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ABSTRACT
This paper introduces a representation of

evidential relationships which permits updating of
belief in two simultaneous modes: causal (i.e.
top-down) and diagnostic (i.e. bottom-up). It
extends ~ the hierarchical tree representation
by allowing multiple causes to a given
manifestation. We develop an updating scheme that
obeys the axioms of probability, is
computationally efficient, and is compatible with
experts reasoning. The belief parameters of each
variable are defined and updated by those of its
neighbors in such a way that the impact of each
new evidence propagates and settles through the
network in a single pass.

I INTRODUCTION

The integration of new pieces of information to
existing body of knowledge constitutes a
fundamental problem in a class of decision-making
tasks such as situation assessment, diagnosis,
pattern recognition and speech understanding.
Knowledge-based expert systems and "t decision
support systems must handle this problem to
achieve expert's level performance and to derive
valid recommendations. This paper addresses the
issues of efficiently propagating the impact of
new evidence and beliefs through a hierarchically
organized inference network. The inference
procedure described here simultaneously models
both causal and diagnostic modes of reasoning.
The causal mode of reasoning refers to the
inference process of updating the likelihood of an
event due to modified belief in its causal factors
while the diagnostic mode of reasoning refers to
that of updating the likelihood of an event as a
result of an update in some of its manifestations
(Tversky and Kahneman 1979).
The inference procedure described here is a

generalization of the Eayesian methods previously
applied to trees (DDI 1973, Pearl 1983) toward a
class of hierarchical networks suitable to model
multiple causes. The tree representation insists
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that only one variable be considered a cause of
any other variable. This restriction simplifies
computations and avoids the problem of maintaining
consistency among interrelated variables.
However, its representational power is so
restricted that many real problems cannot be
modeled naturally. In order to comply with the
requirements imposed by the tree structure, we
must group together all the causal factors as the
set of states of one single variable. By
contrast, when people associate a given
observation with multiple potential causes, they
weigh one causal factor against another as
independent variables, each pointing to a
specialized area of knowledge. As an
illustration, consider the following situation:

Mr. Holmes received a telephone call from
his neighbor notifying him that she heard a
burglar alarm sound from the direction of his
home. As he was preparing to rush home, Mr.
Holmes recalled that last time the alarm had
been triggered by an earthquake. On his way
driving home, he heard a radio newscast
reporting an earthquake 200 miles away.
Mr. Holmes perceives two episodes which may be

potential causes for the alarm sound, an attempted
burglary and an earthquake. Even though these two
events are a priori independent and so, not
mutually exclusive, still the radio anouncement
reduces the likelihood of a burglary, as it
"explains away" the alarm sound. Moreover, the
two causal events are perceived as individual
variables each pointing to a separate frame of
knowledge. The computational scheme described
here uses Bayes calculus to model that kind of
interaction among causes in addition to the ususal
interaction among diagnostic indicators.

This paper is organized as follows. After
presenting the basic concepts and definitions, we
introduce two kinds of independencies which
typically characterize the interactions among the
various causes of a common manifestation and among
the various manifestations of a common cause.
Exploiting these independencies, belief parameters
are identified and an efficient belief propagation
scheme is developed which updates the beliefs of
all variables in a single pass through the
network, avoiding infinite relaxations.

II HIERARCHICAL CAUSAL NETWORK

The basic definitions and concepts used here are
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borrowed from Pearl (Pearl 1983). A node in a
causal netwrok represents a variable. Let a
variable be labeled by a capital letter, e.g.. A,
B, ..., X, Y, and .Its various states subscripted
by numbers, e.g., X , Y . A causal network is a
directed graph where eacTi link X —> I represents
the relationship 'X causes Y', and is quantified
by a conditional probability matrix M(YJX) with
entries:

INTER-SYMPTOMICALLY
INDEPENDENT VARIABLES

X AND Z
III

INTER-CAUSALtY
INDEPENDENT VARIABLES

BANDC
Ibl

(1) M(Y!X) = Prob(Y^!X ).
i,J

We restrict the arrows to follow the direction of
causality insisting that variables be only related
by conditional probabilities where the cause, not
the effect, is the conditioned variable. The
reason is that usually the probability
P(manifestation!cause) is psychologically more
available (Tversky and Kahneman, 1979), and
therefore, can be elicited with greater ease and
validity than its counterpart,
P(cause[manifestation) (Burns and Pearl, 1981).

He will restrict our attention to a special kind
of graph, called Generalized Chow Tree(GCT) where
a node may have several parents but at most one
underlying path exists between any pair of
nodes . Since no cycle exist, a link B —> A
partitions the graph into two parts: an upper
subgraph, Ĝ ., â  a lower subgraph, G~nn. These
two graphs constitute hierarchical representations
for the set of data which we shall call D^o. and
D - , respectively. These data are defined as the
observations and prior beliefs obtained only at
the boundaries of network. Likewise, every node A
partitions the graph into two parts: above A, G'1.,
and below A, G,, representing the data set D
and D respectively. Figure 1 shows the causal
network representing Mr. Holmes' belief
structure.

Figure 2: Independence Relationships
data, D „„, influences X only through the states
^f V. 1Aof Y:
(2)
which leads to

P ( X ^ : Y , D"*"^) = P ( X ^ ! Y )

(3) P ( X . ! D"1".,.,) = £ P ( X . ! Y , ) P ( Y , ! D'1".,.,).
1 1A - J. J J IA

In other words, the influence of one node on
another is compleltely summarized by the
intermediate nodes between them.

A special case of this assumption is what we
traditionally call "Conditional Independence,"
which is usually valid among several
manifestations of a common cause. If X and Z are
successors of Y , we then write

(1) P ( X ^ , Z :Y^) = P (X^Y^) P ( Z , ! Y ^ )

which means that X and Z are not independent 3.
priori. but become independent once we know with
certainty which state of Y prevails. We will call
this relationship inter-avmptom independence.
(See Figure 2-a.)

The inter-causes relation is typically perceived
to work in the opposite direction, i.e., causes
are viewed to be a priori independent and once
their common symptom is observed they become
coupled. In Mr. Holmes* example, home
burglaries can safely be assumed independent of
earthquakes. However, given the alarm sound, the
likelihood of a burglary becomes dependent upon
the occurrence of an earthquake. We call this
relationship inter-causes independence (see Figure
2-b), and formulate it via

(5) PtB^CjiD^D^) -. PCB^) P(C^).

Figure 1 : Mr. Holmes' Belief Structure
III STRUCTURAL ASSUMPTIONS OF INDEPENDENCE

The likelihood of the various states of a
variable X would, in general, depend on the entire
data observed so far. However, the existence of
only one path from G YX to X implies that the

3. A general causal network with cycles may be
transformed into a GCT by a systematic treatment
such as neglecting the least informative link
(Chow 1968, Kirn 1983).

Figure 3: A Fragment of a Causal Network
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IV BELIEF PARAMETERS

Consider the network of Figure 3. The strength
of belief BEL(A ) of A should, at any given time,
reflect the entire data observed so far, i.e.,
data from subgraphs G^n . i G^n i G'xv and S'nvrt , . DA UA AA AJLHence, we write

(6) BEL(A,) =P(A,!D^,D^,D-^D-^.

According to Bayes rule and the structural
assumption ( 2 ) ,

(7) BEL(A^) = a PCA^iD^.D""^) P^'^.O'AY^i5

4
where a is a normalization constant . Further
applying Eq (3) and (5) , we get

(8) BEL(A^) = 0[ E P(A^!B^) P(B^1D"1"^)

P(^!D^)] P(D-^!Ai)P(D-^!A,).

Eq (8) suggests that the probability distribution
of each variable A in the network could be
computed if three parameters are made available:
1) the current strength of the causal evidence, TT,
contributed by each incoming link to A;

(9) ^) = P(B^)

2) the current strength of the diagnostic
evidence, \ , contributed by each outgoing link
from A;

(10) X. ,(A.) = P(D~,.,!A,)X i AX i
and 3) the fixed conditional probability matrix,
P ( A ' | B , C ) , which relates the variable A to its
immediate causes. Accordingly, in the propagation
scheme which we have devised, we let each link
carry two dynamic parameters, 7T and \, and let
each node store the information contained in
P ( A ! B , C ) .

V APPROXIMATION OF P f A i B . C )

In principle, the specification of £(A!B,C)
requires a table with one entry for each state
combination of the variables A, B and C. Needless
to say, such a table is rather troublesome to
obtain from experts due to its size. For this
reason, it is necessary to approximate high-order
conditional probabilities £.(A!B,C) from pairwise
relations £.(A!B) and JP . (AJC) .

A description of a state at a given level of
detail is an aggregation of states of the next
more detailed level (Patil 1981). The state of an
aggregated variable is determined by a
relationship among its component states. Consider
the Mr. Holmes example again. The state 'alarm'

4. We assume that a is chosen to make E BEL (A.) z
1. However, one may relax this constraint to
represent the degree of ignorance such as
Dempster-Shafer system (Shafer 1976).

PIAalBj A,.A,

f^SM*2l»k' A,.*, y*3'*2^/ n / 1 / t t f f f / M

PIA,|B|,I AI.A, A,.A, AI-A,

^(A,|ci4- '•'̂ hi riAalCil -4
• A| DOMINATES A| FOR I < i.

• SHADED AREA CORRESPONDS TO THE BELIEF OF
A; GIVEN B|, AND C,.

Figure 4: Computation of P(A!BC)
is a summarization of its more detailed level
states, 'alarm caused by burglar' and 'alarm
caused by earthquake'. Moreover, either a burglar
or an earthquake may cause the alarm sound
separately, while the state 'alarm sound' is false
when both 'alarm sound cause by a burglar' and
'alarm sound caused by an earthquake' are false.
We say that the state 'alarm sound* dominates its
complement state. The dominance relationship is a
characteristic of a variable itself, not of the
causal relations with its neighbors.

The strength of belief of an aggregated state is
computed by the sum of beliefs committed to its
component states. This computation is illustrated
in Figure 4, in which beliefs supported by two
causal states B, and C. are combined. The
vertical axis represents the belief distribution
of A supported by B and the horizontal axis
represents that of A supported by C-. If we assume
that A. dominates A . for i < j , then the combining
formula is •-

(11) P ( A ! B . , C ) = a 2 E P ( A I B . ) P ( A , C . )1 k i p-'i.q^P P k 1 1

where a is a normalization constant. Eq (11)
means that the regions of conflicting labels are
resolved by the dominance relation.

The dominance relation may not hold for some
variables. For those, the regions of conflicting
labels are ignored and the ratio of the diagonal
regions serves to produce belief distribution.
For this case, the combining formula is

(12) P(A^B)^) s ap (A^!B^)P(A^!C^) .

Note that this formula resembles the Dempster's
rule of combination known as "orthogonal sum"
devised for the treatment of ignorance (Shafer
1976).

VI PROPAGATION OF INFORMATION

Assuming that the vectors 7[ and ^ are stored
with each link, our task is now to prescribe how
the influence of new information spreads through
the network.

A. Updating ?>.
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Assume that B and C form a super variable which
admits all combinations of the states of B and C,
then

(13) BEL(B^) = 2BEL(B^C,)

and at the same time,

(14) BEL(B^) = "YB^X^B^).

Equating Eq (13) and (1t), we get

(15) \(B^) =a'£[7^(c ) 2X^(A^)Xy(A^)P(A^!B^c )].
J

Eq (15) shows that only three parameters (in
addition to the conditional probabilities
£.(A!B,0) need to be involved in updating the
diagnostic parameter vector X.(B) from A to B:
7 T ( C ) , Xv(A) and X y ( A ) . This is expected since
X,(B) stands for P.(H!Dn,) and D~_, is completely
summarized by the above three parameters. (See
Figure 3.)

B. Updating •S.

The rule for updating the causal parameter 71.. (A)
can be obtained from formula:

(16) Tr^(A^) = aXy(A^)[ 2 P ( A ^ ! B C ^ ) ^(BJ^tC^)]

Thus, similar to X,(B) , 7T.y(A) is also determined
by three neighboring parameters: X,,(A), 7r,,(B) and
^(C).

Equation (15) and (16) also demonstrate that a
perturbation of the causal parameter, ir, will not
effect the diagnostic parameter, X, on the same
link, and vice versa. Therefore, any perturbation
of beliefs due to new evidence propagates through
the network and is absorbed at the boundary
without reflection. A new equilibrium state will
be reached after a finite number of updates which,
in the worst case, is equal to the diameter of the
network.

Eq (15) reveals that if no data is observed
below A, i.e., all X's to A are an unit vector,
then all X's from A are also an unit vector. This
means that evidence gathered at a node does not
influence its spouses until their common son
gathers diagnostic evidence. In Mr. Holmes' case,
for example, seismic data pertaining to
earthquakes would not have influenced the
likelihood of burglary prior to receiving the
neighbor's telephone call. It is a pleasing
characteristic. Otherwise, a node may gather
support through purely mental constucts void of
diagnostic support.

A node which has no predecessor needs a special
parameter unless it is a data node. Since no
causal influence is available from its
predecessors, it requires an external parameter
summarizing the background, a priori knowledge

5. According to Webster's New World Dictionary, "a
priori" means "from cause to effect".

pertaining to that node, thus serving the
classical role of subjective prior probablility.

Generalization of Eq (15) and (16) for more than
two causal factors and more than two sets of
manifestations is straight forward (Kirn 1983).

VII CONCLUSIONS
We have introduced a formalization for the

interaction among multiple causes which reflects
the way people often view causal relationships.
Based on this formulation, we have extended the
tree representation to a class of hierarchical
networks capable of modeling multiple causes while
still maintaining the computational efficiency
provided by the tree representation: belief
parameters are updated by local (nearest
neighbors) computations, they reach equillibrium
after a single pass through the network and remain
consistent with the tenets of probability
calculus. Additionally, the causal network
representation lends itself naturally to
object-oriented formulation; each node is an
object of the same generic type and the belief
parameters are the messages by which neighboring
objects communicate.
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