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Structural equation models (SEMs) have dominated causal analysis in the social and
behavioral sciences since the 1960s. Currently, many SEM practitioners are having
difficulty articulating the causal content of SEM and are seeking foundational answers.
Recent developments in the areas of graphical models and the logic of causality show
potential for alleviating such difficulties and, thus, revitalizing structural equations as
the primary language of causal modeling. This article summarizes several of these
developments, including the prediction of vanishing partial correlations, model testing,
model equivalence, parametric and nonparametric identifiability, control of confound-
ing, and covariate selection. These developments clarify the causal and statistical
components of SEMs and the role of SEM in the empirical sciences.

Graphs, Causality, and Structural Equation Models
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1. INTRODUCTION

1.1. CAUSALITY IN SEARCH OF A LANGUAGE

. The word cause is not in the vocabulary of standard probability
theory. It is an embarrassing yet inescapable fact that probability
theory, the official mathematical language of many empirical sci-
ences, does not permit us to express sentences such as “Mud does not
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cause rain”; all we can say is that the two events are mutually
correlated, or dependent—meaning that if we find one, we can expect
to encounter the other. Scientists seeking causal explanations for
complex phenomena or rationales for policy decisions must therefore
supplement the language of probability with a vocabulary for causal-
ity, one in which the symbolic representation for the causal relation-
“ship “Mud does not cause rain” is distinct from the symbolic repre-
sentation for “Mud is independent of rain.” Oddly, such distinctions
have not yet been incorporated into standard scientific analysis."

Two languages for causality have been proposed: path analysis or
structural equation models (SEMs) (Wright 1921; Haavelmo 1943)
and Neyman-Rubin’s potential response model (Neyman 1923; Rubin
1974). The former has been adopted by economists and social scien-
tists (Goldberger 1972; Duncan 1975), whereas a small group of
statisticians champion the latter (Rubin 1974; Robins 1986; Holland
1988). These two languages are mathematically equivalent,? yet nei-
ther has become standard in causal modeling—the structural equation
framework because it has been greatly misused and inadequately
formalized (Freedman 1987), and the potential response framework
because it has been only partially formalized and, more significant,
because it rests on an esoteric and seemingly metaphysical vocabulary
of counterfactual variables that bears no apparent relation to ordinary
understanding of cause-effect processes.

Currently, potential response models are understood by few and
used by even fewer, whereas SEMs are used by many but their causal
interpretation is generally questioned or avoided. The main purpose
of this article is to formulate the causal interpretation and outline the
proper use of SEMs to reinstate confidence in SEM as the primary
formal language for causal analysis in the social and behavioral
sciences. But first, a brief analysis of the current crisis in SEM research
in light of its historical development.

1.2. CAUSALITY AND STRUCTURAL MODELS

SEM was developed by geneticists (Wright 1921) and economists
(Haavelmo 1943; Koopmans 1953; Koopmans, Rubin, and Leipnik
1950) so that qualitative cause-effect information could be combined
with statistical data to provide quantitative assessment of cause-effect
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relationships among variables of interest. Thus, to the often-asked
question, “Under what conditions can we give causal interpretation to
structural coefficients?” Wright and Haavelmo would have answered,
“Always!” According to the founding fathers of SEM, the conditions
that make the equation y = Bx + € structural are precisely those that
make the causal connection between X and Y have no other value but
B, and nothing about the statistical relationship between x and € can
ever change this interpretation of . Amazingly, this basic under-
standing of SEM has all but disappeared from the literature, leaving
modern econometricians and social scientists in a quandary over J.
Most SEM researchers today are of the opinion that extra ingredi-
ents are necessary for structural equations to qualify as carriers of
causal claims. Among social scientists, James, Mulaik, and Brett
(1982:45), for example, state that a condition called self-containment
is necessary for consecrating the equation y = x + € with causal
meaning, where self-containment stands for cov(x, €) = 0. According
to James, Mulaik, and Brett, whenever self-containment does not hold,
“Neither the equation nor the functional relation represents a causal
relation.” Bollen (1989:44) reiterates the necessity of self-contain-
ment (under the rubric isolation or pseudoisolation) contrary to the
understanding that structural equations attain their causal interpreta-
tion prior to, and independent of, any statistical relationships among
their constituents. Since the early 1980s, it has become exceedingly
rare to find an open endorsement of the original SEM logic, namely,
that € is defined in terms of B, not the other way around, and that the
orthogonality condition cov(x, €) = 0 is neither necessary nor sufficient
for the causal interpretation of B (see Section 4.1). In fact, this
condition is not necessary even for the identification of B, once B is
interpreted (see the identification of o in Figures 8 and 10).
Econometricians have just as much difficulty with the causal read-
ing of structural parameters. Leamer (1985:258) observes, “It is my
surprising conclusion that economists know very well what they mean
when they use the words ‘exogenous,’ ‘structural,” and ‘causal,’ yet
no textbook author has written adequate definitions.” There has been
little change since Leamer made these observations. Hendry
(1995:62), for instance, amplifies the necessity of the orthogonality
condition, and states: “The status of B may be unclear until the
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conditions needed to estimate the postulated model are specified. For
example, in the model: |

= ZIB + u, where u, ~ IN[O, oﬂ,

until the relationship between z, and u, is specified the meaning of 8
is uncertain since E[z, u,] could be either zero or non-zero on the
information provided.” LeRoy (1995:211) goes even further: “It is a
commonplace of elementary instruction in economics that endo-
genous variables are not generally causally ordered, implying that the
question “What is the effect of y, on y,” where y, and y, are endogenous
variables is generally meaningless.” According to LeRoy, causal
relationships cannot be attributed to any variable whose causes have
separate influence on the effect variable, a position that denies causal
reading to most of the structural parameters that economists and social
scientists labor to estimate.

Cartwright (1995:49), a renowned philosopher of science, ad-
dresses these difficulties by initiating a renewed attack on the torment-
ing question, “Why can we assume that we can read off causes,
including causal order, from the parameters in equations whose ex-
ogenous variables are uncorrelated?” Cartwright, like SEM’s foun-
ders, recognizes that causes cannot be derived from statistical or
functional relationships alone and that causal assumptions are prereq-
uisite for validating any causal conclusion. Unlike Wright and Haav-
elmo, however, she launches an all-out search for the assumptions that
would endow the parameter B in the regression equation y = Bx + &
with a legitimate causal meaning and endeavors to prove that the
assumptions she proposes are indeed sufficient. What is revealing in
Cartwright’s analysis is that she does not consider the answer Haav-
elmo would have provided, namely, that the assumptions needed for
drawing causal conclusions from parameters are already encoded in
the syntax of the equations and can be read off the associated graph as
easily as a shopping list;* they need not be searched for elsewhere nor
do they require new proofs of sufficiency. Haavelmo’s answer applies
to models of any size and shape, including models with correlated
exogenous variables.

These examples partake of an alarming tendency among econo-
mists and social scientists to view a structural equation as an algebraic
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object that carries functional and statistical assumptions but is void of
causal content. This statement from one leading social scientist is
typical: “It would be very healthy if more researchers abandoned
thinking of and using terms such as cause and effect” (Muthen
1987:180). Perhaps the boldest expression of this tendency was re-
cently voiced by Holland (1995:54): “I am speaking, of course, about
the equation: {y = a + bx + €}. What does it mean? The only meaning
I have ever determined for such an equation is that it is a shorthand
way of describing the conditional distribution of {y} given {x}.”*

The founders of SEM had an entirely different conception of
structures and models. Wright (1923:240) declared that “prior knowl-
edge of the causal relations is assumed as prerequisite” in the theory
of path coefficients, and Haavelmo (1943) explicitly interpreted each
structural equation as a statement about a hypothetical controlled
experiment. Likewise, Marschak (1950) and Koopmans (1953) stated
that the purpose of postulating a structure behind the probability
distribution is to cope with the hypothetical changes that can be
brought about by policy. One wonders, therefore, what has happened
to SEM over the past 50 years, and why the basic (and still valid)
teachings of Wright, Haavelmo, Marschak, and Koopmans have been
forgotten.

Some economists attribute the decline in the understanding of
structural equations to Lucas’s (1976) critique, according to which
economic agents anticipating policy interventions would tend to act
contrary to the SEM’s predictions, which often ignore such anticipa-
tions. However, since Lucas’s critique merely shifts the model’s
invariants and the burden of structural modeling from the behavioral
level to adeeper level, involving agents’ motivations and expectations,
it does not exonerate economists from defining and representing the
causal content of structural equations at some level of discourse.

I believe that the causal content of SEM has gradually escaped the
consciousness of SEM practitioners mainly for the following reasons:

1. SEM practitioners have sought to gain respectability for SEM by
keeping causal assumptions implicit, since statisticians, the arbiters of
respectability, abhor assumptions that are not directly testable.

2. The algebraic language that has dominated SEM lacks the notational
facility needed to make causal assumptions, as distinct from statistical
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assumptions, explicit. By failing to equip causal relations with precise
mathematical notation, the founding fathers in fact committed the
causal foundations of SEM to oblivion. Their disciples today are
seeking foundational answers elsewhere.

Let me elaborate on the latter point. The founders of SEM under-
stood quite well that in structural models, the equality sign conveys
the asymmetrical relation “is determined by” and, hence, behaves
more like an assignment symbol (:=) in programming languages than
like an algebraic equality. However, perhaps for reasons of mathemati-
cal purity (i.e., to avoid the appearance of syntax sensitivity), they
refrained from introducing a symbol to represent the asymmetry.
According to Epstein (1987), in the 1940s, Wright gave a seminar on
path coefficients to the Cowles Commission (the breeding ground for
SEM), but neither side saw particular merit in the other’s methods.
Why? After all, a diagram is nothing but a set of nonparametric
structural equations in which, to avoid confusion, the equality signs
are replaced with arrows. '

My explanation is that the early econometricians were extremely
careful mathematicians who thought they could keep the mathematics
in purely equational-statistical form and just reason about structure in
their heads. Indeed, they managed to do so surprisingly well, because
they were truly remarkable individuals who could do it in their heads.
The consequences surfaced in the early 1980s, when their disciples
began to mistake the equality sign for an algebraic equality. The upshot
was that suddenly the “so-called disturbance terms” did not make any
sense at all (Richard 1980:3). We are living with the sad end to this
tale. By failing to express their insights in mathematical notation, the
founders of SEM brought about the current difficulties surrounding
the interpretation of structural equations, as summarized by Holland’s
“What does it mean?”

1.3. GRAPHS AS A MATHEMATICAL LANGUAGE: AN EXAMPLE

Certain recent developments in graphical methods promise to bring
causality back into the mainstream of scientific modeling and analysis.
These developments involve an improved understanding of the rela-
tionships between graphs and probabilities on one hand and graphs
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and causality on the other. But the crucial change has been the
emergence of graphs as a mathematical language. This mathematical
language is not simply a heuristic mnemonic device for displaying
algebraic relationships, as in the writings of Blalock (1962) and
Duncan (1975). Rather, graphs provide a fundamental notational
system for concepts and relationships that are not easily expressed in
the standard mathematical languages of algebraic equations and prob-
ability calculus. Moreover, graphical methods now provide a powerful
symbolic machinery for deriving the consequences of causal assump-
tions when such assumptions are combined with statistical data. .

A concrete example that illustrates the power of the graphical
language will set the stage for the discussions in Sections 2 and 3. One
of the most frustrating problems in causal analysis has been covariate
selection—for instance, determining whether a variate Z can be added
to a regression equation without biasing the result. More generally,
whenever we try to evaluate the effect of one factor (X) on another
(Y), we wonder whether we should adjust for possible variations in
some other variable, Z, sometimes called a covariate, concomitant, or
confounder. Adjustment amounts to partitioning the population into
groups that are homogeneous relative to Z, assessing the effect of X
on Y in each homogeneous group, and, finally, averaging the results.

The elusive nature of such an adjustment was recognized as early
as 1899, when Pearson and Yule discovered what is now called
Simpson’s paradox, namely, that any statistical relationship between
two variables may be reversed or negated by including additional
factors in the analysis. For example, we may find that students who
smoke obtain higher grades than those who do not smoke; but after
we adjust for age, smokers obtain lower grades than nonsmokers in
every age group; but after we further adjust for family income,
smokers obtain higher grades than nonsmokers in every income-age
group; and so on.’

Despite a century of analysis, Simpson’s reversal phenomenon
continues to “trap the unwary” (Dawid 1979:5), and the main ques-
tion—whether an adjustment for a given covariate Z is appropriate in
any given study—continues to be decided informally, case by case,
with the decision resting on folklore and intuition rather than on hard
mathematics. The standard statistical literature is remarkably silent on
this issue. Aside from noting that one should not adjust for a covariate
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that is affected by the putative cause (X),* it provides no guidelines as
to what covariates might be admissible for adjustment and what
assumptions would be needed for making such a determination for-
mally. The reason for this silence is clear: The solution to the covariate
selection problem rests on causal assumptions, as we shall see in
Section 3, and such assumptions cannot be expressed formally in the
standard language of statistics.

In the potential response framework, a criterion called ignorability
has been advanced to address the covariate selection problem (Rosen-
baum and Rubin 1983). It states that Z is an admissible covariate
relative to the effect of X on Y if, for every x, the value that ¥ would
obtain had X been x is conditionally independent of X given Z. This
criterion paraphrases the problem in the language of counterfactuals
without providing a working test for covariate selection. Because
counterfactuals are not observable, and judgments about the condi-
tional independence of counterfactuals are not readily made using our
ordinary understanding of causal processes, ignorability has remained
a theoretical construct with only a minor impact on practice. Epide-
miologists, for example, well apprised of ignorability analysis via the
admirable work of Robins (1986) and Greenland and Robins (1986),
are still debating the meaning of “confounding” (Grayson 1987) and
often adjust for the wrong sets of covariates (Weinberg 1993). Social
scientists, likewise, despite the potential response analyses of Holland
and Rubin (1983) and Sobel (1995), are still struggling with various
manifestations of the Lord paradox (a version of Simpson’s paradox)
in psychometric research (Wainer 1991) and are still not distinguish-
ing collapsibility from nonconfounding (Steyer, Gabler, and Rucai
1996). |

In contrast, formulating the covariate selection problem in the
language of graphs immediately yields a general solution that is both
natural and formal. The investigator expresses causal knowledge (i.e.,
assumptions) in the familiar qualitative terminology of path diagrams,
and, once the diagram is complete, a simple procedure decides
whether a proposed adjustment (or regression) is appropriate relative
to the quantity under evaluation. This procedure, called the backdoor
criterion in Section 3 (Theorems 6 and 7), proceeds roughly as
follows: To determine whether a set of variables Z should be adjusted
for when we wish to evaluate the total effect of X on Y, we delete all
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arrows emanating from node X and then test whether, in the resulting
graph, all paths between X and Y are blocked by nodes corresponding
to Z. If the direct effect is to be evaluated, then only the arrow from X
to Y should be deleted before applying the test (Theorem 6). The notion
blocked is defined formally in Section 2.1.2 (Definition 1).

This example is not an isolated instance of graphical methods
affording clarity and understanding. In fact, the conceptual basis for
SEM achieves a new level of precision through graphs. What makes
a set of equations structural, what assumptions the authors of such
equations should examine, what the testable implications of those
assumptions are, and what policy claims a given set of structural
equations advertise are some of the questions that receive simple and
mathematically precise answers via graphical methods. These and
related issues in SEM will be discussed in the following sections.

1.4. OUTLINE

The testable implications of structural models are explicated in
Section 2. For recursive models (herein termed Markovian), we find
that the statistical content of a structural model can be fully charac-
terized by a set of vanishing partial correlations that are entailed by
the model. These vanishing partial correlations can be read off the
graph using a simple criterion, called d-separation, that applies to both
linear and nonlinear models (Section 2.1). The application of this
criterion to model testing is discussed in Section 2.2. The d-separation
criterion leads to graphical tests of model equivalence that, again,
apply to both linear and nonlinear models (Section 2.3).

“Section 3 deals with the issue of determining the identifiability of
structural parameters prior to gathering any data. In Section 3.1,
simple graphical tests of identifiability are developed for linear Mark-
ovian and semi-Markovian models (i.e., acyclic diagrams with corre-
lated errors). Extensions to nonparametric models are developed in
Sections 3.2 and 3.3, and their ramifications for practical problems of
covariate selection are clarified in Section 3.4.

Section 4 discusses the logical foundations of SEM and resolves a
number of difficulties that were kept dormant in the past. These
include operational definitions for structural equations, structural
parameters, error terms, and total and direct effects.
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2. GRAPHS AND MODEL TESTING

In 1919, Wright developed his method of path coefficients, which
allows researchers to compute the magnitudes of cause-effect relation-
ships from correlation measurements, as long as the path diagram
represents correctly the causal processes underlying the data. Wright’s
method consists of writing a set of equations, one for each pair of
variables (X;, X)), and equating the (standardized) correlation coeffi-
cient p; with a sum of products of path coefficients and residual
correlations along the various paths connecting X; and X;. Whenever
the resulting equations give a unique solution to some path coefficient
P.. that is independent of the (unobserved) residual correlations, that
coefficient is said to be identifiable. If every set of correlation coeffi-
cients p; is compatible with some choice of path coefficients, the
model is said to be untestable or unfalsifiable (also called saturated,
just identified, etc.), because it is capable of perfectly fitting any data
whatsoever.

Whereas Wright’s method is partly graphical and partly algebraic,
the theory of directed graphs permits us to analyze questions of
testability and identifiability in purely graphical terms, prior to data
collection, and enables us to extend these analyses from linear to
nonlinear or nonparametric models. This section deals with issues of
testability in linear and nonparametric models.

2.1. THE TESTABLE IMPLICATIONS OF STRUCTURAL MODELS

When we hypothesize a model of the data-generating process, that
model often imposes restrictions on the statistics of the data collected.
In observational studies, these restrictions provide the only view under
which the hypothesized model can be tested or falsified. In many
cases, such restrictions can be expressed in the form of vanishing
partial correlations and, more significant, are implied by the structure
of the path diagram alone, independent of the numerical values of the
parameters. Blalock (1962), having recognized the importance of
vanishing partial correlations that are implied by path diagrams,
worked out an exhaustive list of those correlations in all path diagrams
involving four variables. He also expressed doubt that the list would
ever be extended to path diagrams with five (or more) variables.
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Nonetheless, a method is now available for identifying vanishing
partial correlations in path diagrams of any size or form. The method
is based on a test called d-separation (Pearl 1986, 1988), to be
discussed next.

2.1.1. Preliminary Notation

The graphs discussed in this article represent sets of structural
equations of the form

x; =f(pa; €) i=1,...,n, 1)

where pa; (connoting parents) stand for the set of variables judged to
be immediate causes of X, and €; represent errors due to omitted
factors. Equation (1) is a nonlinear, nonparametric generalization of
the standard linear equations

=) Ok +E i=1,..n, )

k#i

in which pa; correspond to those variables on the right-hand side of
equation (2) that have nonzero coefficients. A set of equations in the
form of equation (1) used to represent the data-generating process will
be called a causal model.” The graph G obtained by drawing an arrow
from every member of pa; to X; will be called a causal diagram. In
addition to full arrows, a causal diagram should contain a bidirected
(i.e., double-arrowed) arc between any pair of variables whose corre-
sponding errors are dependent (as in Figure 3). A diagram may include
directed cycles (e.g., X — Y, Y — X) representing mutual causation or
feedback processes, but not self loops (e.g., X — X). An edge is either
an arrow or a bidirected arc, and two variables connected by an edge
are called adjacent.

We make free use of the terminology of kinship (e.g., parents,
children, descendants, and ancestors) to denote the relationships in a
graph. These kinship relations are defined along the full arrows in the
diagram, including arrows that form directed cycles but ignoring
bidirected arcs. In Figure Sc, for example, Y has two parents (X and
Z), three ancestors (X, Z, and W), and no children, whereas X has no
parents (hence, no ancestors) and one child (¥).
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Causal diagrams play the same role in nonlinear SEMs as path
diagrams play in linear SEMs. Causal diagrams differ from path
diagrams in that their pa; are defined as nontrivial arguments of the
function f; rather than variables obtaining nonzero coefficients, and

their bidirected arcs reflect dependency rather than correlation. It is

important to emphasize that causal diagrams (as well as traditional
- path diagrams) should be distinguished from the wide variety of
graphical models in the statistical literature whose construction rests
solely on properties of the joint distribution (Cox and Wermuth 1996;
Andersson et al. 1997; Lauritzen 1996). The missing links in those
statistical models represent conditional independencies, whereas the
missing links in causal diagrams represent absence of causal connec-
tions (see note 3 and Section 4) that may or may not imply conditional
independencies in the distribution.

. A causal model will be called Markovian if its graph contains no
directed cycles and if its s are mutually independent (i.e., no bidi-
rected arcs). A model is semi-Markovian if its graph is acyclic and if
it contains dependent errors.

- Markovian models (the parallel term in the SEM literature is re-
cursive models;® Bollen 1989) possess useful features, shared by both
linear and nonlinear systems, that make their statistical implications
transparent. One fundamental property of Markovian models is parent
screening: given the state of its parents pa;, each variable X is condi-
tionally independent of all its nondescendants in the graph. This follows
immediately from the independence of the errors €; and supports the
intuition that once the direct causes of X; are known, the probability
of X; is completely determined; no other event preceding X; could
modify this probability. As a result, the statistical parameters of
Markovian models can be estimated by ordinary regression analysis.

An immediate consequence of this Markovian property is that the
joint distribution of variables generated by equation (1) can be decom-
posed (using the chain rule of probability calculus) into the product

P(x;,....x,) = H P(x; | pa;), : (3)

where pa; are the values of the parents of X; in the causal graph G. For
example, the model illustrated in Figure 1 induces the decomposition
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P(x,, xé, X3, X4 X5) = PQe)P(xy | x)P(x3 | x)P (x4 | X, X3)P(x5 1 X5).  (4)

This decomposition holds for any distribution of the error terms,
regardless of the functional form of £;; it depends only on the structural
features of the generating model in equation (1) as captured by the
graph G. The product decomposition, in turn, entails certain condi-
tional independence relationships that hold regardless of the func-
tional form of f; and regardless of the error distribution. Such inde-
pendencies are said to be entailed by the graph and can be read from
the graph using a criterion called d-separation (the d denotes direc-
tional).

2.1.2. The d-Separation Criterion

Consider three disjoint sets of variables, X, Y, and Z, that are
represented as nodes in a directed acyclic graph (DAG) G. To test
whether X is independent of Y given Z in any Markovian model
represented by G, we need to test whether the nodes corresponding to
variables Z block all paths from nodes in X to nodes in Y. By path, we
mean a sequence of consecutive edges (of any directionality) in the
graph, and blocking is to be interpreted as stopping the flow of
information (or the correlation) between the variables that are con-
nected by such paths.

Definition 1: (d-separation) A path p is said to be d-separated (or
blocked) by a set of nodes Z if and only if

1. p contains a chain i — m — j or a fork i &< m — j such that the middle
node misinZ

2. pcontains an inverted fork (or collider) i — m <« j such that the middle
node m is not in Z and such that no descendant of m is in Z.

A set Zis said to d-separate X from Y if and only if Z blocks every path
from a node in X to anode in Y.

The intuition behind d-separation is simple. In causal chains
i — m — j and causal forks i <~ m — j, the two extreme variables are
marginally dependent but become independent of each other (i.e.,
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Figure 1: Graph Illustrating Causal Relationships Among Five Variables

blocked) once we condition on the middle variable. Figuratively,
conditioning on m appears to block the flow of information along the
path, since learning about i has no effect on the probability of j given
m. Inverted forks i — m <« j, representing two causes having a
- common effect, act the opposite way; if the two extreme variables are
(marginally) independent, they will become dependent (i.e., con-
nected through unblocked path) once we condition on the middle
variable (i.e., the common effect) or any of its descendants. This can
be confirmed in the context of Figure 1. Once we know the season, X,
and X, are independent (assuming that sprinklers are set in advance,
according to the season), but finding that the pavement is wet or
slippery renders X, and X, dependent, since refuting one of these
explanations increases the probability of the other.

In Figure 1, X = {X,} and Y = {X,} are d-separated by Z = {X,}
because both paths connecting X, and X, are blocked by Z. The path
X, « X, — X, is blocked because it is a fork in which the middle node,
X,, is in Z, whereas the path X, — X, « X, is blocked because it is an
inverted fork in which the middle node, X,, and all its descendants are
outside Z. However, X and Y are not d-separated by the set Z' = {X,,
X;}: the path X, — X, « X, (an inverted fork) is not blocked by Z’,
since X;, a descendant of the middle node X, is in Z'. Metaphorically,
learning the value of the consequence X, renders its causes X, and X,
dependent, as if a pathway were opened along the arrows converging
at X,.
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Readers might find it a bit odd that conditioning on a node not lying
on a blocked path may unblock the path. However, this corresponds
to a general rule about causal relationships: Observations on a com-
mon consequence of uncorrelated causes tend to render those causes
correlated. This rule is known as Berkson’s paradox in the statistical
literature (Berkson 1946) and as the explaining away effect in artificial
intelligence (Kim and Pearl 1983). For example, if the admission
criteria to a certain graduate school call for either high grades as an
undergraduate or special musical talents, then these two attributes will
be found to be negatively correlated in the student population of that
school, even if these attributes are uncorrelated in the population at
large. Indeed, students with low grades are likely to be exceptionally
gifted in music, which explains their admission to graduate school.

Algebraically, the partial correlations associated with i S mej are
governed by the equation py,, = (Pj— PinPjm)/ (l—p,,,,) (1-p)2 2,
which renders p;,, # 0 when p; = 0. The same applies to the partlal
correlation p;,,, where m’ is any descendant of m.

Theorem 1: If sets X and Y are d-separated by Zin a DAG G, then
X is independent of Y conditional on Z in every Markovian model
structured according to G. Conversely, if X and Y are not d-separated
by Z in a DAG G, then X and Y are dependent conditional on Z in
almost all Markovian models structured according to G (Verma and
Pearl 1990a; Geiger, Verma, and Pearl 1990).

Because conditional independence implies zero partial correlation,
Theorem 1 translates into a graphical test for identifying those partial
correlations that must vanish in the model.

Corollary 1: In any Markovian model structured according to a
DAG G, the partial correlation p,,, vanishes whenever the nodes
corresponding to the variables in Z d-separate node X from node Y in
G, regardless of the model’s parameters. Moreover, no other partial
correlation would vanish for all the model’s parameters.

Unrestricted semi-Markovian models can always be emulated by
Markovian models that include latent variables, with the latter ac-
counting for all dependencies among error terms. Consequently, the
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d-separation criterion remains valid in such models if we. interpret
bidirected arcs as emanating from latent common parents. This is not
always possible in linear semi-Markovian models if each latent vari-
able is restricted to influence at most two observed variables (Spirtes
- etal. 1996). However, it has been shown that the d-separation criterion

‘remains valid in such restricted systems (Spirtes et al. 1996) and,
moreover, that the validity is preserved when the network contains
cycles (Koster 1998; Spirtes et al. 1998 [this 1ssue]) These results are
summarized in the next theorem.

Theorem 2: For any linear model structured according to diagram D,
which may include cycles and bidirected arcs, the partial correlation
Pxrz vanishes if the nodes corresponding to the set of variables Z
- d-separate node X from node Y in D, where each bidirected arc
[ ¢~ — — j is interpreted as a latent common parent i—L—>j.

For linear SEMs (see equation (2)) Theorem 2 implies that those
(and only those) partial correlations identified by the d-separation test
are guaranteed to vanish independent of the model parameters o, and
independent of the error variances. This suggests a simple and direct
method for testing models: Rather than going through the standard
exercise of finding a maximum likelihood estimate for the model’s
parameters and scoring those estimates for fit to the data, we can
directly test for each zero partial correlation implied by the free model.
The advantages of using such tests were noted by Shipley (1997), who
also devised implementations of these tests.

- However, the question arises whether it is feasible to test for the
vast number of vanishing partial correlations entailed by a given
model. Fortunately, these partial correlations are not independent of
each other but can be derived from a relatively small number of partial
correlations that constitutes a basis for the entire set (Pearl and Verma
1987).

Definition 2: (basis) Let S be a set of partial correlations. A basis B
for S is a set of zero partial correlations that implies (using the laws
of probability) the vanishing of every element of S, and no proper
subset of B sustains such implication.
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Figure 2: Model Testable With Two Regressors for Each Missing Link (Equation 5)

An obvious choice of a basis for the zero partial correlations entailed
by aDAG Disthe set of equalities B = {p;,,, =0 | i >j}, where i ranges
over all nodes in D and j ranges over all predecessors of i in any order
that agrees with the arrows of D. This set of equalities reflects in fact
the “parent screening” property of Markovian models, which is the
source of all the probabilistic information encoded in a DAG. Testing
for these equalities is sufficient, therefore, for testing all the statistical
claims of a linear Markovian model. Moreover, when the parent sets
pa; are large, it may be possible to select a more economical basis, as
shown in the next theorem (Pearl and Meshkat 1998).°

Theorem 3: (graphical basis) Let (i, j) be a pair of nonadjacent nodes
in a DAG D, and Z; any set of nodes that are closer to i than j is to i,
and such that Z; d-separates i from j. The set of zero partial coirelations
B={p;z,=01i> j} consisting of one element per nonadjacent pair
constitutes a basis for the set of all vanishing partial correlations
entailed by D.

Theorem 3 states that each of several sets of zero partial correlations
can encapsulate the entire statistical information conveyed by a linear
Markovian model. Examining Figure 2, we see that each of following
two sets forms a basis for the model in the figure:

By = {p321=0,p413=0,p423 = 0,p51.43 = 0,p52.43 = 0} )
B, ={p321=0,0413= 0,041 = 0,p5,3=0,p5,, = 0}.
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The basis B, employs the parent set pa; for separating i from j, i > j.
Basis B,, on the other hand, employs smaller separating sets, thus
leading to tests involving fewer regressors. Note that each member of
a basis corresponds to a missing arrow in the DAG; therefore, the
number of tests required to validate a DAG is equal to the number of
missing arrows it contains. The sparser the graph, the more it con-
strains the covariance matrix, and more tests are required to verify
those constraints.

2.2. TESTING THE TESTABLE

In linear SEMs, the hypothesized causal relationships between
variables can be expressed in the form of a directed graph annotated
with coefficients, some fixed a priori (usually to zero) and some free
to vary. The conventional method for testing such a model against the
data involves two stages. First, the free parameters are estimated by
iteratively maximizing a fitness measure such as the maximum like-
lihood function. Second, the covariance matrix implied by the esti-
mated parameters is compared to the sample covariances and a statis-
tical test is applied to decide whether the latter could originate from
the former (Bollen 1989; Chou and Bentler 1995).

There are two major weaknesses to this approach:

1. If some parameters are not identifiable, the first phase may fail to reach
stable estimates for the parameters, and the investigator must simply
abandon the test.

2. If the model fails to pass the data fitness test, the investigator receives
very little guidance about which modeling assumptions are wrong.

For example, Figure 3 shows a path model in which the parameter o
is not identifiable if cov(g,, €,) is assumed unknown, which means that
the maximum likelihood method may fail to find a suitable estimate
for a, thus precluding the second phase of the test. Still, this model
is no less testable than the one in which cov(g,, &) = 0, o is
identifiable, and the test can proceed. These models impose the
same restrictions on the covariance matrix, namely, that the partial
correlation Py, ., should vanish (i.e., Py; = Pxy Prz)> yet the model with
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Figure 3: A Testable Model Containing Unidentified Parameter (o)

free cov(g,, €,), by virtue of o being nonidentifiable, cannot be tested
for this restriction. ~

Figure 4 illustrates the weakness associated with model diagnosis.
Suppose the true data-generating model has a direct causal connection
between X and W, as shown in Figure 4a, whereas the hypothesized
model (Figure 4b) has no such connection. Statistically, the two models
differ in the term p,y .z, which should vanish according to Figure 4b
and is left free according to Figure 4a.

Once the nature of the discrepancy is clear, the investigator must
decide whether substantive knowledge justifies alteration of the
model, namely, adding either a link or a curved arc between X and W.
However, because the effect of the discrepancy will be spread over
several covariance terms, global fitness tests will not be able to isolate
the discrepancy easily. Even multiple fitness tests on various local
modifications of the model (such tests are provided by LISREL) may
not help much, since the results may be skewed by other discrepancies
in different parts of the model, such as the subgraph rooted at Y. Thus,
testing for global fitness is often of only minor use in model debugging.

Local fitness testing is an attractive alternative to global fitness
testing. This involves listing the restrictions implied by the model and
testing them one by one. Local testing may help isolate the discrepancy
and can be performed more reliably than testing the overall model as one
unit. A restriction such as p,y.; = 0, for example, can be tested locally
without measuring Y or any of its descendants, thus keeping errors
associated with those measurements from interfering with the test for
Pxwz = 0, which is the real source of the lack of fit. More generally, |
typical SEM models are often close to being “saturated,” claiming but
a few restrictions, in the form of a few edges missing from large,
otherwise unrestrictive diagrams. Local and direct tests for those
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restrictions are more reliable than global tests, since they involve
fewer degrees of freedom and are not contaminated with irrelevant
measurement errors. The missing edges approach described in
Section 2.1 provides a systematic way of detecting and enumerating
the local tests needed for testing a given model.

2.3. MODEL EQUIVALENCE

An important criterion for determining whether two given causal
models are observationally equivalent follows from the d-separation
test.

Definition 3: (observational equivalence) Two SEMs are said to be
observationally equivalent if every probability distribution that is
generated by one of the models can also be generated by the other.

Theorem 4: Two Markovian models are observationally equivalent
if and only if they entail the same sets of conditional independencies.
Moreover, two such models are observationally equivalent if and only
if their corresponding graphs have the same sets of edges and the same
sets of v-structures (two converging arrows whose tails are not con-
nected by an arrow) (Verma and Pearl 1990b).

In standard SEM, models are assumed linear and data are charac-
terized by covariance matrices. Thus, two such models are observa-
tionally indistinguishable if they are covariance equivalent, that is, if
every covariance matrix generated by one model (through some choice
of parameters) can also be generated by the other. It can be easily
verified that Theorem 4 extends to covariance equivalence.
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Theorem 5: Two Markovian linear normal models are covariance
equivalent if and only if they entail the same sets of zero partial
correlations. Moreover, two such models are covariance equivalent if
and only if their corresponding graphs have the same sets of edges and
the same sets of v-structures.

In Theorems 4 and 5, the first part defines the testable implications
of any Markovian SEM. These theorems state that, in nonmanipulative
studies, Markovian SEMs cannot be tested for any feature other than
those zero partial correlations that the d-separation test reveals. They
provide as well a simple test for equivalence that requires, instead of
the checking of all d-separation conditions, merely a comparison of
corresponding edges and their directionalities.

For example, reversing the direction of the arrow between X, and
X, in Figure 1 does not introduce any new v-structure. Therefore, this
reversal yields an observationally equivalent network, and the direc-
tionality of the link X; — X, cannot be determined from statistical
information. The arrows X, — X, and X, — X are of a different nature,
however; their directionality cannot be reversed without creating a
new V-structure. Thus, we see that some arrows retain their direction-
ality in all models equivalent to a given model and, hence, that this
directionality is testable whenever the equivalence class (of models)
is testable. Algorithms for automatically identifying such arrows in
the graph have been devised by Chickering (1995), Meek (1995), and
Andersson et al. (1997). We further see that some kinds of statistical
data (such as those generated by the model in Figure 1), unaccompa-
nied by temporal information, can reveal the directionality of some
arrows and, hence, the directionality of the causal relationships among
the corresponding variables. This feature is used in various discovery
algorithms that elicit causal relationships from complex patterns of
statistical associations (e.g., Pearl and Verma 1991; Spirtes, Glymour,
and Scheines 1993), but discussion of such algorithms lies beyond the
scope of this article.

In semi-Markovian models (DAGs with correlated errors), the
d-separation criterion is still valid for testing independencies (see
Theorem 2), but independence equivalence no longer implies obser-
vational equivalence.”® Two models that entail the same set of zero
partial correlations among the observed variables may yet impose



Pearl / GRAPHS, CAUSALITY, STRUCTURAL EQUATION MODELS 247

different inequality constraints on the covariance matrix. Neverthe-
less, Theorems 2 and 4 still provide necessary conditions for testing
equivalence.

2.3.1. Generating Equivalent Models

By permitting arrows to be reversed as long as no v-structures are
destroyed or created, we can use Theorems 4 and 5 to generate
equivalent alternatives to any Markovian model. Meek (1995) and
Chickering (1995) have shown that X — Y can be replaced by X < Y
if and only if all parents of X are also parents of Y, and, moreover, that
for any two equivalent models, there is always some sequence of such
edge reversals that takes one model into the other. This simple rule for
edge reversal coincides with those proposed by Stelzl (1986) and Lee
and Hershberger (1990).

In semi-Markovian models, the rules for generating equivalent
models are more complicated. Nevertheless, Theorems 4 and 5 yield
convenient graphical principles for testing the correctness of edge-
replacement rules. '

The basic principle is that if we regard each bidirected arc X ¢~ - — Y
as representing a latent common cause X <— L — Y, then the “if” part
of Theorem 4 remains valid; that is, any edge replacement transfor-
mation that does not destroy or create a v-structure is allowed. Thus,
for example, an edge X — Y can be replaced by a bidirected arc
X «—~— Y whenever X and Y have no other parents, latent or observed.
Likewise, an edge X — Y can be replaced by a bidirected arc
X < —— Y whenever (1) X and Y have no latent parents and (2) every
parent of X or Y is a parent of both. Such replacements do not introduce
new V-structures. Because v-structures may now involve latent vari-
ables, however, we can tolerate the creation or destruction of some
v-structures as long as this does not affect partial correlations among
the observed variables. Figure 5a demonstrates that the creation of
certain v-structures can be tolerated. If we reverse the arrow X — Y,
we create two converging arrows Z — X < Y whose tails are con-
nected, not directly, but through a latent common cause. This is
tolerated because, although the new convergence at X blocks the path
(Z, X, Y), the connection between Z and Y (through the arc Z<—-— Y)
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Figure 5: Models Permitting ([a] and [b]) and Forbidding (c) the Reversal of X —»Y

remains unblocked and, in fact, cannot be blocked by any set of
observed variables.

We can carry this principle further by generalizing the concept of
v-structure. Whereas in Markovian models, a v-structure is defined as
two converging arrows whose tails are not connected by a link, we
now define v-structure as any two converging arrowheads whose tails
are separable. By separable, we mean that there exists a conditioning
set S capable of d-separating the two tails. Clearly, the two tails will
not be separable if they are connected by an arrow or by a bidirected
arc. But a pair of nodes in a semi-Markovian model can be inseparable
even when not connected by an edge (Verma and Pearl 1990b). With
this generalization in mind, we can state necessary conditions for edge
replacement:

Rule 1: An arrow X — Y is interchangeable with X <~ — — Y only if every
neighbor or parent of X is inseparable from Y (by neighbor, we mean a
node connected—to X—through a bidirected arc).

Rule 2: An arrow X — Y can be reversed into X «— Y only if, before reversal,
(1) every neighbor or parent of Y (excluding X) is inseparable from X
and (ii) every neighbor or parent of X is inseparable from Y.

For example, consider the model Z <~ —— X — Y. Thearrow X —» Y
cannot be replaced with a bidirected arc X ¢« — — Y because Z (a
neighbor of X) is separable from Y by the set S = { X}. Indeed, the new
v-structure created at X would render X and ¥ marginally independent,
contrary to the original model.

As another example, consider the graph in Figure 5a. Here, it is
legitimate to replace X — Y with X <~ — — Y or areversed arrow
X « Y because X has no neighbors and Z, the only parent of X, is
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inseparable from Y. The same considerations apply to Figure 5b;
variables Z and Y, although nonadjacent, are inseparable, because the
paths going from Z to Y through W cannot be blocked.

A more complicated example, one that demonstrates that the rules
above are not sufficient to ensure the legitimacy of a transformation,
is shown in Figure 5c. Here, it appears that replacing X — Y with
X < — — Y would be legitimate because the (latent) v-structure at X
is shunted by the arrow Z — Y. However, the original model shows
the path from W to Y to be d-connected given Z, whereas the postre-
placement model shows the same path d-separated given Z. Conse-
quently, the partial correlation py,y, vanishes in the postreplacement
model but not in the prereplacement model. A similar disparity also
occurs relative to the partial correlation pyyz. The original model
shows that the path from W to Y is blocked given {Z, X}, whereas the
postreplacement model shows that path d-connected given {Z, X}.
Consequently, the partial correlation pyy., vanishes in the prereplace-
ment model but is unconstrained in the postreplacement model."
Evidently, it is not enough to impose rules on the parents and neighbors
of X; remote ancestors (e.g., W) should be considered too.

These rules are just a few of the implications of the d-separation
criterion when applied to semi-Markovian models. A necessary and
sufficient criterion for testing the d-separation equivalence of two
semi-Markovian models has been devised by Spirtes and Verma
- (1992). Spirtes and Richardson (1996) have extended that criterion to
include models with selection bias. We should keep in mind, however,
that because two semi-Markovian models can be zero partial correla-
tion equivalent and yet not covariance equivalent, criteria based on
d-separation can provide merely the necessary conditions for model
equivalence.

2.3.2. The Significance of Equivalent Models

Theorem 4 is methodologically significant because it clarifies what
it means to claim that structural models are “testable” (Bollen
1989:78).!2 It asserts that we never test a model but, rather, a whole
class of observationally equivalent models from which the hypothe-
sized model cannot be distinguished by any statistical means. It asserts
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as well that this equivalence class can be constructed by inspection,
from the graph, which thus provides the investigator with a vivid

representation of competing alternatives for consideration. Graphs
~ representing all models in a given equivalence class have been given
by Verma and Pearl (1990b), Spirtes et al. (1993), and Andersson et al.
(1997). Richardson (1996) discusses the representation of equivalence
classes of models with cycles.

Although it is true that (overidentified) SEMs have testable impli-
cations, those implications are but a small part of what the model
represents, namely, a set of claims, assumptions, and implications.
Failure to distinguish among causal assumptions, statistical implica-
tions, and policy claims has been one of the main reasons for the
suspicion and confusion surrounding quantitative methods in the
social sciences (Freedman 1987:112; Goldberger 1992; Wermuth
1992). However, because they make the distinctions among these
components vivid and crisp, graphical methods promise to make SEM
more acceptable to researchers from a wide variety of disciplines.

By and large, the SEM literature has ignored the explicit analysis
of equivalent models. Breckler (1990), for example, found that out of
72 articles in the areas of social and personality psychology, only 1
acknowledged the existence of an equivalent model. The general
attitude has been that the combination of data fitness and model
overidentification is sufficient to confirm the hypothesized model.
Recently, however, the existence of multiple equivalent models seems
to have jangled the nerves of some SEM researchers. MacCallum et
al. (1993:198) conclude that “the phenomenon of equivalent models
represents a serious problem for empirical researchers using CSM”
and “a threat to the validity of interpretation of CSM results.” Breckler
(1990:262) reckons that “if one model is supported, so too are all of
its equivalent models,” and consequently ventures that “the term
causal modeling is a misnomer.”

‘ Such extremes are not justifiable. The existence of equivalent

models is logically inevitable if we accept the fact that causal relations
cannot be inferred from statistical data alone; as Wright (1921) stated,
“Prior knowledge of the causal relations is assumed as prerequisite”
in SEM. But this does not make SEM useless as a tool for causal
modeling. The move from the qualitative causal premises represented
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Figure 6: Untestable Model Displaying Quantitative Causal Information Derived From
Qualitative Substantive Assumptions

by the structure of a path diagram (see note 3) to the quantitative causal
conclusions advertised by the coefficients in the diagram is neither
useless nor trivial. Consider, for example, the model depicted in Figure
6, which Bagozzi and Burnkrant (1979) use to illustrate problems
associated with equivalent models. Although this model is saturated
(i.e., just identified), and although it has (at least) 27 semi-Markovian
equivalent models, finding that the influence of AFFECT on BEHAV-
IOR is almost three times stronger (on a standardized scale) than the
influence of COGNITION on BEHAVIOR is still very illuminating—
it tells us about the relative effectiveness of different behavior modi-
fication policies if some are known to influence AFFECT and others
COGNITION. The significance of this quantitative analysis on policy
analysis may be more dramatic when a path coefficient turns negative
while the corresponding correlation coefficient measures positive.
Learning that such a reversal is logically implied by the qualitative
causal premises embedded in the diagram may have a profound impact
on policy decisions.

In summary, social scientists need not abandon SEM altogether;
they need only abandon the notion that SEM is a method of testing
causal models. SEM is a method of testing a tiny fraction of the
premises that make up a causal model, and, in cases where that fraction
is found to be compatible with the data, SEM elucidates the necessary
quantitative consequences of both the premises and the data. It fol-
lows, then, that users of SEM should concentrate on examining the
implicit theoretical premises that enter into a model. As we will see in
Section 4, graphical methods make these premises vivid and precise.
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Figure 7: Testing Whether Structural Parameter o Can Be Equated With Regression
Coefficient ryx '

3. GRAPHS AND IDENTIFIABILITY

3.1. PARAMETER IDENTIFICATION IN LINEAR MODELS

Consider a directed edge X — Y embedded in a path diagram G,
and let a stand for the path coefficient associated with that edge. It is
well known that the regression coefficient r,, = pyy0,/0x can be
decomposed into the sum

ryx=a+lyx,

where I, is not a function of ., since it is computed (e.g., using
Wright’s rules) from other paths connecting X and Y excluding the
edge X — Y (such paths traverse both unidirected and bidirected arcs).
Thus, if we remove the edge X — Y from the path diagram and find
that the resulting subgraph entails zero correlation between X and Y,
then we know that I, = 0 and o = ry,; hence, o is identified. Such
entailment can be established graphically by testing whether X is
d-separated from Y (by the empty set Z = {J}) in the subgraph.
Figure 7 illustrates this simple test for identification: All paths be-
tween X and Y in the subgraph G, are blocked by converging arrows,
and o can immediately be equated with ry,.

We can extend this basic idea to cases in which I,y is not zero but
can be made zero by adjusting for a set of variables Z= {Z,, Z,, . . .,
Z,} that lie on various d-connected paths between X and Y. Consider
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the partial regression coefficient ry; = Pyxz Oyz /Oxz Which repre-
sents the residual correlation between Y and X after Z is “partialed
out.” If Z contains no descendant of Y, then again we can write'

Tz =0+ Iyyz,

where I, represents the partial correlatlo 1between X and Y resulting
from setting o to zero, that is, the partial correlation in a model whose
graph, G,, lacks the edge X — Y but is otherwise identical to G. If Z
d-separates X from Y in G, then I, would indeed be zero in such a
model, and we can conclude that in our original model, o is identified
and is equal to 0. = ryy;. Moreover, since ry,is given by the coefficient
- of x in the regression of Y on X and Z, o can be estimated using the
regression

y=ox+Bz+...+ Bz +e

This result provides a simple graphical answer to the questions,
alluded to. in Section 1.3, of what constitutes an adequate set of
regressors and when a regression coefficient provides a consistent
estimate of a path coefficient. The answers are summarized in the
following theorem.'

Theorem 6: (single-link criterion) Let G be any path diagram in
which a is the path coefficient associated with link X — Y, and let G,
denote the diagram that results when X — Y is deleted from G. The
coefficient o is identifiable if there exists a set of variables Z such that
Z contains no descendant of Y, and Z d-separates X from Yin G,. If Z
satisfies these two conditions, then o is equal to the regression
coefficient ry,,. Conversely, if Zdoes not satisfy these conditions, then
ryxz is not a consistent estimator of o, except in rare instances of
measure Zero.

The use of Theorem 6 can be illustrated as follows. Consider the
graphs G and G,, in Figure 8. The only path connecting X and Y in G,
is the one traversing Z, and since that path is d-separated (blocked) by
Z, o is identifiable and is given by o = ry,. The coefficient B is
identifiable, of course, since Z is d-separated from X in G; (by the
empty set {@}), and thus B=ry; .
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Figure 9: Graphical Identification of the Total Effect of X on Y, o + By=ryx.z,

We now extend the use of d-separation to facilitate the identifica-
tion of total, rather than direct, effects. Consider the graph G in
Figure 9. If we form the graph G, (by removing the link X — Y), we
observe that there is no set Z of nodes that d-separates all paths from
X to Y. If Z contains Z,, then the path X —» Z, < — — Y will be
unblocked through the converging arrows at Z,. If Z does not contain
Z,, the path X — Z, — Yis unblocked. Thus, we conclude that o. cannot
be identified using our previous method. However, suppose we are
interested in the total effect of X on Y given by o + By. For this sum
to be identified by ryy, there should be no contribution to ry, from paths
other than those leading from X to Y. However, we see that two such
paths, called confounding or backdoor paths, exist in the graph,
namely, X < Z, -»Y and X « - — Z, — Y. Fortunately, these paths
are blocked by Z,, and we conclude that adjusting for Z, would render
o + By identifiable and given by



Pearl / GRAPHS, CAUSALITY, STRUCTURAL EQUATION MODELS 255

o+ B’Y: ryx.zz.

This line of reasoning leads to a general test for the identifiability
of total effects, called the backdoor criterion (Pearl 1993a; Pearl
1995). |

Theorem 7: (backdoor criterion) For any two variables X and Y in
a causal diagram G, the total effect of X on Y is identifiable if there
exists a set of measurements Z such that

1. no member of Z is a descendant of X
2. Z d-separates X from Y in the subgraph Gx formed by deleting from
G all arrows emanating from X.

Moreover, if the two conditions are satisfied, then the total effect of X
on Y is given by ry.

The two conditions of Theorem 7, as we will see in the next
subsection, are also valid in nonlinear non-Gaussian models, as well
as in models with discrete variables. It is for this reason that the
backdoor criterion can serve as a general test for covariate selection,
as described in Section 1.3. The reason for deleting the arrows in step
2 is to ensure that only confounding (i.e., backdoor) paths participate
in the d-separation test. The test ensures that, after adjustment for Z,
X and Y are not associated through confounding paths, which means
that the partial correlation ryy; is equal to the total effect. In fact, we
can view Theorems 6 and 7 as special cases of a more general scheme:
To identify any partial effect, as defined by a select bundle of causal
paths from X to ¥, we ought to find a set Z of measured variables that
block all nonselected paths between X and Y. The partial effect will
then equal the regression coefficient ryy .

Figure 9 demonstrates that some total effects can be determined
directly from the graphs, without having to identify their individual
components. Standard SEM methods (Bollen 1989; Chou and Bentler
1995), which focus on the identification and estimation of individual
parameters, may miss the identification and estimation of effects such
as the one in Figure 9, which can be estimated reliably even though
some of the constituents remain unidentified.
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Figure 10: Graphical Identification of a Using Instrumental Variable Z

Some total effects cannot be determined directly, as a unit, but
require the determination of each component separately. In Figure 8,
for example, the effect of Z on Y(= o) does not meet the backdoor
criterion, yet this effect can be determined from its constituents o and
B, which meet the backdoor criterion individually and evaluate to

B=rﬂ (x=ryx4z.

There is still a third kind of causal parameter that cannot be
determined directly or through its constituents but requires the evalu-
ation of a broader causal effect of which it is a part. The structure
shown in Figure 10 represents an example of this case. The parameter
o cannot be identified directly, yet it can be determined from o8 and
B, which represent the effect of Z on Y and that of Z on X, respectively.
These two effects can be identified directly, since there are no back-
door paths from Z to either Y or X, giving 0§ = ry, and B = ry,. Thus,

a=ryz/rxz,

which is familiar to us as the instrumental variable formula (Bowden
and Turkington 1984).

The example shown in Figure 11 combines all three methods
considered thus far. The total effect of X on Y is given by off + V3,
which is not identifiable because it does not meet the backdoor
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criterion and is not part of another identifiable structure. However,
suppose we wish to estimate B. By conditioning on Z, we block all
paths going through Z and obtain off = ryy,, which is the effect of X
on Y mediated by W. Because there are no backdoor paths from X to
W, o itself evaluates directly to o = ry,. We therefore obtain

B=ryx.z/rwx-

In contrast, ¥ can be evaluated directly by conditioning on X (thus
blocking the backdoor path from Z to Y through X), which gives

Y=Tyz. x

The methods we have been using suggest a systematic procedure
for recognizing identifiable coefficients in a graph.

1. Start by searching for identifiable causal effects among pairs of
variables in the graph using the backdoor criterion and Theorem 6.
These can be either direct effects, total effects, or partial effects, that
is, effects mediated by specific sets of variables.

2. For any such identified effect, collect the path coefficients involved
and put them in a bucket.

3. Begin labeling the coefficients in the buckets according to the follow-

ing procedure: If a bucket is a singleton, label its coefficient / (denoting

identifiable); if a bucket is not a singleton but contains only a single

unlabeled element, label that element .

Repeat this process until no new labeling is possible.

List all labeled coefficients; these are identifiable.

Nk
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X X'

Figure 12: Identifying B and 8 Using Two Instrumental Variables

The process described above is not complete, since our insistence
on labeling coefficients one at a time may cause us to miss certain
opportunities. This is shown in Figure 12.

Starting with the pairs (X, Z), (X, W), (X', Z), and (X', W), we
discover that ., y, o', and vy’ are identifiable. Going to (X, Y), we find
that af + 8y is identifiable, and, from (X', Y), that o' + y’d is
identifiable. This does not enable us to label B or & yet, but we can
solve two equations for the unknowns 3 and § as long as the determi-

o'y .

at a point but rather “almost everywhere” (Koopmans et al. 1950;
Simon 1953), we need not compute this determinant. We merely
inspect the symbolic form of the determinant’s rows to make sure that
the equations are nonredundant; each imposes a new constraint on the
unlabeled coefficients for at least one value of the labeled coefficients.

With a facility to detect redundancies, we can increase the power
of our procedure by adding the following provision to Step 3:

nant ' o Yl is nonzero. Because we are interested in identifiability not

If there are k nonredundant buckets that contain at most & unlabeled
coefficients, label these coefficients, and continue.

Another way to increase the power of our procedure is to list not
just identifiable effects, but also expressions involving correlations
due to bidirected arcs, in accordance with Wright’s rules. Finally, one
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can endeavor to list effects of several variables jointly. A modified
backdoor criterion for evaluating joint effects has been reported by
Pearl and Robins (1995). However, such enrichments tend to make
the procedure more complex and might compromise our main objec-
tive of providing investigators with a way of immediately recognizing
the identified coefficients in a given model and immediately under-
standing those features in the model that influence the identifiability
of the target quantity. We now address the problem of identification
in nonparametric models, where the machinery of linear algebra can
be of little help and where graph theoretical techniques have led to
significant progress.

3.2. IDENTIFICATION IN NONPARAMETRIC MODELS

Nonparametric models are SEMs in which both the functional
forms of the equations and the probability distributions of the distur-
bances remain unspecified. We consider nonparametric models for
both practical and conceptual reasons. On the practical side, investi-
gators often find it hard to defend the assumptions of linearity and
normality, or other functional-distributional assumptions, especially
when categorical variables are involved. Nonparametric results are
valid for nonlinear functions and for any distribution of errors. More-
over, having such results allows us to gauge how sensitive standard
techniques are to assumptions of linearity and normality. On the
conceptual side, nonparametric models, which are stripped of alge-
braic connotations, illuminate the distinctions between structural and
algebraic equations. The search for alternatives to path coefficients
(which are nonexistent in nonparametric models) and to the standard
definitions of direct and total causal effects (which are normally
defined in terms of path coefficients) forces explication of what path
coefficients really mean and where their empirical content comes
from.

3.2.1. Parametric Versus Nonparametric Models: An Example

Consider the set of structural equations

x=fi(u, &) ©) -
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Flgure 13: Path Diagram Corresponding to Equations (6)-(8), Where {X, Y Z} Are
Observed and {U, €1, €2, €3} Are Unobserved

2=f(x, &) ™)

Y =1z u, &), o @®)

‘where X, Y, and Z are observed variables; f,, f;, and f; are unknown

-arbitrary functions; and U, €, €,, and €, are unobservables that we can
regard either as latent variables or as disturbances. For the sake of this
discussion, we will assume that U, g,, €,, and &, are mutually inde-
pendent and arbitrarily distributed. Graphically, these influences can
be represented by the path diagram of Figure 13.

The problem is as follows: We have drawn a long stream of
independent samples of the process defined by equations (6) through
(8) and have recorded the values of the observed variables X, Z, and
Y, and we now wish to estimate the unspecified quantities of the model
to the greatest extent possible.

To clarify the scope of the problem, let us consider its hnear version,
which is given by

X=u+¢g 09
Z=0x+§, (10)

y=Bz+yu+e, (11)



Pearl / GRAPHS, CAUSALITY, STRUCTURAL EQUATION MODELS 261

where U, €,, €,, and €, are uncorrelated, zero-mean disturbances.! It
is not hard to show that parameters o, B, and Y can be determined
uniquely from the correlations among the observed quantities X, Z,
and Y. This identification was demonstrated already in the example of
Figure 8, where the backdoor criterion yielded

Boryy Q=TI (12)
and hence
Y= ryx—of. | (13)

Thus, returning to the nonparametric version of the model, it is
tempting to generalize that for the model to be identifiable, the
functions {f}, f,, f;} must be determined uniquely from the data.
However, the prospect of this happening is unlikely because the
mapping between functions and distributions is known to be many to
one. In other words, given any nonparametric model M, if there exists
one set of functions {f,,f;,f;} compatible with a given distribution P(x,
¥y, 2), then there are infinitely many such functions. Thus, it seems that
nothing useful can be inferred from loosely specified models such as
the one given by equations (6) through (8).

Identification is not an end in itself, however, even in linear models.
Rather, it serves to answer practical questions of prediction and
control. At issue is not whether the data permit us to identify the form
of the equations but rather whether the data permit us to provide
unambiguous answers to questions of the kind traditionally answered
by parametric models.

When the model given by equations (6) through (8) is used strictly
for prediction (i.e., to determine the probabilities of some variables
given a set of observations on other variables), the structural content
of the parameters becomes irrelevant; the predictions can be estimated
directly from either the covariance matrices or the sample estimates
of those covariances. If dimensionality reduction is needed (e.g., to
improve estimation accuracy), the covariance matrix can be encoded
in a variety of simultaneous equation models, all of the same dimen-
sionality. For example, the correlations among X, Y, and Z in the linear
model M of equations (9) through (11) might well be represented by
the model M’ (Figure 14):
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Figure 14: Diagram Representing Model M’ of Equations (14) Through (16)

X=§ (14)
Z=0X+E, (15)
y=Bz+dx+¢, (16)

which is as compact as equations (9) through (11) and is covariance
equivalent to M with respect to the observed variables X, Y, and Z.
Upon setting o’ = o, B’ =B, and & =y, model M’ will yield the same
probabilistic predictions as those of the model of equations (9) through
(11). Still, when viewed as data-generating mechanisms, the two
models are not equivalent; each tells a different story about the
processes generating X, Y, and Z, and, naturally, their predictions about
the changes that would result from subjecting these processes to
~ external interventions differ.

3.3. CAUSAL EFFECTS: THE INTERVENTIONAL INTERPRETATION OF SEMs

The differences between models M and M’ illustrate precisely
where the structural reading of simultaneous equation models comes
into play. Model M’, defined by equations (14) through (16), regards
X as a direct participant in the process that determines the value of Y,
‘whereas model M, defined by equations (9) through (11), views X as
an indirect factor whose effect on Y is mediated by Z. This difference
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is manifested not in the data but in the way the data would change in
response to outside interventions. For example, suppose we wish to
predict the expectation of Y after we intervene and fix the value of X
to some constant x, denoted E(Y | do(X = x))." After X = x is substituted
into equations (15) and (16), model M’ yields

E[Y1do(X = x)] = E[p’o’x + B’e, + 8x + &) a7
=(B'o’ + d)x, (18)
whereas model M yields
E[Y | do(X = x)] = E[Box + Be, + Yu + &) (19)
= Boux. (20)

Upon setting o’ = o, B’ = B, and & = y (as required for covariance
equivalence; see equations (12) and (13)), we see clearly that the two
models assign different magnitudes to the (total) causal effect of X on
Y; model M predicts that a unit change in x will change E(Y) by the
amount o, whereas model M’ puts this amount at o + Y.

At this point, it is tempting to ask whether we should substitute
x — &, for u in equation (11) prior to taking expectations in equation
(19). If we permit the substitution of equation (10) into equation (11),
as we did in deriving equation (19), why not permit the substitution
of equation (9) into equation (11) as well? After all, so the argument
goes, there is no harm in upholding a mathematical equality, u = x — ¢,
that the modeler deems valid. This argument is fallacious, however.
Structural equations are not meant to be treated as immutable mathe-
matical equalities. Rather, they are introduced into the model to
describe a state of equilibrium, and they are violated when that
equilibrium is perturbed by outside interventions. In fact, the power
of SEMs is that they encode not only the initial equilibrium state but
also the information necessary for determining which equations must
be violated to account for a new state of equilibrium. For example, if
the intervention merely consists of holding X constant at x, then the
equation x = u + €,, which represents the preintervention process
determining X, should be overruled and replaced with the equation



264 SOCIOLOGICAL METHODS & RESEARCH

X = x. The solution to the new set of equations then represents the new
equilibrium. Thus, the essential characteristic of structural equations
that sets them apart from ordinary mathematical equations is that they
stand not for one but for many sets of equations, each corresponding
to a subset of equations taken from the original model. Every such
subset represents some hypothetical physical reality that would pre-
vail under a given intervention.

If we take the stand that the value of structural equations lies not in
summarizing distribution functions but in encoding causal informa-
tion for predicting the effects of policies (Haavelmo 1943; Marschak
1950; Koopmans 1953), it is natural to view such predictions as the
proper generalization of structural coefficients. For example, the
proper generalization of the coefficient [ in the linear model M would
be the answer to the control query, “What would be the change in the
expected value of Y if we were to intervene and change the value of
Z from zto z+ 1?” which is different, of course, from the observational
query, “What would be the difference in the expected value of Y if we
were to find Z at level z + 1 instead of level z?” Observational queries
can be answered directly from the joint distribution P(x, y, z), whereas
control queries require causal information as well. Structural equa-
tions encode this causal information in their syntax by treating the
variable on the left-hand side of the equality sign as the effect and
those on the right-hand side as causes. To distinguish between the two
types of queries, we will use the symbol do(-) to indicate externally
controlled quantities. For example, we write

E(YIdo(x))éE[Yldo(X—-—x)] @D

for the controlled expectation and

E(Y1x) A E(Y | X=x) (22)

for the standard conditional or observational expectation. That E(Y |
do(x)) # E(Y | x) can easily be seen in the model of equations (9)
through (11), where E(Y | do(x)) = offx but E(Y | x) = ryx = (0 + Y)x.
Indeed, the passive observation X = x should not violate any of the
equations, and this is the justification for substituting both equations
(9) and (10) into equation (11) before taking the expectation.
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In linear models, the answers to questions of direct control are
encoded in the so-called path coefficients or structural coefficients,
and these can be used to derive the total effect of any variable on
another. For example, the value of E(Y | do(x)) in the model defined
by equations (9) through (11) is ox, namely, x times the product of
the path coefficients along the path X — Z — Y. In the nonparametric
case, computation of E(Y | do(x)) would be more complicated, even
when we know the functions f,, f,, and f;. Nevertheless, this computa-
tion is well defined and requires the solution (for the expectation of
Y) of a modified set of equations in which £ is “wiped out” and X is
replaced by the constant x: ,

z=fx, &) (23)

Y =1z, u, &). (24)

Thus, computation of E(Y | do(x)) requires evaluation of

E(Y | do(x)) = E{f[fo(x, &), u, &]},

where the expectation is taken over U, &,, and €,. Graphical methods
for performing this computation are discussed in Section 3.4.

What, then, is an appropriate definition of identifiability for non-
parametric models? One reasonable definition is that answers to
interventional queries are unique. Accordingly, we call a model iden-
tifiable if there exists a consistent estimate for every query of the type
“Find P(r | do(s)) A P[R=rldo(S =5)],” where R and S are subsets
of observables and r and s are any realizations of these variables. The
set of probabilities P(r | do(s)) is called the causal effect of S on R,
since it describes how the distribution of R varies when S is changed
by external control.” Naturally, we need to allow for instances in
which some queries are identifiable while the system as a whole is
not. Hence, we say that P(r | do(s)) is identifiable in model M if every
choice of the model’s parameters (i.e., functional forms and distribu-
tions) compatible with the observed distribution P yields the same
value for P(r | do(s)).

Remarkably, many aspects of nonparametric identification, includ-
ing tests for deciding whether a given interventional query is identi-
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fiable, as well as formulas for estimating such queries, can be deter-
mined graphically, almost by 1nspect10n, from the diagrams that
accompany the equations. |

3.4. IDENTIFICATION OF CAUSAL EFFECTS

- Definition 4: (causal effect) Given a causal model M (as in equation
(1)) and two disjoint sets of variables, X and Y, the causal effect of the
set X on the set Y, denoted P,(y | do(x)), is the probability of Y =y
induced by deleting from the model all equations corresponding to
variables in X and substituting X = x in the remaining equations.'®

Clearly, the graph corresponding to the reduced set of equations is
an edge subgraph of G from which all arrows to X have been pruned
(Spirtes et al. 1993).

Readers accustomed to thinking of causal effects in terms of
randomized experiments may interpret P(y | do(x)) as the conditional
probability P, (Y =y|X = x) corresponding to a controlled experiment
in which X is randomized. An equivalent interpretation can be formu-
lated using the potential response notation (Rubin 1974) to read

P(y | do(x)) = P(Y,=y),

where Y, is the value that Y would obtain under the hypothetical control
(or treatment) do(X = x). Rubin’s definition of causal effect,
E(Y,.) — E(Y,.), where x” and x” are two levels of a treatment variable
X, corresponds to the difference E(y | do(x’)) — E(Y | do(x”)) and can
always be obtained from the generic distribution P(y | do(x)). Defini-
tion 4 forms the bridge between SEMs and the potential response
framework. It provides a precise model-theoretic definition for the
counterfactual variable Y,, which in the potential response framework
is taken as a hypothetical mental construct. The SEM equivalent of Y,
is the solution for Y, after deleting from the model all equations
corresponding to variables in the set X, and substituting X = x in the
remaining equations.

Definition 5: (causal effect identifiability) The causal effect of X
on Y is said to be identifiable in a class C of models if the quantity
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- P(y | do(x)) can be computed uniquely from the probabilities of the
observed variables V; that is, if for every pair of models M, and M, in
C for which Py, (v) = P, (v), we have Py, (y | do(x)) = Py, (y | do(x)).

Our analysis of identifiability will focus on a class C of models that
have the following characteristics in common: (1) they share the same
causal graph G and (2) they induce positive distributions on the
observed variables; that is, P,(Vv) > 0.

Analysis of causal effects becomes particularly simple when deal-
ing with Markovian models. In such models, all causal effect queries
are identifiable; that is, they can be computed directly from the
conditional probabilities P(x; | pa;), even when the functional forms of
the functions f; and the distributions of the disturbances are not
specified (Pearl 1993b; Spirtes et al. 1993). This is seen immediately
from the following observations. On one hand, the distribution in-
- duced by any Markovian model M is given by the product in equa-
tion (3),

Py(xy,s %) = [ P(x:! pa), R ~)

i

where pa; are (values of) the parents of X; in the diagram repre-
senting M. On the other hand, the submodel M,., representing the
action do(X=x), is also Markovian; hence, it also induces a product-
like distribution

| P(x,,..., 26
’(H P(xilpai)zM if x=x o
i P(x;| pay)
Py (x15eees %) =4
llo if x#x’

where the partial product reflects the removal of the equation x; =f(pa;,
g) from the model. Thus, we see that both the preaction and the
postaction distributions depend only on observed conditional proba-
bilities, but they are independent of the particular functional forms of
{f:} and of the error distributions that generated those probabilities.
It is possible to show that certain, although not all, causal effects
are identifiable in semi-Markovian nonparametric models (Pearl
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1995). An important result in this direction has been the extension of
the backdoor criterion (Theorem 7) to nonparametric models.

Theorem 8: (nonparametric backdoor criterion) For any disjoint
sets of variables X and Y in a causal diagram G, if the two conditions
of Theorem 7 are satisfied, then the causal effect of X on Y is identified
and is given by

P(yldo(x)) = Y, P(y|x2)P(2). (27)

This theorem provides a formal definition for the concepts of
exogeneity and confounding in econometrics (Engle, Hendry, and
Richard 1983) and epidemiology (Greenland, Pearl, and Robins
1998), respectively. A variable X is said to be exogenous (uncon-
founded) relative to Y if P(y | do(x)) = P(y | x); that is, if the conditions
of the backdoor criterion hold when Z is the empty set. Alternatively,
X is said to be conditionally exogenous (unconfounded) relative to Y
given measurements on set Z if equation (27) holds; that is, if the
conditions of the backdoor criterion hold for Z. Section 3.1 proposes
an explanation why the definitions of these two basic concepts have
encountered difficulties in econometrics and epidemiology (see also
Pearl 1998). ,

Pearl (1995) introduces a symbolic calculus for the do(-) operator,
which facilitates the identification of additional causal effects in
nonparametric models. Using this calculus, Galles and Pearl (1995)
have devised graphical criteria for identifying causal effects in any
semi-Markovian model. Finally, if the objective of a study is to
evaluate the direct, rather than the total, causal effect of X on Y, as was
the case with the Berkeley graduate admissions study (see note 5),
then some other graphical criteria that determine identifiability are
available (Pearl and Robins 1995).

In light of these results, the reader might want to know whether the
model defined by equations (6) through (8) is identifiable. The answer
is yes; this model permits the identification of all interventional
queries. For example, from inspection of the graph in Figure 13, we
can conclude immediately that
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1. P(x | do(y), do(z)) = P(x), consistent with the intuition that conse-
quences can have no effect on their causes;

2. P(zldo(x)) = P(z| x), because g2 is independent of X, and hence Z is
not confounded by X (alternatively, and hence all backdoor paths
between Z and X are blocked);

3. P(yldo(2))= 2 P>yl z,x)P(x) because the backdoor criterion quali-

fies X as an appropnate covanate for adjustment;
4. P(yldo(x))= 2 P(z1x) 2 P(y | ¥,9)P(x'), which results from

chaining P(z | do(x)) with P(y | do(2)), as is shown formally in Pearl
(1995).

4. SOME CONCEPTUAL UNDERPINNINGS

4.1. WHAT DO STRUCTURAL PARAMETERS REALLY MEAN?

Every student of SEM has stumbled on the following paradox at
some point in his or her career. If we interpret the coefficient B in the
equation

y=PBx+e

as the change in E(Y) per unit change of X, then after rewriting the
equation as

x=(y-¢€)/B,

we ought to interpret 1/B as the change in E(X) per unit change of Y.
But this conflicts both with intuition and with the prediction of the
model: The change in E(X) per unit change of Y ought to be zero if Y
does not appear as an independent variable in the equation for X.
Teachers of SEM generally evade this dilemma via one of two
escape routes. One route involves denying that B has any causal
reading and settling for a purely statistical interpretation in which B
measures the reduction in the variance of Y explained by X (e.g.,
Muthen 1987). The other route permits causal reading of only those
coefficients that meet the so-called isolation restriction (Bollen 1989;
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James et al. 1982); namely, the explanatory variable must be uncorre-
lated with the error in the equation. Because € cannot be uncorrelated
with both X and ¥, so the argument goes, B and 1/B cannot both have
causal meaning, and the paradox dissolves.

The first route is self-consistent, but it compromises the founders’
intent that SEM function as an aid to policy making and clashes with
the intuition of most SEM users. The second is vulnerable to attack
logically. It is well known that every pair of bivariate normal variables,
X and Y, can be expressed in two equivalent ways:

y=Ppx+¢,
and
X=0y+§,

where cov(X, €,) = cov(¥, €,) =0, and o = ry, = B6%/G2. Thus, if the
condition cov(X, €,) = 0 endows [ with causal meaning, then cov(Y,
€,) = 0 ought to endow a with causal meaning as well. But this, too,
conflicts with both intuition and the intentions behind SEM; the
change in E(X) per unit change of Y ought to be zero, not ryy, if there
is no arrow from Y to X.

What then is the meaning of a structural coefficient? Or a structural
equation? Or an error term? The interventional interpretation of causal
effects, when coupled with the do(x) notation introduced in Section
3.3, provides simple answers to these questions. The answers explicate
the operational meaning of structural equations and, it is hoped, end
an era of controversy and confusion regarding these entities.

4.1.1. Structural Equations: Operational Definition

Definition 6: (structural equations) An equation y = Bx + € is said
to be structural if it is to be interpreted as follows. In an ideal
experiment where we control X to x and any other set Z of variables
(not containing X or Y) to z, the value y of Y would be independent of
z and is given by Px + €.

This definition is operational because all quantities are observable,
albeit under conditions of controlled manipulation. That manipula-
tions cannot be performed in most observational studies does not



Pearl / GRAPHS, CAUSALITY, STRUCTURAL EQUATION MODELS - 271

negate the operationality of the definition, in much the same way that
our inability to observe bacteria with the naked eye does not negate
their observability under a microscope. The challenge of SEM is to
extract the maximum information on what we wish to observe from
the little we can observe.

Note that the operational reading given above makes no claim about
how X (or any other variable) will behave when we control Y. This
asymmetry makes the equality signs in structural equations different
from algebraic equality signs; the former act symmetrically in relating
observations on X and Y (e.g., observing Y = 0 implies Bx = —¢), but
they act asymmetrically when it comes to interventions (e.g., setting
Y to zero tells us nothing about the relation between x and €). The
arrows in path diagrams make this dual role explicit, and this may
account for the insight and inferential power gained through the use
of diagrams.

The strongest empirical claim of the equation y = Bx + € is made
by excluding other variables from the right-hand side of the equation,
thus proclaiming X the only immediate cause of Y. This translates into
atestable claim of invariance: The statistics of Y under condition do(x)
should remain invariant to the manipulation of any other variable in
the model (Pearl 1996; Galles and Pearl 1998)."” This can be written
symbolically as

P(y | do(x), do(2)) = P(y | do(x)) (28)

for all Z disjoint of {X U Y}.

Note that this invariance holds relative to manipulations, not ob-
servations, of Z. The statistics of Y under condition do(x), given the
measurement Z = z, written P(y | do(x), z), would certainly depend on
z if the measurement was taken on a consequence (i.e., descendant) of
Y. Note also that the ordinary conditional probability P(y | x) does not
enjoy such a strong property of invariance, since P(y | x) is generally
sensitive to manipulations of variables other than X in the model,
unless X and € are independent. Equation (28), in contrast, remains
valid regardless of the statistical relationship between € and X.

Generalized to a set of several structural equations, equation (28)
explicates the assumptions underlying a given causal diagram. If G is
the graph associated with a set of structural equations, then the
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assumptions are embodied in G as follows: (1) every missing arrow,
say between X and Y, represents the assumption that X has no causal
effect on Y once we intervene and hold the parents of Y fixed; and (2)
every missing bidirected link between X and Y represents the assump-
tion that the omitted factors that influence Y are uncorrelated with
those that influence X. Sections 4.1.3 and 4.1.4 discuss the operat10nal
meaning of the latter assumption.

4.1.2. The Structural Parameters: Operational Definition

- The interpretation of a structural equation as a statement about the
behavior of Y under a hypothetical intervention yields a simple defi-
nition for the structural parameters. The meaning of B in the equation

= Bx + € is simply

B=2 E[Y I do(x)], 29)
C o oOx ,

namely, the rate of change (relative to x) of the expectation of Y in an
experiment where X is held at x by external control. This interpretation
holds regardless of whether € and X are correlated in nonexperimental
studies (e.g., via another equation x = ¢ty + J).

4.1.3. The Mystical Error Term: Operational Definition

The interpretations given in Sections 4.1.1 and 4.1.2 provide an
operational definition for that mystical error term

£ =y— E[Y | do(x)], (30)

which, despite being unobserved in nonmanipulative studies, is far
from being metaphysical or definitional as suggested by some re-
searchers (e.g., Richard 1980; Holland 1988:460; Hendry 1995:62).
Unlike errors in regression equations, € measures the deviation of Y
from its controlled expectation E[Y | do(x)] and not from its condi-
tional expectation E[Y | x]. The statistics of € can therefore be mea-
sured from observations on Y once X is controlled. Alternatively, since
B remains the same, regardless of whether X is manipulated or ob-
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served, the statistics of € = y — Bx can be measured in observational
studies, if we know P.

Likewise, correlations among errors can be estimated empirically.
For any two nonadjacent variables in the model, X and Y, equation
(30) yields -

© Elese,] = EIYX | do(pay, pay)] - ELY | do(pay))EIX | do(pay)]. (31)

Once we determine the structural coefficients, the controlled expec-
tations E[Y | do(pay)], E[X | do(pay)], and E[YX | do(pay, pay)] become
known linear functions of the observed variables pa, and pay; hence,
the expectations on the right-hand side of equation (31) can be
estimated in observational studies. Alternatively, if the coefficients are
not determined, the expression can be assessed directly in interven-
tional studies by holding pay and pa, fixed (assuming X and Y are not
in parent-child relationship) and estimating the covariance of X and Y
from data obtained under such conditions.

Finally, we are often interested not in assessing the numerical value
of E[g,, €] but rather in determining whether €, and €, can be assumed
uncorrelated. For this determination, it suffices to test whether the
equality

ELY | x, do(syp)] = EY | do(x), do(sy)] (32)

holds true, where sy, stands for (any setting of) all variables in the
model excluding X and Y. This test can be applied to any two variables
in the model, except when Y is a parent of X, in which case the
symmetrical equation is applicable, with X and Y interchanged.

4.1.4. The Mystical Error Term: Conceptual Interpretation

The authors of SEM textbooks usually interpret error terms as
representing the influence of omitted factors. Many SEM researchers
are reluctant to accept this interpretation, however, partly because
unspecified omitted factors open the door to metaphysical specula-
tions, and partly because arguments based on such factors were
improperly used as a generic, substance-free license to omit bidirected
arcs from path diagrams (McDonald 1997). Such concerns are an-



274 SOCIOLOGICAL METHODS & RESEARCH

swered by the operational interpretation of error terms, equation (30),
since it prescribes how errors are measured, not how they originate.

It is important to note, however, that the operational definition is
no substitute for the omitted-factors conception when it comes to
deciding whether pairs of error terms can be assumed to be uncorre-
lated. Because such decisions are needed at a stage when the model’s
parameters are still “free,” they cannot be made on the basis of
numerical assessments of correlations but must rest instead on quali-
tative structural knowledge about how mechanisms are tied together
and how variables affect each other. Such judgmental decisions are
hardly aided by the operational criterion of equation (31), since that
criterion instructs the investigator to assess whether two deviations,
taken on two different variables under complex experimental condi-
tions, would be correlated or uncorrelated. Such assessments are
cognitively unfeasible. |

In contrast, the omitted-factors conception instructs the investigator
to judge whether there could be factors that simultaneously influence
several observed variables. Such judgments are cognitively manage-
able, since they are qualitative and rest on purely structural knowledge—
the only knowledge available during this phase of modeling.

Another source of error correlation is selection bias. If two uncor-
related unobserved factors have a common effect that is omitted from
the analysis but influences the selection of samples for the study, then
the corresponding error terms will be correlated in the sampled
population; that is, the expectation in equation (31) will not vanish
when taken over the sampled population (see discussion of Berkson’s
paradox following Definition 1).

We should emphasize, however, that the arcs missing from the
diagram, not those in the diagram, demand the most attention and
careful substantive justification. Adding an extra bidirected arc can
only compromise the identifiability of parameters, but deleting an
existing bidirected arc may produce erroneous conclusions and a false
sense of model testability. Thus, bidirected arcs should be assumed to
exist, by default, between any two nodes in the diagram. They should
be deleted only by well-motivated justifications, such as the unlikely
existence of a common cause for the two variables and the unlikely
existence of selection bias. Although we can never be cognizant of all



Pearl / GRAPHS, CAUSALITY, STRUCTURAL EQUATION MODELS 275

the factors that may affect our variables, substantive knowledge
sometimes permits us to state that if a common factor exists, its
influence is not likely to be significant.

Thus, as often happens in the sciences, the way we measure physi-
cal entities does not offer the best way of thinking about them. The
omitted-factors conception of errors, because it rests on structural
knowledge, is a more useful guide than the operational definition
when building, evaluating, and thinking about causal models.

4.2. INTERVENTIONAL INTERPRETATION OF EFFECT DECOMPOSITION

In this section, we show that the interventional interpretation of
structural equations provides simple, unambiguous definitions of
effect decomposition for both parametric and nonparametric models.

We start with the general notion of a causal effect P(y | do(x)) from
Definition 4, which applies to arbitrary sets of variables X and Y. This
interpretation of causal effect can be specialized to define total and
direct causal effects, as follows.

Definition 7: (total effect) The total effect of X on Y is given by P(y |
do(x)); namely, the distribution of Y while X is held constant at x and
all other variables are permitted to run their natural course.

Definition 8: (direct effect) The direct effect of X on Y is given by
P(yldo(x), do(syy)), where Sy is the set of all observed variables except
X and Y in the system.

In linear analysis, Definitions 7 and 8 yield, after differentiation
with respect to x, the path coefficients that are normally associated
with direct and indirect effects, yet they differ from conventional
definitions in several important aspects. First, direct effects are de-
fined in terms of hypothetical experiments in which intermediate
variables are held constant by physical intervention, not by statistical
adjustment (which is often disguised under the misleading phrase
“control for”). Figure 11 depicts a simple example in which adjusting
for the intermediate variables (Z and W) would not give the correct
value (= 0) for the direct effect of X on Y, whereas d/dxE(Y | do(x, z,
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w)) does yield the correct value: d/dx(Bw + yz) = 0. Second, there is
no need to limit control to only intermediate variables; all variables
in the system may be held constant (excluding X and Y). Thus, the
measurement of direct effects is ascribed to an ideal laboratory; the
scientist controls for all possible conditions Sy,, and measurements
may commence without knowing the structure of the diagram. Finally,
our definitions differ from convention by interpreting total and direct
effects independently of each other, as outcomes of two different
experiments. Textbook definitions (e.g., Bollen 1989:376) usually
equate the total effect with a power series of path coefficient matrices.
This algebraic definition coincides with the operational definition
(Definition 7) in recursive (semi-Markovian) systems but yields erro-
" neous expressions in models with feedback. For instance, given the
pair of equations {y = Bx + €, x = dty + 3}, the total effect of X on Y is
simply B, not B(1 — o)™ as stated in Bollen (1989:379). The latter has
- no operational significance worthy of the phrase “effect of X.”%

Note that when the structure of the causal diagram is known, there
is no need to actually hold all other variables constant; holding
constant the direct parents of Y (excluding X) would have the same
effect on Y as holding all variables except X and Y constant. Thus, we
obtain the following equivalent definition of a direct effect.

Corollary 2: The direct effect of X on Y is given by P(y | do(x),
do(payy)), where pa,, stands for any realization of the variables
appearing in the equation for Y, excluding X.

Readers versed in linear analysis may find it a bit strange that the
direct effect of X on Y involves variables other than X and Y. However,
given that we are dealing with nonlinear interactions, the effect of X
on Y should indeed depend on the levels at which we hold the other
parents of Y. If we wish to average over these values and take the
expectation of Y, we obtain the expression

A=, LE(Y | do(x').do(payx)) — E(Y(do(x),do(payx))IP(pany | do(x)),
Payx

where A, (Y) stands for the average change in E(Y) induced by
changing X from x to x” while keeping the other parents of Y constant
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at whatever value they obtain under do(x). This expression explicates
what we actually wish to measure in race or sex discrimination cases,
where we are instructed to assess the effect of one factor (X) while
keeping “all other factors constant.” If X is an exogenous variable, as
“gender” is in Berkeley’s sex discrimination case (see note 5), then
do(x) can be replaced with x. However, we are not at liberty to replace
do(pa,y) with pa,, unless we can safely assume that the factors
represented by payy (e.g., student’s qualifications and the choice of
department) are not confounded with Y (as defined in Theorem 8). In
general, we see that the average direct effect A, (Y) is identifiable
whenever both E[Y | do(x), do(payy)] and P(payy | do(x)) are identifi-
able. Note that if X does not appear in the equation for Y, then P(y |
do(x), do(payy)) defines a constant distribution on Y, independent of
x, which matches our understanding of “having no direct effect.” Note
as well that, in linear models, A, ,(Y) reduces to x” — x times the path
coefficient between X and Y.

In standard linear analysis, an indirect effect may be defined as the
difference between the total and the direct effects (Bollen 1989). In
nonlinear analysis, differences lose their significance, and one must
isolate the contribution of mediating paths in some other way. Expres-
sions of the form P(y | do(x), do(z)) cannot be used to isolate such
contributions, however, because there is no physical means of selec-
tively disabling a direct causal link from X to Y by holding some
variables constant. This suggests that the notion of indirect effect has
no intrinsic operational meaning apart from providing a comparison
between the direct and the total effects. In other words, a policy maker
who asks for that part of the total effect transmitted by a particular
intermediate variable or by a group Z of such variables is really asking
for a comparison of the effects of two policies, one where Z is held
constant, the other where it is not. The expressions corresponding to
these policies are P(y | do(x), do(z)) and P(y | do(x)), and this pair of .
distributions should be taken as the most general representation of
indirect effects. Similar conclusions have been expressed by Robins
(1986) and Robins and Greenland (1992).
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5. CONCLUSION

- Currently, the enterprise known as structural equation modeling is
increasingly under fire. The founding fathers have retired, their teach-
ings are forgotten, and practitioners, teachers, and researchers cur-
rently find the methodology they inherited difficult to either defend
or supplant. Modern SEM textbooks are preoccupied with parameter
estimation and rarely explicate the role that those parameters play in
causal explanations or in policy analysis; examples dealing with the
effects of interventions are conspicuously absent, for instance. Re-
search in SEM now focuses almost exclusively on model fitting, while
foundational issues pertaining to the meaning of SEM’s models are
subjects of confusion and controversy.

The contemporary crisis in SEM originates, I am thoroughly con-
vinced, in the lack of a mathematical language that can handle the
causal information embedded in structural equations. Recently,
graphical models have provided such a language. They have thus
helped us answer many of the unsettled foundational questions that
drive the current crisis, including:

e Under what conditions can we give causal interpretation to structural
coefficients?

What are the causal assumptions underlying a given SEM?

What are the statistical implications of any given SEM?

What is the operational meaning of a given structural coefficient?
What are the policy-making claims of any given SEM?

When is an equation not structural?

In this article, I have summarized the conceptual developments that
now resolve such foundational questions. In addition, by way of
illustrating the soundness of the approach, I have presented several
tools to be used in answering questions of practical importance.
Questions of this type include:

When are two SEMs observationally indistinguishable?

When do regression coefficients represent path coefficients?

When would the addition of a regressor introduce bias?

How can we tell, prior to taking any data, which path coefficients can
be identified?
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o When can we dispose of the linearity-normality assumption and still
extract causal information from the data?

I am hopeful that researchers will recognize the benefits of these
concepts and tools and use them to revitalize causal analysis in the
social and behavioral sciences.

NOTES

1. A summary of attempts by philosophers to reduce causality to probabilities is given in
Pearl (1996:396-405).

2. The equivalence of the potential response and structural equation frameworks, antici-
pated by Holland (1986), Pratt and Schlaifer (1988), Pearl (1995), and Robins (1995), is proven
formally in Galles and Pearl (1998).

3. These assumptions are explicated and operationalized in Section 4. Briefly, if G is the
graph associated with a causal model that renders a certain parameter identifiable, then two
assumptions are sufficient for authenticating the causal reading of that parameter; namely, (1)
every missing arrow, say between X and Y, represents the assumption that X has no effect on Y
once we intervene and hold certain other variables fixed, and (2) every missing bidirected
arc X ¢« — — Y represents the assumption that all omitted factors that affect Y are uncorrelated
with those that affect X. Each of these assumptions is testable in experimental settings, where
interventions are feasible (Section 4.1.3).

4. Holland’s interpretation is at variance with the structural reading of the equation
(Haavelmo 1943): “In anideal experiment where we control X to x and any other set Z of variables
(not containing X or Y) to z, Y is independent of z and is given by a + bx + £” (see section 4.1.1).

5. The classic case demonstrating Simpson’s reversal is the study of Berkeley’s alleged sex
bias in graduate admission (Bickel, Hammel, and O’Connell 1975), where data showed a higher
rate of admission for male applicants overall but, when broken down by departments, yielded a
slight bias toward female applicants.

6. This advice, which rests on the causal relationship “not affected by,” is, to the best of my
knowledge, the only causal notion that has found a place in statistics textbooks. The advice is
necessary, but it is not sufficient. The other common guideline, that X should not precede Z
(Shafer 1996:326), is neither necessary nor sufficient, as will become clear in Section 3.

7. Causal models, structural equations, and error terms will be defined in terms of response
to interventions in Section 4. Formal treatments of these notions are given in Galles and Pearl
(1997, 1998).

8. The term recursive is ambiguous; some authors exclude correlated errors, but others do not.

9. The possibility that linear models may possess more economical bases came to my
awareness during a conversation with Rod McDonald.

10. Verma and Pearl (1990b) present an example using a nonparametric model, and
Richardson has devised an example using linear models with correlated errors (Spirtes and
Richardson 1996).

11. This example was brought to my attention by Jin Tian, and a similar one by two
anonymous reviewers.



280 SOCIOLOGICAL METHODS & RESEARCH

12. In response to an allegation that “path analysis does not derive the causal theory from
the data, or test any major part of it against the data” (Freedman 1987:112), Bollen (1989:78)
states, “We can test and reject structural models. . . . Thus the assertion that these models cannot
be falsified has little basis.”

13. This can be seen when the relation between Y and its parents, ¥ = ox + X;Bw; + € is
substituted into the expression for ryy.z, which yields o plus an expression Iyy.z involving partial

correlations among the variables {X, Wy, ..., W;, Z, €}. Because Y is assumed not to be an
ancestor of any of these variables, their joint density is unaffected by the equation for Y; hence,
Iyx.z is independent of o.

14. This result is also presented in Spirtes et al. (1998).

15. An equivalent version of this model is obtained by eliminating U from the equations and
allowing € and €3 to be correlated.

16. Pearl (1993b, 1995) used the notation se#(X = x). Currently, however, the do(X = x)
notation (taken from Goldszmidt and Pearl 1992) seems to be winning broader popular support.

17. Technically, the adjective causal is redundant. It serves to emphasize, however, that the
changes in S are enforced by external control and do not represent stochastic variations in the
observed value of S. :

18. Explicit translation of interventions to “wiping out” equations from the model was first
proposed by Strotz and Wold (1960) and has since been used by Fisher (1970) and Sobel (1990).
Graphical ramifications of this translation were explicated by Spirtes, Glymour, and Scheines
(1993) and Pearl (1993b) A related mathematical model using event trees has been introduced
by Robins (1986:1422-25). -

19. This statistical claim is, in fact, only part of the message conveyed by the equation; the
other part consists of a counterfactual claim (Lewis 1973; Rubin 1990; Galles and Pearl 1998):
If we were to control X to x” instead of x, then Y would attain the value Bx’ + €. In other words,
plotting the value of Y under various hypothetical controls of X, and under the same external
conditions (€), should result in a straight line with slope . Such claims can be tested only under
the assumption that €, representing external conditions or properties of experimental . units,
remains unaltered as we switch from x to x” (Pearl 1996:404).
~ 20. This error was noted by Sobel (1990), but, perhaps because constancy of path coefficients
was presented as new and extraneous assumptions, Sobel’s correction has not brought about a
shift in practice or philosophy.
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