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Abstract

We address the problem of �nding a minimal separator in a di�

rected acyclic graph �DAG	� namely� �nding a set Z of nodes that

d�separates a given pair of nodes� such that no proper subset of Z

d�separates that pair
 We analyze several versions of this problem
and o�er polynomial algorithms for each
 These include� �nding a

minimal separator from a restricted set of nodes� �nding a minimum�

cost separator� and testing whether a given separator is minimal
 We

con�rm the intuition that any separator which cannot be reduced by

a single node must be minimal
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� Introduction

The problem of �nding a small set of variables that renders other sets of
variables independent occurs often in probabilistic reasoning systems� The
most acute manifestation of this problem occurs in the design of observa�
tional studies� Whenever we evaluate the e�ect of one factor �X� on another
�Y �� we need to adjust for possible variations in some other set of variables�
Z� sometimes called covariates� concomitants� or confounders� which may in�
�uence both X and Y and thus bias our assessment� Adjustment amounts
to partitioning the population into groups that are homogeneous relative to
Z� assessing the e�ect of X on Y in each homogeneous group� and� �nally�
averaging the results� Since adjustments require physical measurement of
the variables in Z� and since such measurements are often expensive if not
impossible� it is natural to seek sets Z that are as small as possible� and
still capable of removing the bias caused by confounding� It can be shown
�e�g�� �Pearl 	
� Pearl 	��� that the criterion of bias removal requires that Z
d�separates node X from node Y in a �causal�Bayesian network� after remov�
ing all arrows from X� Thus� the problem of �nding small separating sets
translates� in this application� to �nding sets of low measurement cost�

The problem also surfaces in model testing and inference� An e�ective
way of testing graphical models for �tness with data is to test whether the
data upholds the conditional independencies that are entailed by the graph
�Pearl and Verma 	
� Spirtes et al� 	��� The reliability of such tests dete�
riorates when the conditioning sets are too large� because large separating
sets involve many degrees of freedom and require larger sample size� Fi�
nally� in inference problems� small sized separating sets amount to reduced
computational costs� especially in conditioning�based algorithms �Pearl ���
Darwiche 	�� where the variables in the separating sets are instantiated one
at a time�

This paper addresses the mathematical problem of identifying a minimal
d�separating set Z in a given directed acyclic graph� such that no proper sub�
set of Z is a separating set� We discuss several versions of this problem and
o�er polynomial algorithms for each� Section � addresses the problem of test�
ing whether a given separating set is minimal� The theorems proved in this
section con�rm the one�at�a�time intuition� namely� if we �nd a separating
set that cannot be reduced by one node �without compromising separation��
then that set must be minimal� no reduction by pairs and triples need be
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Figure �� The path activated by z��

investigated� Section � harnesses the testing algorithms of Section � to the

solution of our main problem� �nding a minimal d�separator� Section � ex�

tends these results to the case where the separator is restricted to a given

set of nodes� while Section 	 �nds separators of minimum cardinality and

minimum cost�

� Testing Separators For Minimality

Problem � �test for minimal separation� Given two nodes X and Y in
a dag D and a set Z that d�separates X from Y � test if Z is minimal i�e�� no
proper subset of Z d�separates X from Y �

First we will �nd a criterion for a d�separating set to be minimal�

De�nition � �activated paths� Consider two nodes X and Y in a dag� a
set Z that d�separates X from Y � and a node z�� We say that a path p from
X to Y is activated by z�� if p consists of a path p� from X to z� and a path q�
from Y to z� such that p� meets q� at z� or one of its ancestors in converging
arrows� p� and q� are not blocked by Z� and none of z��s descendants is in
Z�Figure ���

From the property of d�separation� it is clear that Z � fz�g is a non�

separator if and only if there exists a path activated by z��
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Figure �� The path activated by z� is blocked by z��

Lemma � If Z is a separator� both Z � fz�g and Z � fz�g are not separa�

tors� and a path activated by z� is blocked by z�� then z� is a descendant of

z��

Proof� Assume path �X� p�� z�� q�� Y � is activated by z� and path �X� p�� z�� q�� Y �
is activated by z�� as in De�nition �� Assume the path p� is blocked by z��
then p� must pass through z� and not in converging ar rows� as shown in
Figure � where p� � �X� b�� z�� a�� z��� Consider the path �X� b�� z�� q�� Y ��
Both b� and q� are not blocked by Z� but Z is a separator� so b� and q� meet
at z� in converging arrows� So the path a� goes away from z�� a� can only go
in one direction from z� to z�� For assume z� is the head	to	head node nearest
to z�� None of z�
s descendants is in Z� so z� and none of its descendants are
in Z� but this makes Z block the path a�� hence the path p�� Q�E�D�

Theorem � Given two nodes X and Y in a dag and a set Z that d�separates

X from Y � if the set Z �fz�� � � � � zng is also a separator� where z�� � � � � zn are

single nodes which are not in Z and n � �� then either Z � fz�g� or Z � fz�g�
� � � � or Z � fzng must be a separator�

Proof� Assume all Z � fzig� i � �� � � � � n are not separators� then there
is a path di activated by zi� for each i � �� � � � � n� Consider the path d��
It must be blocked by at least one node from fz�� � � � � zng� else it won
t be
blocked by Z �fz�� � � � � zng� Name the node which blocks d� as z�� then from
Lemma � z� is the descendant of z�� If the path d� is blocked by z� we get

�
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Figure �� Corollary � does not hold in cyclic graphs�

a cyclic graph� Therefore� we can name the node which blocks d� as z�� and

z� is the descendant of z�� In general if the path di is blocked by one node

from fz�� � � � � zi��g we immediately get a cyclic graph� To avoid this we name

the node blocking di as zi��� Finally dn must be blocked by one node from

fz�� � � � � zn��g� we must get a cyclic graph� Q�E�D�

Corollary � If Z and Z �Zn are separators� where Zn � fz�� � � � � zng� then
there exist a series of n�� sets which are separators� Z�Zi� i � �� � � � � n���

with

Z� � � � � � Zn�� � Zn�

such that each Zi contains exactly i nodes�

Corollary � If no single node can be removed from a d�separating set Z

without destroying d�separability� then Z is minimal�

Remark� This �one�at�a�time	 property is obviously true in undirected

graphs
 a separating set Z is minimal i� no single node can be removed

without destroying separability� But it is not at all obvious in dags� where

separation is nonmono tonic
 reducing the size of a nonseparating set may

turn it into a separator� Figure � shows that Corollary � does not hold in

cyclic graphs� The set Z � fZ�� Z�g d�separates X from Y � and removing

either Z� or Z� destroys d�separability� Yet Z is not minimal� because the

empty set d�separates X from Y � Evidently� Corollary � rests critically on

the assumption of acyclicity�

Corollary � provides a method of testing if a d�separating set is minimal�

which can be further simpli�ed through the following theorem�






Theorem � If a set Z d�separatesX and Y � we can get a smaller d�separator

Z � by removing from Z all nodes that are not ancestors of X or Y �

Proof� Assume Z � is not a separator� then there exists an active path p

between X and Y � Because Z is a separator� the path p must be blocked by
one node a in Z � Z � which is not an ancestor of X or Y and which is not
a head�to�head node on p� Each path going away from a along p must meet
a head�to�head node b since a is not an ancestor of X or Y � By the same
argument� none of b�s descendants are ancestors of X or Y � But this means
the path p is also blocked given Z �� Q�E�D�

Let An�A� denote the smallest ancestral set containing set A� that is�
An�A� � A� ��u�Afall ancestors of ug�� Theorem � says that if Z is a mini�
mal d�separating set between X and Y � then Z � An�X � Y �� The following
theorem further states that it is su�cient to consider only a subgraph of the
dag D� namely DAn�X�Y �� which is composed of nodes from An�X � Y � only�

Theorem � Given two nodes X and Y in a dag D� if a set Z � An�X � Y ��
then Z d�separates X and Y in D if and only if Z d�separates X and Y in

DAn�X�Y ��

Proof� All paths in DAn�X�Y � are in D� Thus if Z is a separator in D� it
is a separator in DAn�X�Y �� If Z d�separates X and Y in DAn�X�Y �� to show
that Z also d�separates X and Y in D� we need to prove that all paths from
X to Y passing through some non�ancestor nodes are blocked by Z� Consider
a path p� if p passes a non�ancestor node head�to�head� then p is blocked by
Z� If p doesn�t pass any head�to�head non�ancestors� then all nodes on p are
ancestors of X or Y � Q�E�D�

Combining Corollary �� Theorem � and Theorem 	 yields the following
algorithm for Problem 
�

Algorithm � �test for minimal separation�

�� If Z contains any node which is not in An�X � Y �� then Z is not

minimal� stop�

�� Construct DAn�X�Y ��

�� Choose any node u from Z�

�



�� Test if Z � fug is a separator in DAn�X�Y �� using the algorithm in
�Geiger et al ����

�� If Z � fug is a separator then Z is not minimal� stop�
If Z � fug is not a separator then choose a di�erent node from Z�
denote it by u and goto step �� If all nodes in Z have been checked� Z
is minimal�

Analysis	 Let jZj stand for the number of nodes in Z� jEj the number of
edges in D� jVAnj the number of nodes in An�X � Y �� and jEAnj the number
of edges in DAn�X�Y �� Step � requires O�jEAnj� time�Geiger et al ���� and
it may be executed up to jZj times� Thus the overall complexity of the
algorithm is O�jZj � jEAnj��

In view of the extensive literature on undirected graphs� it is often advan	
tageous to translate d	separation problems to separation problems in undi	
rected graphs� The following theorem permits this translation�

Theorem � Given two nodesX and Y in a dagD� and a set Z � An�X � Y ��
Z d
separates X from Y in D if and only if Z separates X from Y in
�DAn�X�Y ��

m� the moral graph of DAn�X�Y ��

This follows from a theorem of �Lauritzen et al �
�� A set S d	separates
X from Y in a dag D if and only if S separates X from Y in �DAn�X�Y �S��

m�
The condition of Theorem � ensures An�X � Y � � An�X � Y � Z� and so
�DAn�X�Y ��

m � �DAn�X�Y �Z��
m� for all Z � An�X � Y �� The moral graph is

obtained from the original graph by connecting any two nodes which have a
common child and then dropping directions�

Remark �� Theorem � and Theorem 
 transfer all minimal separation
problems from dags to undirected graphs��

Remark �� Theorem � can be easily proved from Theorem �� Since the
same undirected graph �DAn�X�Y ��

m is constructed from D and DAn�X�Y ��
Remark 
� Some properties found in undirected graphs may be extended

back to dags through Theorem �� For example� it is obviously true in undi	
rected graphs that a separation set Z is minimal if no single node can be
removed without destroying the separability� Extending this back to dags
through Theorem �� Corollary 
 is obtained� which is not obvious in dags�

�Another transformation from dags to undirected graphs was suggested by
�Becker and Geiger ��� to facilitate �nding small loop cutsets in dags�

�



In undirected graphs we have e�cient methods of testing whether a sep�
aration set is minimal�Gafni ���� which are based on the following criteria�

Theorem � Given two nodes X and Y in an undirected graph� a separating

set Z between X and Y is minimal if and only if for each node u in Z� there

is a path from X to Y which passes through u and does not pass through any

other node in Z�

Proof� If for each node u in Z� there is a path from X to Y which passes
through u and does not pass through any other node in Z� it is obvious
that no node can be removed from Z without destroying separability� On
the other hand� if t here exists a node v such that every path from X to Y
which passes through v will pass through some other node in Z� then v can
be removed from Z without destroying separability and Z is not minimal�
Q�E�D�

This theorem leads to the following algorithm for Problem �� The idea
is that if Z is minimal� then all nodes in Z can be reached using Breadth
First Search	BFS
 that starts from both X and Y without passing any other
nodes in Z

Algorithm � �test for minimal separation�

�� If Z contains any node which is not in An	X � Y 
� then Z is not

minimal� stop�

�� Construct DAn�X�Y ��

�� Construct 	DAn�X�Y �

m�

�� Starting from X� make Breadth First Search� Whenever a node in Z

is met� mark it if it is not already marked� and do not continue along

that path� When BFS stops� if not all nodes in Z are marked� Z is not

minimal� stop� Remove all markings�

�� Starting from Y � run BFS� Whenever a node in Z is met� mark it if

it is not already marked� and do not continue along that path� When

BFS stops� if not all nodes in Z are marked� Z is not minimal� If all

nodes in Z are marked� Z is minimal�

�



jZj jEAnj jEm
An

j Algorithm � Algorithm �
O�jZj � jEAnj� O�jEmAnj�

O�jVAnj
�� O�jVAnj

�� O�jVAnj
�� O�jVAnj

��
bounded by constant O�jVAnj� O�jVAnj� O�jVAnj� O�jVAnj�

O�jVAnj
�� O�jVAnj� O�jVAnj

��
O�jVAnj

�� O�jVAnj
�� O�jVAnj

�� O�jVAnj
��

O�jVAnj� O�jVAnj� O�jVAnj� O�jVAnj
�� O�jVAnj�

O�jVAnj
�� O�jVAnj

�� O�jVAnj
��

Table �� Comparison of Algorithm � with Algorithm ��

Analysis� Let jEm
An

j stand for the number of edges in �DAn�X�Y ��
m� Step ��

� each requires O�jEm
An

j� time� Thus the complexity of the algorithm is
O�jEm

An
j��

The comparison of Algorithm � with Algorithm � under di	erent situa�
tions is given by Table ��

� Finding a Minimal Separator

Problem � �minimal separation� Given two nodes X and Y in a dag D�

�nd a minimal d�separating set between X and Y � namely� �nd a set Z such

that Z� and no proper subset of Z� d�separates X from Y �

A variant of Algorithm � solves this problem�

Algorithm � �minimal separation�

�� Construct DAn�X�Y ��

�� Construct �DAn�X�Y ��
m�

�� Find a separating set Z � in �DAn�X�Y ��
m�

�� Starting from X� run BFS� Whenever a node in Z � is met� mark it if

it is not already marked� and do not continue along that path� When






BFS stops� let Z �� be the set of nodes which are marked� Remove all
markings�

�� Starting from Y � run BFS� Whenever a node in Z �� is met� mark it if
it is not already marked� and do not continue along that path� When
BFS stops� let Z be the set of nodes which are marked�

Return�Z��

Analysis� Step ��� each requires O�jEmAnj� time� Thus the overall com�
plexity of the algorithm is O�jEm

An
j��

In Algorithm � we transform a dag to an undirected graph� then �nd a
minimal separating set in the undirected graph� The method used in the
undirected graph can not be extended to use directly in a dag� However�
there is a less e	cient method for �nding a minimal separating set in undi�
rected graphs which can be extended to dags� In undirected graphs� given a
separating set Z and a node u in Z� if Z�fug is not a separator� then u must
belong to every subset of Z which is a separator� Thus to �nd a minimal
separating subset of Z� we check Z node�by�node
 if Z � fug is not a sepa�
rator� keep u� else remove u from Z� From Theorem �� this method can be
used directly in dags� To this purpose we need to �nd a d�separating set in
DAn�X�Y � �rst� which can be easily found
 if X and Y are not adjacent then
they are d�separated by their parent set Pa�X�Y �
Verma and Pearl ���� the
union of the sets of parents of X and Y �less X and Y ��

Algorithm � �minimal separation�

�� Construct DAn�X�Y ��

�� Set Z to be Pa�X � Y ��

�� Choose one node u from Z�

	� Test if Z � fug is a separator in DAn�X�Y �� using the algorithm in

Geiger et al ��
�

�� If Z � fug is a separator� set Z � Z � fug�
Choose a di�erent node from Z� denote it by u and goto step 	� If all
nodes in Z have been checked� stop�

��



Return�Z��

Analysis� Step � requires O�jEAnj� time� and it is executed jVPaj times�
where jVPaj stands for the number of nodes in Pa�X � Y �� Thus the overall
complexity of the above algorithm is O�jVPaj � jEAnj��

The comparison of Algorithm � �O�jEm

Anj�� with Algorithm � �O�jVPaj �
jEAnj�� is given by Table � with jZj substituted by jVPaj�

� Restricted Separation

Problem � �restricted separation� Given two nodes X and Y in a dag
D and a set S of nodes not containing X and Y � �nd a subset Z of S which
d�separates X and Y �

We already know that if we �nd a restricted separator over S in �DAn�X�Y ��
m

then it is a d�separator in D� On the other hand� if there exists a restricted
d�separator over S in D then there must exist a restricted separator over
S in �DAn�X�Y ��

m by removing all nodes which are not in An�X � Y � from
it� Again� this problem is transferred to the corresponding problem in an
undirected graph� But in an undirected graph� if any subset of a set S � is a
separator� then S � itself is a separator� These observations yield the following
theorem�

Theorem � Given two nodes X and Y in a dag D and a set S of nodes not
containing X and Y � there exists some subset of S which d�separates X and
Y only if the set S � 	 S � An�X � Y � d�separates X and Y �

So Problem � is solved by testing if S � d�separates X and Y � This requires
O�jEj� time using the algorithm in 
Geiger et al ��
�

Problem � �restricted minimal separation� Given two nodes X and Y
in a dag D and a set S of nodes not containing X and Y � �nd a subset Z of
S which is a minimal d�separating set between X and Y �

This problem is readily solved using Algorithm � or Algorithm �� To
use Algorithm �� we let Z � be S � 	 S � An�X � Y � in step �� The time
complexity is O�jEm

An
j�� To use Algorithm �� we let Z be S � in step �� The

time complexity is O�jS �j � jEAnj�� The comparison of this two algorithms is
given before�

��



� Finding a Minimum�cost Separator

Problem � �minimum separation� Given two nodes X and Y in a dag
D� �nd a minimum�least cardinality� d�separating set between X and Y �

This problem is solved by using network �ow techniques in undirected
graphs�

Algorithm � �minimum separation�

�� Construct DAn�X�Y ��

�� Construct �DAn�X�Y ��
m�

�� Take X as source node and Y as sink node� Assign unit node capacity
to all the remaining nodes�

	� Change �DAn�X�Y ��
m to a 
ow network as described in �Even �
��

�� Find a minimum separating set Z between X and Y � which corresponds
to a minimum cut� using a maximum 
ow algorithm�

Return�Z��

Analysis� The complexity of this algorithm is O�jVAnj
��� � jEm

Anj� when the
Dinic algorithm is used�Even ����

Algorithm � can also be used to 	nd a minimum separating set restricted
to a set S
 we assign unit node capacity to all nodes in S � � S �An�X � Y �
and in	nite capacity to all other nodes in the step �� When the Dinic algo

rithm is used� the complexity is O�jVAnj

�� now instead of O�jVAnj
��� � jEm

Anj�
because not all nodes have unit capacities�Even ���� A more e�cient algo

rithm can be achieved through the following theorem�

Theorem � Given a set S of nodes in an undirected graph G� we construct
a graph GS restricted to S as follows� The nodes of GS are S� The edges of
GS are the edges in G between the nodes in S plus the following edges� Let p
and q be two nodes in S� If there is a path in G from p to q with all its nodes
except p and q outside of S� then connect p and q by an edge in GS� Then a
set Z � S separates two nodes X and Y in GS if and only if Z separates X
from Y in G�

��



Proof� Immediately� each active path in GS corresponds to an active path in
G� and vice versa�

Algorithm � �restricted minimum separation�

�� Construct DAn�X�Y ��

�� Construct �DAn�X�Y ��
m�

�� Construct the graph GS� restricted to X � Y � S � as de�ned in the The�
orem �� where S � � S � An�X � Y ��

	� Take X as source node and Y as sink node� Assign unit node capacity
to all nodes in S ��


� Change GS� to a �ow network as described in �Even �
��

�� Find a minimum separating set Z between X and Y � which corresponds
to a minimum cut� using a maximum �ow algorithm�

Return�Z��

Analysis� To construct GS�� for each node of X � Y � S � we use Breadth
First Search on �DAn�X�Y ��

m to �nd all its adjacent nodes in GS� in time
O�jEm

Anj�� Altogether constructing GS� requires O�jS �j � jEm
Anj� time� Finding

a minimum separating set in GS� requires O�jS �j��� � jEG
S� j�� where jEG

S� j is
the number of edges in GS�� Thus the complexity of this algorithm is O�jS �j �
jEm

Anj�� which is asymptotically faster than O�jVAnj
�� when �DAn�X�Y ��

m is
sparse�

Problem � �minimum cost separation� Given two nodes X and Y in
a dag D� if each node u other than X and Y is associated with a non�
negative number c�u� called the cost of u� �nd a d�separating set between X
and Y which has the minimum total costs�

The minimum cost d�separating set must be a minimal d�separating set�
Thus the problem is equivalent to �nding a minimal d�separating set which
has the minimum cost�

�	



Algorithm � can be used to solve this problem� The cost of each node
is assigned as the capacity of the node in step � of Algorithm �� The com�
plexity of the algorithm is O�jVAnj

�� when the Dinic algorithm is used� The
correctness of this algorithm is justi�ed by the well�known Max��ow min�cut

theorem�Even �	
�
Algorithm � can be used to �nd a minimum cost d�separating set re�

stricted to a set S� assigning the cost of each node as the capacity of the
node in step 
� Constructing GS� requires O�jS �j � jEmAnj� time� Finding a
minimum cost separating set in GS� requires O�jS �j�� time� Thus the com�
plexity of the algorithm is O�jS �j � jEm

An
j � jS �j���

� Discussion

We have shown that problems associated with �nding d�separators in directed
acyclic graphs are not substantially more complex than those associated with
�nding separators in undirected graphs� In particular� we have given polyno�
mial algorithms for ��� �nding any minimal separator� ��� �nding a minimal
separator from a restricted set of nodes� ��� �nding a minimum�cost separa�
tor� and �
� testing whether a given separator is minimal� Additionally� we
have shown that any separator which cannot be reduced by a single node
must be minimal�

Although the problems addressed in this paper are formulated in terms
of separating a pair of singleton nodes X and Y � all our theorems hold for
the general case where X and Y are disjoint sets of nodes� To adjust the
algorithms for this general case� one can simply add two extra nodes X � and
Y

� to �DAn�X�Y ��
m� such that X � is connected to all nodes in set X and Y �

is connected to all nodes in set Y � and seek a minimal separator between X �

and Y � restricted to nodes outside X and Y �
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