets of
variables independent occurs often in probabilistic reasoning systems. The
most acute manifestation of this problem occurs in the design of observa-
tional studies. Whenever we evaluate the effect of one factor (X)) on another
(Y), we need to adjust for possible variations in some other set of variables,
7, sometimes called covariates, concomitants, or confounders, which may in-
fluence both X and Y and thus bias our assessment. Adjustment amounts
to partitioning the population into groups that are homogeneous relative to
7, assessing the effect of X on Y in each homogeneous group, and, finally,
averaging the results. Since adjustments require physical measurement of
the variables in Z, and since such measurements are often expensive if not
impossible, it is natural to seek sets Z that are as small as possible, and
still capable of removing the bias caused by confounding. It can be shown
(e.g., [Pearl 94, Pearl 95]) that the criterion of bias removal requires that Z
d-separates node X from node Y in a (causal)Bayesian network, after remov-
ing all arrows from X. Thus, the problem of finding small separating sets
translates, in this application, to finding sets of low measurement cost.

The problem also surfaces in model testing and inference. An effective
way of testing graphical models for fitness with data is to test whether the
data upholds the conditional independencies that are entailed by the graph
[Pearl and Verma 91, Spirtes et al. 93]. The reliability of such tests dete-
riorates when the conditioning sets are too large, because large separating
sets involve many degrees of freedom and require larger sample size. Fi-
nally, in inference problems, small sized separating sets amount to reduced
computational costs, especially in conditioning-based algorithms [Pearl 85,
Darwiche 95] where the variables in the separating sets are instantiated one
at a time.

This paper addresses the mathematical problem of identifying a minimal
d-separating set Z in a given directed acyclic graph, such that no proper sub-
set of Z is a separating set. We discuss several versions of this problem and
offer polynomial algorithms for each. Section 2 addresses the problem of test-
ing whether a given separating set is minimal. The theorems proved in this
section confirm the one-at-a-time intuition, namely, if we find a separating
set that cannot be reduced by one node (without compromising separation),
then that set must be minimal; no reduction by pairs and triples need be

or

Figure 1: The path activated by z;.

investigated. Section 3 harnesses the testing algorithms of Section 2 to the
solution of our main problem: finding a minimal d-separator. Section 4 ex-
tends these results to the case where the separator is restricted to a given
set, of nodes, while Section 5 finds separators of minimum cardinality and
minimum cost.

2 Testing Separators For Minimality

Problem 1 (test for minimal separation) Given two nodes X andY in
a dag D and a set Z that d-separates X from 'Y, test if Z is minimal i.e., no
proper subset of Z d-separates X from Y .

First we will find a criterion for a d-separating set to be minimal.

Definition 1 (activated paths) Consider two nodes X and Y in a dag, a
set Z that d-separates X from Y, and a node z,. We say that a path p from
X toY isactivated by 21, if p consists of a path py from X to z; and a path ¢,
from'Y to z such that p1 meets q1 at z; or one of its ancestors in converging

arrows, py and q, are not blocked by Z, and none of z,’s descendants is in
Z (Figure 1).

From the property of d-separation, it is clear that Z U {2z} is a non-
separator if and only if there exists a path activated by z;.

p2 B2
by~ : q1
4 ax
> ol -
22 21

Figure 2: The path activated by z; is blocked by z,.

Lemma 1 If Z is a separator, both Z U {z1} and Z U {23} are not separa-
tors, and a path activated by z, is blocked by zy, then zy is a descendant of
Z9.

Proof: Assume path (X, p1, 21, ¢1, Y) is activated by z; and path (X, pa, 29, ¢, Y)

is activated by z,, as in Definition 1. Assume the path p; is blocked by 25,
then p; must pass through 2, and not in converging ar rows, as shown in
Figure 2 where p; = (X, by, 29, a4, 21). Consider the path (X, by, 22,¢2,Y).
Both b; and g5 are not blocked by Z, but Z is a separator, so b; and ¢, meet
at 29 in converging arrows. So the path a; goes away from 25. a; can only go
in one direction from 2z, to z;. For assume 2’ is the head-to-head node nearest
to 2. None of z5’s descendants is in Z, so 2’ and none of its descendants are
in Z, but this makes Z block the path a;, hence the path p;. Q.E.D.

Theorem 1 Given two nodes X andY in a dag and a set Z that d-separates

X from Y, if the set ZU{z1,...,2z,} is also a separator, where zy, ..., z, are

single nodes which are not in Z and n > 2, then either Z U {z1}, or Z U {2},
.., or ZU{z,} must be a separator.

Proof: Assume all ZU{z;}, i = 1,...,n are not separators, then there
is a path d; activated by z;, for each i« = 1,...,n. Consider the path d;.
It must be blocked by at least one node from {z,...,z,}, else it won’t be

blocked by ZU{z,...,z,}. Name the node which blocks d; as zs, then from
Lemma 1 z; is the descendant of z5. If the path ds is blocked by z; we get

Figure 3: Corollary 2 does not hold in cyclic graphs.

a cyclic graph. Therefore, we can name the node which blocks dy as z3, and
29 is the descendant of z3. In general if the path d; is blocked by one node
from {z,..., 2,1} we immediately get a cyclic graph. To avoid this we name
the node blocking d; as z;,;. Finally d,, must be blocked by one node from
{z1,...,2p_1}, we must get a cyclic graph. Q.E.D.

Corollary 1 If Z and Z U Z,, are separators, where Z, = {z1,...,2z,}, then
there exist a series of n—1 sets which are separators: ZUZ;, 1 =1,...,n—1,
with

ZyC - Clyy C Zy,

such that each Z; contains exactly i nodes.

Corollary 2 If no single node can be removed from a d-separating set Z
without destroying d-separability, then Z is minimal.

Remark: This “one-at-a-time” property is obviously true in undirected
graphs; a separating set Z is minimal iff no single node can be removed
without destroying separability. But it is not at all obvious in dags, where
separation is nonmono tonic; reducing the size of a nonseparating set may
turn it into a separator. Figure 3 shows that Corollary 2 does not hold in
cyclic graphs. The set Z = {Z;, Z5} d-separates X from Y, and removing
either 7, or Z, destroys d-separability. Yet Z is not minimal, because the
empty set d-separates X from Y. Evidently, Corollary 2 rests critically on
the assumption of acyclicity.

Corollary 2 provides a method of testing if a d-separating set is minimal,
which can be further simplified through the following theorem.

Theorem 2 If a set Z d-separates X andY , we can get a smaller d-separator
Z' by removing from Z all nodes that are not ancestors of X orY .

Proof: Assume Z' is not a separator, then there exists an active path p
between X and Y. Because Z is a separator, the path p must be blocked by
one node @ in Z — Z' which is not an ancestor of X or Y and which is not
a head-to-head node on p. Each path going away from a along p must meet
a head-to-head node b since a is not an ancestor of X or Y. By the same
argument, none of b’s descendants are ancestors of X or Y. But this means
the path p is also blocked given Z'. Q.E.D.

Let An(A) denote the smallest ancestral set containing set A, that is,
An(A) = AU (Uyea{all ancestors of u}). Theorem 2 says that if Z is a mini-
mal d-separating set between X and Y, then Z C An(X UY"). The following
theorem further states that it is sufficient to consider only a subgraph of the
dag D, namely D 4,(xuy), which is composed of nodes from An(X UY") only.

Theorem 3 Given two nodes X andY in a dag D, if a set Z C An(X UY),
then Z d-separates X and'Y in D if and only if Z d-separates X and Y in

D gn(xuyy-

Proof: All paths in D 4,(xuy) are in D. Thus if Z is a separator in D, it
is a separator in Da,(xuy). If Z d-separates X and Y in D 4, (xuy), to show
that Z also d-separates X and Y in D, we need to prove that all paths from
X to Y passing through some non-ancestor nodes are blocked by Z. Consider
a path p, if p passes a non-ancestor node head-to-head, then p is blocked by
7. If p doesn’t pass any head-to-head non-ancestors, then all nodes on p are
ancestors of X or V. Q.E.D.

Combining Corollary 2, Theorem 2 and Theorem 3 yields the following
algorithm for Problem 1.

Algorithm 1 (test for minimal separation)

1. If Z contains any node which is not in An(X UY'), then Z is not
minimal, stop.

2. Construct D an(xuy)-

3. Choose any node u from Z.

4. Test if Z — {u} is a separator in Danxuy), using the algorithm in

[Geiger et al 89].

5. If Z —{u} is a separator then Z is not minimal, stop.
If Z — {u} is not a separator then choose a different node from Z,
denote it by u and goto step 4. If all nodes in Z have been checked, Z
1S5 minimal.

Analysis: Let |Z] stand for the number of nodes in Z, |E| the number of
edges in D, |Va,| the number of nodes in An(X UY'), and |E4,| the number
of edges in D4, xuy). Step 4 requires O(|E4p|) time[Geiger et al 89], and
it may be executed up to |Z| times. Thus the overall complexity of the
algorithm is O(|Z| - |E,])-

In view of the extensive literature on undirected graphs, it is often advan-
tageous to translate d-separation problems to separation problems in undi-
rected graphs. The following theorem permits this translation.

Theorem 4 Given two nodes X andY in a dag D, and a set Z C An(X UY).
7 d-separates X from Y in D if and only if Z separates X from Y in

(D an(xuyy)™, the moral graph of D sp(xuy)-

This follows from a theorem of [Lauritzen et al 90]: A set S d-separates
X from Y in a dag D if and only if S separates X from Y in (Danxuyus))™.
The condition of Theorem 4 ensures An(X UY) = An(X UY U Z) and so
(Danixuv))™ = (Dan(xuyuz))™, forall Z C An(X UY'). The moral graph is
obtained from the original graph by connecting any two nodes which have a
common child and then dropping directions.

Remark 1: Theorem 4 and Theorem 2 transfer all minimal separation
problems from dags to undirected graphs.

Remark 2: Theorem 3 can be easily proved from Theorem 4. Since the
same undirected graph (DAn(XUy))m is constructed from D and D 4, (xuy)-

Remark 3. Some properties found in undirected graphs may be extended
back to dags through Theorem 4. For example, it is obviously true in undi-
rected graphs that a separation set Z is minimal if no single node can be
removed without destroying the separability. Extending this back to dags
through Theorem 4, Corollary 2 is obtained, which is not obvious in dags.

!Another transformation from dags to undirected graphs was suggested by
[Becker and Geiger 94] to facilitate finding small loop cutsets in dags.

7

In undirected graphs we have efficient methods of testing whether a sep-
aration set is minimal[Gafni 97], which are based on the following criteria.

Theorem 5 Given two nodes X andY in an undirected graph, a separating
set Z between X and'Y is minimal if and only if for each node u in Z, there
15 a path from X toY which passes through u and does not pass through any
other node in Z.

Proof: If for each node u in Z, there is a path from X to Y which passes
through u and does not pass through any other node in Z, it is obvious
that no node can be removed from Z without destroying separability. On
the other hand, if t here exists a node v such that every path from X to Y
which passes through v will pass through some other node in Z, then v can
be removed from Z without destroying separability and Z is not minimal.
Q.E.D.

This theorem leads to the following algorithm for Problem 1. The idea
is that if Z is minimal, then all nodes in Z can be reached using Breadth
First Search(BFS) that starts from both X and Y without passing any other
nodes in Z

Algorithm 2 (test for minimal separation)

1. If Z contains any node which is not in An(X UY'), then Z is not
minimal, stop.

2. Construct D ap(xuy)-
3. Construct (D an(xuy))™.

4. Starting from X, make Breadth First Search. Whenever a node in Z
18 met, mark it if it is not already marked, and do not continue along
that path. When BFS stops, if not all nodes in Z are marked, Z is not
mainimal, stop. Remove all markings.

5. Starting from Y, run BFS. Whenever a node in Z is met, mark it if
it 1s not already marked, and do not continue along that path. When
BFS stops, if not all nodes in Z are marked, Z is not minimal. If all
nodes in Z are marked, Z is minimal.

|Z| | E an| |E | Algorithm 1 | Algorithm 2
O(Z|-|Eanl) | O(ERD)
O([Vanl®) | O(Vaanl?) | O([Vanl*) O(|Vanl*)
bounded by constant | O(|Va,|) | O(|Vanl) O(|Vanl) O(|Vanl)
O(Vaul”) || O(Vanl) O([Vanl)
O([Vanl®) | O(Vaanl?) | O([Vanl®) O(|[Vanl*)
O([Vanl) O(Vanl) | OWWVanl) | O(|Vaan|*) O([Van)
O(Vanl*) | O([Vanl’) O([Vanl*)

Table 1: Comparison of Algorithm 1 with Algorithm 2.

Analysis: Let |E'}, | stand for the number of edges in (D an(xuy))™. Step 3-
5 each requires O(|E7,|) time. Thus the complexity of the algorithm is

O(|ET,|)-

The comparison of Algorithm 1 with Algorithm 2 under different situa-
tions is given by Table 1.

3 Finding a Minimal Separator

Problem 2 (minimal separation) Given two nodes X andY in a dag D,
find a minimal d-separating set between X and 'Y, namely, find a set Z such
that 7, and no proper subset of Z, d-separates X from Y.

A variant of Algorithm 2 solves this problem.

Algorithm 3 (minimal separation)

1. Construct D an(xuy)-

Construct (D an(xuy))™.

Find a separating set Z' in (D an(xuy))™.

Starting from X, run BFS. Whenever a node in Z' is met, mark it if

it 1s not already marked, and do not continue along that path. When

9

BFS stops, let Z" be the set of nodes which are marked. Remove all
markings.

5. Starting from Y, run BFS. Whenever a node in Z" is met, mark it if
it 1s not already marked, and do not continue along that path. When
BFS stops, let Z be the set of nodes which are marked.

Return(Z).

Analysis: Step 2-5 each requires O(|E7,|) time. Thus the overall com-
plexity of the algorithm is O(|E7,|).

In Algorithm 3 we transform a dag to an undirected graph, then find a
minimal separating set in the undirected graph. The method used in the
undirected graph can not be extended to use directly in a dag. However,
there is a less efficient method for finding a minimal separating set in undi-
rected graphs which can be extended to dags. In undirected graphs, given a
separating set Z and a node u in 7, if Z —{u} is not a separator, then u must
belong to every subset of Z which is a separator. Thus to find a minimal
separating subset of Z, we check Z node-by-node: if Z — {u} is not a sepa-
rator, keep u; else remove u from Z. From Theorem 4, this method can be
used directly in dags. To this purpose we need to find a d-separating set in
D an(xuy) first, which can be easily found: if X and Y are not adjacent then
they are d-separated by their parent set Pa(X UY)[Verma and Pearl 91], the
union of the sets of parents of X and Y (less X and Y).

Algorithm 4 (minimal separation)

1. Construct D an(xuy)-
Set Z to be Pa(X UY).

Choose one node u from Z.

Test if Z — {u} is a separator in Dan(xuy), using the algorithm in
[Geiger et al 89)].

5. If 7 —{u} is a separator, set 7 = 7 — {u}.
Choose a different node from Z, denote it by u and goto step 4. If all
nodes in Z have been checked, stop.

10

Return(Z).

Analysis: Step 4 requires O(|E4,|) time, and it is executed |Vp,| times,
where |Vp,| stands for the number of nodes in Pa(X UY’). Thus the overall
complexity of the above algorithm is O(|Vp,| - |Eanl)-

The comparison of Algorithm 3 (O(|E",|)) with Algorithm 4 (O(|Vp,]| -
|Ean|)) is given by Table 1 with |Z| substituted by |Vp,|.

4 Restricted Separation

Problem 3 (restricted separation) Given two nodes X and Y in a dag
D and a set S of nodes not containing X and Y, find a subset Z of S which
d-separates X and Y .

We already know that if we find a restricted separator over S'in (D sn(xuy))™
then it is a d-separator in D. On the other hand, if there exists a restricted
d-separator over S in D then there must exist a restricted separator over
S in (Dan(xuyy)™ by removing all nodes which are not in An(X UY’) from
it. Again, this problem is transferred to the corresponding problem in an
undirected graph. But in an undirected graph, if any subset of a set S’ is a
separator, then S’ itself is a separator. These observations yield the following
theorem.

Theorem 6 Given two nodes X andY in a dag D and a set S of nodes not
containing X and Y, there exists some subset of S which d-separates X and
Y only if the set S'= SN An(X UY) d-separates X and Y.

So Problem 3 is solved by testing if S’ d-separates X and Y. This requires
O(|E]) time using the algorithm in [Geiger et al 89).

Problem 4 (restricted minimal separation) Given two nodes X and Y
in a dag D and a set S of nodes not containing X andY, find a subset Z of
S which is a minimal d-separating set between X and Y .

This problem is readily solved using Algorithm 3 or Algorithm 4. To
use Algorithm 3, we let Z’ be S’ = SN An(X UY) in step 3. The time
complexity is O(|ER,|). To use Algorithm 4, we let Z be S” in step 2. The
time complexity is O(|S’| - |Fan|). The comparison of this two algorithms is
given before.

11

5 Finding a Minimum-cost Separator

Problem 5 (minimum separation) Given two nodes X and Y in a dag
D, find a minimum(least cardinality) d-separating set between X and Y .

This problem is solved by using network flow techniques in undirected
graphs.

Algorithm 5 (minimum separation)

1. Construct D an(xuy)-
2. Construct (D an(xuy))™.

3. Take X as source node and Y as sink node. Assign unit node capacity
to all the remaining nodes.

4. Change (Danxuy))™ to a flow network as described in [Even 79].

5. Find a minimum separating set Z between X and Y, which corresponds
to a minimum cut, using a mazximum flow algorithm.

Return(Z).

Analysis: The complexity of this algorithm is O(|Vy4,|"/2-|E7,|) when the
Dinic algorithm is used[Even 79].

Algorithm 5 can also be used to find a minimum separating set restricted
to a set S: we assign unit node capacity to all nodes in S" = SN An(X UY)
and infinite capacity to all other nodes in the step 3. When the Dinic algo-
rithm is used, the complexity is O(|V4,|*) now instead of O(|Va,|'/? - |ET,|)
because not all nodes have unit capacities[Even 79]. A more efficient algo-
rithm can be achieved through the following theorem.

Theorem 7 Given a set S of nodes in an undirected graph G, we construct
a graph Gg restricted to S as follows: The nodes of Gg are S. The edges of
G are the edges in G between the nodes in S plus the following edges: Let p
and q be two nodes in S. If there is a path in G from p to q with all its nodes
except p and q outside of S, then connect p and q by an edge in Gg. Then a
set Z C S separates two nodes X and Y in Gg if and only if Z separates X
fromY in G.

12

Proof: Immediately; each active path in Gg corresponds to an active path in
G, and vice versa.

Algorithm 6 (restricted minimum separation)

1. Construct D an(xuy)-
2. Construct (D an(xuy))™.

3. Construct the graph G g restricted to X UY U S" as defined in the The-
orem 7, where 8" = SN An(X UY).

4. Take X as source node andY as sink node. Assign unit node capacity
to all nodes in S'.

5. Change Gg to a flow network as described in [Even 79].

6. Find a minimum separating set Z between X and Y , which corresponds
to a minimum cut, using a mazximum flow algorithm.

Return(Z).

Analysis: To construct G, for each node of X UY U S” we use Breadth
First Search on (Danxuyy)™ to find all its adjacent nodes in Gg in time
O(|EL,|)- Altogether constructing Gg requires O(]S'|- |E'(,|) time. Finding
a minimum separating set in G'g: requires O(|S’|'/? - |E%s'|), where |E%s| is
the number of edges in G Thus the complexity of this algorithm is O(]S’|-
|E'%|), which is asymptotically faster than O(|Vap|*) when (Danxuy))™ is
sparse.

Problem 6 (minimum cost separation) Given two nodes X and Y in
a dag D, if each node u other than X and Y is associated with a non-
negative number c(u) called the cost of u, find a d-separating set between X
and Y which has the minimum total costs.

The minimum cost d-separating set must be a minimal d-separating set.

Thus the problem is equivalent to finding a minimal d-separating set which
has the minimum cost.

13

Algorithm 5 can be used to solve this problem. The cost of each node
is assigned as the capacity of the node in step 3 of Algorithm 5. The com-
plexity of the algorithm is O(|V4,|?) when the Dinic algorithm is used. The
correctness of this algorithm is justified by the well-known Mazx-flow min-cut
theorem[Even 79].

Algorithm 6 can be used to find a minimum cost d-separating set re-
stricted to a set S, assigning the cost of each node as the capacity of the
node in step 4. Constructing Gg requires O(|S'| - |E",|) time. Finding a
minimum cost separating set in Gg requires O(]|S’|?) time. Thus the com-
plexity of the algorithm is O(|S'| - |E} | + |S']?).

6 Discussion

We have shown that problems associated with finding d-separators in directed
acyclic graphs are not substantially more complex than those associated with
finding separators in undirected graphs. In particular, we have given polyno-
mial algorithms for (1) finding any minimal separator, (2) finding a minimal
separator from a restricted set of nodes, (3) finding a minimum-cost separa-
tor, and (4) testing whether a given separator is minimal. Additionally, we
have shown that any separator which cannot be reduced by a single node
must be minimal.

Although the problems addressed in this paper are formulated in terms
of separating a pair of singleton nodes X and Y, all our theorems hold for
the general case where X and Y are disjoint sets of nodes. To adjust the
algorithms for this general case, one can simply add two extra nodes X' and
Y' to (Dan(xuyy)™, such that X' is connected to all nodes in set X and Y’
is connected to all nodes in set Y, and seek a minimal separator between X'
and Y’ restricted to nodes outside X and Y.

References

[Becker and Geiger 94] A. Becker and D. Geiger. Approximation algorithms
for the loop cutset problem. In R. Lopez de Mantaras and D. Poole,
editors, Uncertainty in Artificial Intelligence 10, pages 60-68. Morgan
Kaufmann, San Mateo, CA, 1994.

14

[Darwiche 95] A. Darwiche. Conditioning algorithms for exact and appropri-
ate inference in causal networks. In P. Besnard and S. Hanks, editors,
Uncertainty in Artificial Intelligence 11, pages 99-107. Morgan Kauf-
mann, San Francisco , CA, 1995.

[Even 79] S. Even, Graph Algorithms, Computer Science Press, 1979.
[Gafni 97] E. Gafni, Personal communication, 1997.

[Geiger et al 89] D. Geiger, T.S. Verma and J. Pearl, d-Separation: From
Theorems to Algorithms, Proceedings, 5th Workshop on Uncertainty in
Al, Windsor, Ontario, Canada, August 1989, pp. 118-124.

[Lauritzen et al 90] S.L. Lauritzen, A.P. Dawid, B.N. Larsen and
H.G. Leimer, Independence Properties of Directed Markov Fields, Net-
works, vol.20 pp491-505, 1990.

[Pearl 85] J. Pearl. A constraint propagation approach to probabilistic rea-
soning. In Proc. of the First Workshop on Uncertainty in Al pages
31-42, Los Angeles, CA, August 1985.

[Pearl 94] J. Pearl. A probabilistic calculus of actions. In R. Lopez de Man-
taras and D. Poole, editors, Uncertainty in Artificial Intelligence 10,
pages 454-462. Morgan Kaufmann, San Mateo, CA, 1994.

[Pearl 95] J. Pearl. Causal diagrams for experimental research. Biometrika
82, pp. 669-710, December 1995.

[Pear]l and Verma 91] J. Pearl and T. Verma. A theory of inferred causa-
tion. In J.A. Allen, R. Fikes, and E. Sandewall, editors, Principles of
Knowledge Representation and Reasoning: Proceedings of the Second In-

ternational Conference, pages 441-452. Morgan Kaufmann, San Mateo,
CA, 1991.

[Spirtes et al. 93] P. Spirtes, C. Glymour, and R. Schienes. Causation, Pre-
diction, and Search. Springer-Verlag, New York, 1993.

[Verma and Pearl 91] T.S. Verma and J. Pearl, Equivalence and Synthesis
of Causal Models, Uncertainty in Artificial Intelligence 6, P.P. Bonis-
sone, M. Henrion, L.N. Kanal and J.F. Lemmer (eds), Elsevier Science
Publishers, 1991, pp. 255-268.

15

