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SLIDE 1: TITLE AND OPENING

Thank you Chancellor Young, colieagues, and
members of the Senate Selection Committee for
inviting me to deliver the eighty-first lecture in the
UCLA Faculty Research Lectureship Program. It
is a great honor to be deemed worthy of this
podium, and to be given the opportunity to share
my research with such a diverse and
distinguished audience.

The topic of this lecture is causality - namely, our
awareness of what causes what in the world and
why it matters. Though it is basic to human
thought, Causality is a notion shrouded in
mystery, controversy, and caution, because
scientists and philosophers have had difficulties
defining when one event TRULY CAUSES another.We all understand that the
rooster's crow does not cause the sun to rise, but even this simple fact cannot
easily be translated into a mathematical equation.

Today, | would like to share with you a set of ideas which | have found very
useful in studying phenomena of this kind. These ideas have led to practical
tools that | hope you will find useful on your next encounter with a cause and
effect.



And it is hard to imagine anyone here who is NOT dealing with cause and
effect. Whether you are evaluating the impact of bilingual education programs
or running an experiment on how mice distinguish food from danger or
speculating about why Julius Caesar crossed the Rubicon or diagnosing a
patient or predicting who will win the 1996 presidential election, you are dealing
with a tangled web of cause-effect considerations. The story that | am about to
tell is aimed at helping researchers deal with the complexities of such
considerations, and to clarify their meaning.

SLIDE 2: OUTLINE

This lecture is divided into three parts.
| begin with a brief historical sketch of
the difficulties that various disciplines
have had with causation. Next |
outline the ideas that reduce or
eliminate several of these historical
difficulties. Finally, in honor of my
engineering background, | will show
how these ideas lead to simple
practical tools, which will be
demonstrated in the areas of statistics
and social science.

~ADAM AND EVE (DURER)

In the beginning, as far as we can tell, causality
was not problematic. The urge to ask WHY and
the capacity to find causal explanations came
very early in human development. The bible, for
example, tells us that just a few hours after
tasting from the tree of knowledge, Adam is
already an expert in causal arguments. When
God asks: "Did you eat from that tree?" This is
what Adam replies: "The woman whom you
gave to be with me, She handed me the fruit
from the tree; and | ate." Eve is just as skillful:
"The serpent deceived me, and | ate."

The thing to notice about this story is that God
did not ask for explanation, only for the facts: It
was Adam who felt the need to explain -- the message is clear, causal
explanation is a man-made concept. Another interesting point about the story:
explanations are used exclusively for passing responsibilities. Indeed, for
thousands of years explanations had no other function. Therefore, only Gods,
people and animals could cause things to happen, not objects, events or
physical processes.



SLIDE 4: THE FLIGHT OF LOT (DORE)

Natural events entered into causal explanations
much later, because, in the ancient world, events
were simply PREDETERMINED. Storms and
earthquakes were CONTROLLED by the angry
gods, and could not, in themselves, assume
causal responsibility for the consequences.

BOARD GAME (EGYPTIAN TOMB)

Even an erratic and unpredictable event such as
the roll of a die was not considered CHANCE
event but rather a divine message demanding
proper interpretation.

SLIDE 6: ON BOATS AND WHALES

One such message gave the prophet
Jonah the scare of his life when he was
identified as God's renegade and was
thrown OVERBOARD. Quoting from the
book of Jonah: "And the sailors said:
"Come and let us cast lots to find out
e = who is to blame for this ordeal. So they
cast lots and the lot fell on Jonah." Obviously, on this fuxury Phoenician cruiser,
“casting Lots" were not used for recreation, but for communication - a one-way
modem for processing messages of vital importance.

In summary, the agents of causal forces in the ancient world were either deities,
who cause things to happen for a purpose, or human beings and animals, who
possess free will, for which they are punished and rewarded.



SLIDE 7:

ARCHIMEDES’ SCREW PUMP (VITRUVIUS, 1511)

This notion of causation was naive, but
clear and  unproblematic. The
problems began, as usual, with
engineering; when machines had to
be constructed to do useful jobs.

SLIDE 8: “... AND | WILL MOVE THE EARTH” (VAVIGNON, 1687)

As engineers grew ambitious,
they decided that the earth,
too, can be moved, but not
with a single lever.

Systems consisting of many pulleys and
wheels, one driving another, were needed for
projects of such magnitude. And, once people
started building multi-stage systems, an
interesting thing happened to causality -
PHYSICAL OBJECTS BEGAN ACQUIRING
CAUSAL CHARACTER. When a system like
that broke down, it was futile to blame God or
the operator - instead, a broken rope or a rusty
pulley were more useful explanations, simply
because those could be replaced easily, and
make the system work. At that point in history,
Gods and humans ceased to be the sole
agents of causal forces - lifeless objects and
processes became partners in responsibility.
A wheel tumed and stopped BECAUSE the



wheel proceeding it turned and stopped - the human operator became
secondary.

Not surprisingly, these new agents of causation TOOK ON some of the
characteristics of their predecessors - Gods and humans. Natural objects
became not only carriers of credit and blame, but also carriers of force, will, and
even purpose. Aristotle regarded explanation in terms of a PURPOSE to be the
only complete and satisfactory explanation for why a thing is what it is. He even
called it a "FINAL CAUSE", namely, the final aim of scientific inquiry.

From that point on, causality served a dual role: CAUSES were the targets of
credit and blame on one hand, and the carriers of physical flow of control on the
other.

SLIDE 10: WATER-MILL

This duality survived in relative tranquillity until
about the time of the Renaissance, when it
encountered conceptual difficulties.

SLIDE 11: THE CASTLE OF KNOWLEDGE (RECORDES, 1575)

What happened can be seen on the title page of
Recordes' book "The Castle of Knowledge," the
first science book in English, published in 1575.
The wheel of fortune is turned, not by the wisdom
of God, but by the ignorance of man. And, as the
role of God, the final cause, was taken over by
human knowledge, the whole notion of causal
explanation came under attack.



SLIDE 12: GALILEO (PORTRAIT, 1613)

The erosion started with the work of Galileo.

SLIDE 13: GALILEO (PRISON SCENE)

Most of us know Galileo as the man who was
brought before by the inquisition and imprisoned
for defending the heliocentric theory of the world.
But while all that was going on, Galileo also
managed to quietly engineer the most profound
revolution that science has ever known.



TITLE PAGE OF DISCORSI

This revolution, expounded in his 1638 book
“Discorsi" published in Leyden, far from Rome,
consists of two Maxims:

ONE, description first, explanation
second-that is, the how precedes
the why; and TWO, description is
carried out in the language of
mathematics; namely, equations.
Ask not, said Galileo, whether an
object falls because it is pulled
from below or pushed from
above.

SLIDE 16: INCLINED PLAIN EXPERIMENT

Ask how well you can predict the
time it takes for the object to travel a
certain distance, and how that time
will vary from object to object, and
as the angle of the track changes.
Moreover, said Galileo, do not
attempt to answer such questions in
the qualitative and slippery nuances
of human language; say it in the
form of mathematical equations.




GALILEAN EQUATION d =1°

It is hard for us to appreciate today how strange
that idea sounded in 1638, barely 50 years after
the introduction of algebraic notation by Vieta. To
proclaim algebra the UNIVERSAL language of
science, would sound today like proclaiming
Esperanto the language of economics. Why
would Nature agree to speak Algebra? of all
languages? But you can't argue with success.
The distance traveled by an object turned out
indeed to be proportional to the square of the
time; — a strange mathematical entity, time
multiplied by time, resisting any straight
geometrical interpretation.

SLIDE 18: GALILEAN BEAM (MANUSCRIPT, DISCORSI, 1638)
Even more successful than predicting
outcomes of # experiments were the
computational = aspects  of  algebraic
equations. They enabled engineers, for the
first time in history, to ask "how to" questions,
in addition to "what if* questions. In addition
to asking: "What if we narrow the beam, will
it carry the load?" They began to ask more
difficult questions: "How to shape the beam
so that it WILL carry the load?" This was
made possible by the availability of methods
for solving equations. The algebraic
machinery does not descriminate among
variables; instead of predicting behavior in
terms of parameters, we can turn things
around and solve for the parameters, in
terms of the desired behavior.

Let us concentrate now on Galileo's first maxim, "description first explanation
second", because that idea was taken very seriously by the scientists, and
changed the character of science from speculative to empirical.



SLIDE 19: SNELL’S LAW (DESCARTE’S DIOPTRICS, 1637)
Physics became flooded with empirical
laws that were exiremely useful. Snell
law, Hookes law, Ohm's law, and
Joule's law are examples of purely
empirical generalizations that were
discovered and used much before they
were explained by more fundamental
principles.

SLIDE 20: HOOKE'S LAW (1678)

Philosophers, however, were reluctant to give up the
idea of causal explanation, and continued to search
for the origin and justification of those successful
Galilean equations. For example, Descartes
ascribed cause to ETERNAL TRUTH. Liebnitz made
cause a SELF-EVIDENT LOGICAL LAW.

it

SLIDE 21: DAVID HUME (PORTRAIT)

Finally, about one hundred years after Galileo,
a Scottish philosopher by the name of David
Hume carried Galileo's first maxim to an
extreme.



SLIDE 22: TITLE PAGE OF HUME-“A TREATISE OF HUMAN NATURE”

Hume argued convincingly that the WHY is not
merely second to the HOW, but that the WHY is
totally superfluous as it is subsumed by the HOW.

PAGE 156 FROM "A TREATISE OF HUMAN NATURE"

On page 156 of Hume's "Treatise of Human
Nature”, we find the paragraph that shook up
causation so thoroughly that it has not
recovered to this day. | always get a Kkick
reading it: "Thus we remember to have seen
that species of object we call *FLAME®, and to
have felt that species of sensation we call
*HEAT™". We likewise call to mind their constant
conjunction in all past instances. Without any
farther ceremony, we call the one *CAUSE* and
the other *EFFECT™, and infer the existence of
the one from that of the other."

Thus, causal connections according to Hume are product of observations.
Causation is a learnable habit of the mind, almost as fictional as optical illusions
and as transitory as Pavlov's conditioning. It is hard to believe that Hume was
not aware of the difficulties inherent in his proposed recipe. He knew quite well
that the rooster crow STANDS in constant conjunction to the sunrise, yet it does
not CAUSE the sun to rise. He knew that the barometer reading STANDS in
constant conjunction to the rain, but does not CAUSE the rain.

Today these difficulties fall under the rubric of SPURIOUS CORRELATIONS,
namely "correlations that do not imply causation". Now, taking Hume's dictum
that all knowledge comes from experience, that experience is encoded in the
mind as correlation, and our observation that correlation does not imply
causation, we are led into our first riddle of causation: How do people EVER
acquire knowledge of CAUSATION?
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SLIDE 24: THE FIRST RIDDLE OF CAUSATION

- - We saw in the rooster example that
regularity of succession is not
sufficient; what WOULD be sufficient?
What patterns of experience would
justify calling a connection "causal"?
Moreover: What patterns of experience
CONVINCES people that a connection
is "causal"?

SLIDE 25: THE SECOND RIDDLE OF CAUSATION

o e " If the first riddle concerns the
LEARNING of causal-connection, the
second concerns its usage: What
DIFFERENCE does it make if | told you
that a certain connection is or is not
causal:?

Continuing our example, what
difference does it make if | told you that
s the rooster does cause the sun to rise?
This may sound trivial. The obvious answer is that knowing what causes what
makes a big difference in how we act. If the rooster's crow causes the sun to rise
we could make the night shorter by waking up our rooster earlier and make him
crow - say by telling him the latest rooster joke.

But this riddle is NOT as trivial as it seems. If causal information has an
empirical meaning beyond regularity of succession, then that information
should show up in the laws of physics. But it does not! The philosopher Bertrand
Russell made this argument in 1913:

SLIDE 26: PURGING CAUSALITY FROM PHYSICS?

. ’ . "All  philosophers,” says Russel,
“imagine that causation is one of the
fundamental axioms of science, yet
oddly enough, in advanced sciences,
the word 'cause' never occurs ... The
law of causality, | believe, is a relic of
bygone age, surviving, like the
monarchy, only because it is
erroneously supposed to do no harm

11



Another philosopher, Patrick Suppes, on the other hand, arguing for the
importance of causality, noted that: "There is scarcely an issue of *PHYSICAL
REVIEW* that does not contain at least one article using either "cause' or
“causality' in its title."

What we conclude from this exchange is that physicists talk, write, and think one
way and formulate physics in another. Such bi-lingual activity would be forgiven
if causality was used merely as a convenient communication device - a
shorthand for expressing complex patterns of physical relationships that would
otherwise take many equations to write. After alll Science is full of
abbreviations: We use, "multiply x by 5", instead of "add x to itself 5 times"; we
say: "density" instead of "the ratio of weight to volume". Why pick on causality?

"Because causality is different," Lord Russell would argue, "It could not possibly
be an abbreviation, because the laws of physics are all symmetrical, going both
ways, while causal relations are uni-directional, going from cause to effect."
Take for instance Newton's law f =ma .The rules of algebra permit us to write
this law in a wild variety of syntactic forms, all meaning the same thing - that if
we know any two of the three quantities, the third is determined. Yet, in ordinary
discourse we say that force causes acceleration - not that acceleration causes
force, and we feel very strongly about this distinction. Likewise, we say that the
ratio f/a helps us DETERMINE the mass, not that it CAUSES the mass. Such
distinctions are not supported by the equations of physics, and this leads us to
ask whether the whole causal vocabulary is purely metaphysical. "surviving, like
the monarchy...etc."

Fortunately, very few physicists paid attention to Russell's enigma. They
continued to write equations in the office and talk cause-effect in the
CAFETERIA, with astonishing success, they smashed the atom, invented the
transistor, and the laser. The same is true for engineering. But in another arena
the tension could not go unnoticed, because in that arena the demand for
distinguishing causal from other relationships was very explicit. This arena is
statistics.

The story begins with the discovery of correlation, about one hundred years
ago.

12
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SLIDE 29: G‘ALTONS PLOT OF CORRELATED DATA (1888)

| In 1888, he measured the length of a person's
forearm and the size of that person's head and
asked to what degree can one of these
quantities predict the other. He stumbled upon
the following discovery: If you plot one quantity
against the other and scale the two axes
properly, then the slope of the best-fit line has
some nice mathematical properties: The slope is
1 only when one quantity can predict the other
precisely; it is zero whenever the prediction is no
better than a random guess and, most
remarkably, the slope is the same no matter if
you plot X against Y or Y against X. "lt is easy to
see," said Galton, "that co-relation must be the
consequence of the variations of the two organs
v | being partly due to common causes." Here we
have, for the first time, an objective measure of how two variables are “related”
to each other, based strictly on the data, clear of human judgment or opinion.

SLIDE 30: KARL PEARSON (PORTRAIT, 1890)

Galton's discovery dazzled one of his
students, Karl Pearson, now considered the
founder of modern statistics. Pearson was 30
years old at the time, an accomplished
physicist and philosopher about to turn
lawyer, and this is how he describes, 45 years
later, his initial reaction to Galton's discovery:

14



KARL PEARSON (1934)

"| felt like a buccaneer of Drake's days — ... |
interpreted that sentence of Galton to mean that
there was a category broader than causation,
namely correlation, of which causation was only
the Ilimit, and that this new conception of
correlation brought psychology, anthropology,
medicine, and sociology in large parts into the
field of mathematical treatment."

SLIDE 31:

Now, Pearson has been described as a person
"with the kind of drive and determination that took
Hannibal over the Alps and Marco Polo to China."
When Pearson felt like a buccaneer, you can be
sure he gets his bounty.

SLIDE 32: CONTINGENCY TABLE (1911)

1911 saw the publication of the
third edition of his book "The
Grammar of  Science". It
contained a new chapter titled
"Contingency and correlation -
the insufficiency of causation,"”
and this is what Pearson says in
that chapter: "Beyond such
discarded fundamentals as
'matter’ and ‘force' lies still
another fetish amidst the
inscrutable arcana of modern
science, namely, the category of
cause and effect."

15



KARL PEARSON (1934)

Thus, Pearson categorically denies the need for
an independent concept of causal relation
beyond correlation. He held this view throughout
his life and, accordingly, did not mention
causation in ANY of his technical papers. His
crusade against animistic concepts such as "will"
and "force" was so fierce and his rejection of
determinism so absolute that he EXTERMINATED
causation from statistics before it had a chance to
take root.

SLIDE 34: SIR RONALD FISHER
It took another 25 years and another
strong-willed person, Sir Ronald
Fisher, for statisticians to formulate the
randomized experiment — the only
scientifically proven method of testing
causal relations from data, and which
is, to this day, the one and only causal
concept permitted in mainstream
statistics.

And that is roughly where things stand
today... If we count the number of
doctoral theses, research papers, or
textbooks pages written on causation,
we get the impression that Pearson
: still rules statistics. The "Encyclopedia
of Statistical Science" devotes 12 pages to correlation but only 2 pages to
causation, and spends one of those pages demonstrating that "correlation does
not imply causation."

Let us hear what modern statisticians say about causality

16



SLIDE 35: MODERN STATISTICS AND CAUSALITY

” f Philip Dawid , the current editor of
Biometrika-the journal founded by
Pearson - admits: "causal inference is
one of the most important, most subitle,
and most neglected of all the problems
of statistics". Terry Speed, former
president of the Biometric Society
(whom you might remember as an
expert witness at the O.J. Simpson
murder trial), declares: "considerations
of causality should be treated as they have always been treated in statistics:
preferably not at all, (but if necessary, then with very great care.)" Sir David Cox
and Nanny Wermuth, in a book published just a few months ago, apologize as
follows: "We did not in this book use the words CAUSAL or CAUSALITY.... Our
reason for caution is that it is rare that firm conclusions about causality can be
drawn from one study."

This position of caution and avoidance has paralyzed many fields that look to
statistics for guidance, especially economics and social science. A leading
social scientist stated in 1987: "It would be very healthy if more researchers
abandon thinking of and using terms such as cause and effect." Can this state
of affairs be the work of just one person? even a buccaneer like Pearson? |
doubt it.

But how else can we explain why statistics, the field that has given the world
such powerful concepts as the testing of hypothesis and the design of
experiment would give up so early on causation?

One obvious explanation is, of course, that causation is much harder to
measure than correlation. Correlations can be estimated directly in a single
uncontrolled study, while causal conclusions require controlled experiments.

But this is too simplistic; statisticians are not easily deterred by difficulties and
children manage to learn cause effect relations WITHOUT running controlied
experiments. The answer, | believe lies deeper, and it has to do with the official
language of statistics, namely the language of probability. This may come as a
surprise to some of you but the word "CAUSE" is not in the vocabulary of
probability theory; we cannot express in the language of probabilities the
sentence, "MUD DOES NOT CAUSE RAIN" - all we can say is that the two are
mutually correlated, or dependent - meaning if we find one, we can expect the
other. Naturally, if we lack a language to express a certain concept explicitly, we
can't expect to develop scientific activity around that concept. Scientific
development requires that knowledge be transferred reliably from one study to
another and, as Galileo has shown 350 years ago, such transference requires
the precision and computational benefits of a formal language.

17



I will soon come back to discuss the importance of language and notation, but
first, 1 wish to conclude this historical survey with a tale from another field in
which causation has had its share of difficulty. This time it is computer science -
the science of symbols - a field that is relatively new, yet it has placed a
tremendous emphasis on language and notation and, therefore, may offer a
useful perspective on the problem.

When researchers began to encode causal relationships using computers, the
two riddles of causation were awakened with renewed vigor.

SLIDE 36: ROBOT IN LAB

Put yourself in the shoes of this robot
who is trying to make sense of what is
going on in a kitchen or a laboratory.
Conceptually, the robot's problems are
the same as those faced by an
economist seeking to model the
National debt or an epidemiologist
attempting to understand the spread of
a disease. Our robot, economist, and
o epldemlologlst all need to track down
cause-effect relations from the environment, using limited actions and noisy
observations. This puts them right at Hume's first riddle of causation: HOW?

SLIDE 37: ROBOT WITH MENTOR

“Easy, man! that hurts!”

The second riddle of causation also plays a role in
the robot's world. Assume we wish o take a
shortcut and teach our robot all we know about
cause and effect in this room. How should the robot
organize and make use of this information? Thus,
the two philosophical riddles of causation are now
translated into concrete and practical questions:

18



SLIDE 38: OLD RIDDLES IN NEW DRESS

- ; How should a robot acquire causal
information through interaction with its
environment? How should a robot
process causal information received
from its creator-programmer? Again,
the second riddle is not as trivial as it
might seem. Lord Russell's warning
that. causal relations and physical
equations are incompatible now
surfaces as an apparent flaw in logic.

For example when given the
information, "If the grass is wet, then
rained" and "If we break this bottle, the
grass will get wet," the computer will
conclude "If we break this bottle, then it
rained." The swiftness and specificity
with which such programming bugs
surface, have made Artificial-
Intelligence prog?ams an ideal
laboratory for studying the fine print of
causation.

THE BASIC IDEAS

This brings us to the second part of the
lecture: how the second riddle of
causation can be solved by combining
equations with graphs, and how this
solution makes the first riddle less
formidable. The overriding ideas in this
solution are: FIRST: treating causation
as a summary of behavior under
interventions and SECOND: using
equations and graphs as a
mathematical language within which causal thoughts can be represented and
manipulated. And to put the two together, we need a THIRD concept: Treating
interventions a s a surgery over equations.

Let us start with an area that uses causation extensively and never had any
trouble with it: Engineering.
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RAM

Here is an engineering drawing of a circuit
diagram that shows cause-effect relations
among the signals in the circuit. The circuit
consists of AND gates and OR gates, each
performing some logical function between input
and output. Let us examine this diagram
closely, since its simplicity and familiarity are
very deceiving. This diagram is, in fact, one of
the greatest marvels of science. It is capable of
conveying more information than millions of
algebraic equations or probability functions or
logical expressions". What makes this diagram
so much more powerful is the ability to predict
not merely how the circuit behaves under
normal conditions, but also how the circuit will
behave under milions of ABNORMAL
conditions. For example, given this circuit
diagram, we can easily teil what the output will be if some input changes from 0
to 1. This is normal and can easily be expressed by a simple input-output
equation. Now comes the abnormal part. We can also tell what the output will
be when we set ¥ to 0 (zero), or tie it to X, or change this AND gate to an OR
gate, or when we perform any of the millions combinations of these operations.

- OUTPUT |

The designer of this circuit did not anticipate or even consider such weird
interventions, yet, miraculously, we can predict their consequences. How?
- Where does this representational power come from?

It comes from what early economists called AUTONOMY, namely, the gates in
these diagram represent independent mechanisms - it is easy to change one
without changing the other. The diagram takes advantage of this independence
and describes the normal functioning of the circuit USING PRECISELY THOSE
BUILDING BLOCKS THAT WILL REMAIN UNALTERED UNDER
INTERVENTION.

My colieagues from Boelter Hall are surely wondering why | stand here before
you blathering about an engineering triviality as if it were the 8th wonder of the
world. | have three reasons for doing this. First, | will try to show that there is a lot
of unexploited wisdom in practices that engineers take for granted.

20



SLIDE 42: PATH DIAGRAMS

Second, | am trying to remind
economists and social scientists of
the benefits of this diagrammatic
method. They have been using a
similar method on and off for over 75
years, called structurali equations
modeling and path-diagrams, but in
recent years have allowed algebraic
convenience to suppress the
diagrammatic representation,
together with its benefits.

Finally, these diagrams capture in my opinion, the very essence of causation -
the ability to predict the consequences of abnormal eventualities and new
manipulations. In this diagram, for example, it is possible to predict what coat
pattern the litter guinea-pig is likely to have, if we change environmental factors,
shown here by as input (E) in green, or even genetic factors, shown in red as
intermediate nodes between parents and offsprings (H). Such predictions
cannot be made on the basis of algebraic or correlational analysis.

Viewing causality this way explains why scientists pursue causal explanations
with such zeal, and why attaining a causal model is accompanied with a sense
of gaining "deep understanding" and "being in control.”

SLIDE 43: DUC
DEEP UNDERSTANDING means
knowing, not merely how things
behaved vyesterday, but also how
things will behave under new
hypothetical circumstances, control
being one such circumstance.

Interestingly, when we have such
understanding we feel "in control"
even when if we have no practical way
of controlling things. For example, we have no practical way to control celestial
motion, and still the theory of gravitation gives us a feeling of understanding and
control, because it provides a blueprint for hypothetical control. We can predict
the effect on tidal waves of unexpected new events, say, the moon being hit by
a meteor or the gravitational constant suddenly diminishing by a factor of 2 and,
just as important, the gravitational theory gives us the assurance that ordinary
manipulation of earthly things will NOT control tidal waves. It is not surprising
that causal models are viewed as the litmus test distinguishing deliberate
reasoning from reactive or instinctive response. Birds and monkeys may
possibly be trained to perform complex tasks such as fixing a broken wire, but
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that requires trial-and-error training. Deliberate reasoners, on the other hand,
can anticipate the consequences of new manipulations WITHOUT EVER
TRYING those manipulations.

SLIDE 44: EQUATIONS VS. DIAGRAMS

Let us magnify a portion of the circuit
diagram so that we can understand
why the diagram can predict outcomes
that equations can not. Let us also
switch from logical gates to linear
equations (to make everyone here
more comfortable), and assume we
are dealing with a system containing
just two components: a multiplier and
an adder. The MULTIPLIER takes the
input and multiplies it by a factor of 2; the ADDER takes its input and adds a 1 to

it. The equations describing these two components are given here on the left.

But are these equations EQUIVALENT to the diagram on the right? Obviously
not! If they were, then let us switch the variables around, and the resulting two
equations should be equivalent to the circuit shown below. But these two
circuits are different.

The top one tells us that if we physically manipulate Y it will affect Z, while the
bottom one shows that manipulating ¥ will affect X and will have no effect on Z.
Moreover, performing some additional algebraic operations on our equations,
we can obtain two new equations, shown at the bottom, which point to no
structure AT ALL; they simply represent two constraints on three variables,
without telling us how they influence each other.

Let us examine more closely the mental process by which we determine the
effect of physically manipulating Y, say setting Y to 0.

INTERVENTION AS SURGERY ON MECHANISM

Clearly, when we set Y to 0, the
relation between X and Y is no longer
given by the mulliplier - a new
mechanism now controls Y, in which X
has no say. In the equational
representation, this amounts to
replacing the equation Y=2X by a new
equation, ¥Y=0, and solving a new set
of equations, which gives Z=1. If we
perform this surgery on the lower pair

SLIDE 45:
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of equations, representing to the lower model, we get of course a different
solution. The second equation will need to be replaced, which will yield X = 0
and leave Z unconstrained.

We now see how this model of intervention leads to a formal definition of
causation: "Y is a cause of Z if we can change Z by manipulating ¥, namely, if
after surgically removing the equation for ¥, the solution for Z will depend on the
new value we substitute for ¥'. We also see how vital the diagram is in this
process. THE DIAGRAM TELLS US WHICH EQUATION IS TO BE DELETED
WHEN WE MANIPULATE Y. That information is totally washed out when we
transform the equations into algebraically equivalent form, as shown at the
bottom of the screen - from this pair equations alone, it is impossible to predict
the result of setting Y to 0, because we do not know what surgery to perform -
there is no such thing as "the equation for ¥".

IN SUMMARY, INTERVENTION AMOUNTS TO A SURGERY ON EQUATIONS,
GUIDED BY A DIAGRAM, AND CAUSATION MEANS PREDICTING THE
CONSEQUENCES OF SUCH A SURGERY.

This is a universal theme that goes beyond physical systems. In fact, the idea of
modeling interventions by "wiping out" equations was first proposed by an
ECONOMIST, Herman Wold in 1960, but his teachings have all but
disappeared from the economics literature. History books attribute this
mysterious disappearance to Wold's personality, but | tend to believe that the
reason goes deeper: Early econometricians were very careful mathematicians;
they fought hard to keep their algebra clean and formal, and could not agree to
have it contaminated by gimmicks such as diagrams. And as we see on the
screen the surgery operation makes no mathematical sense without the
diagram, as it is sensitive to the way we write the equations.

Before expounding on the properties of this new mathematical operation, let me
demonstrate how useful it is for clarifying concepts in statistics and economics.

SLIDE 46: INTERVENTION AS SURGERY - CONTROLLED
EXPERIMENTS

Why do we prefer controlled
experiment over uncontrolled studies?
Assume we wish to study the effect of
some drug treatment on recovery of
patients suffering from a given
disorder. The mechanism governing
the behavior of each patient is similar
in structure to the circuit diagram we
saw earlier: Recovery is a function of
both the treatment and other factors,
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such as socio-economic conditions, life-style, diet, age etc. only one such factor
is shown here. Under uncontrolled conditions, the choice of treatment is up to
the patients, and may depend on the patients socio-economic background. This
creates a problem, because we can't tell if changes in recovery rates are due to
treatment or to those background factors. What we wish to do is compare
patients of same backgrounds and that is precisely what Fisher's RANDOMIZED
EXPERIMENT accomplishes. How?

It actually consists of two parts, randomization and INTERVENTION. Intervention
means that we change the natural behavior of the individual: we separate
subjects into two groups, called treatment and control, and we convince the
subjects to obey the experimental policy. We assign treatment to some patients
who, under normal circumstances, will not seek treatment, and we give placebo
to patients who otherwise would receive treatment. That, in our new vocabulary,
means SURGERY - we are severing one functional link and replacing it by
another. Fisher's great insight was that connecting the new link to a random
coin flip, GUARANTEES that the link we wish to break, is actually broken. The
reason is, that a random coin is assumed unaffected by anything we can
measure on a macroscopic level, including, of course, a patient socio-economic
background.

This picture provides a meaningful and formal rationale for the universally
accepted procedure of randomized trials. In contrast, our next example uses the
surgery idea to point out inadequacies in widely accepted procedures.

SLIDE 47: EXAMPLE 2 - POLICY ANALYSIS

The example involves a Government
official trying to evaluate the economic
consequences of some policy, say
taxation. A deliberate decision to raise
or lower taxes is a surgery on the
model of the economy because it
modifies the conditions prevailing
while the model was built. Economic
models are built on the basis of data
taken over some period of time, and
during this period of time, taxes were lowered and raised in response to some
economic conditions or political pressure. However, when we EVALUATE a
policy, we wish to compare alternative policies under the SAME economic
conditions, namely we wish to sever this link that, in the past, has tied policies to
those conditions.

In this set-up, it is impossible of course to connect our policy to a coin and run a
controlled experiment; we do not have the time for that, and we might ruin the
economy before the experiment is over. Nevertheless the analysis that we
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SHOULD CONDUCT is to infer the behavior of this mutilated model from data
governed by a non-mutilated model.

| said, SHOULD CONDUCT, because you will not find such analysis in any
economics textbook. As | mentioned earlier, the surgery idea of Herman Wold,
was stamped out of the economics literature in the 1970's and all discussions
on policy analysis that | could find, assume that the mutilated model prevails
throughout. The fact that taxation is under government control at the time of
evaluation is assumed to be sufficient for treating taxation an exogenous
variable throughout when, in fact, taxation is an endogenous variable during the
model-building phase, and turns exogenous only when evaluated. Of course, |
am not claiming that reinstating the surgery model would enable the
government to balance its budget overnight, but it is certainly something worth

trying.

Let us examine now how the surgery interpretation resolves Russell's enigma:
concerning the clash between the directionality of causal relations and the
symmetry of physical equations. The equations of physics are indeed
symmetrical, but when we compare the phrases "A CAUSES B* vs. "B CAUSES
A" we are not talking about a single set of equations. Rather, we are comparing
two world models, represented by two different sets of equations; one in which
the equation for A is surgically removed, the other where the equation for B is
removed. Russell would probably stop us at this point and ask: "How can you
talk about TWO world models, when in fact there is only one world model, given
by all the equations of physics put together?" The answer is: YES. If you wish to
include the entire universe in the model, causality disappears because
interventions disappear - the manipulator and the manipulated loose their
distinction. However, scientists rarely consider the entirety of the universe as an
object of investigation. In most cases the scientist carves a piece from the
universe and proclaims that piece: IN namely, the FOCUS of investigation. The
rest of the universe is then considered OUT or BACKGROUND, and is
summarized by what we call BOUNDARY CONDITIONS. This choice of INs and
OUTs creates asymmetry in the way we look at things, and it is this asymmetry
that permits us to talk about "outside intervention”, hence, causality and cause-
effect directionality.
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SLIDE 48: HAND-EYE SYSTEM (DESCARTES, L'HOMME)

This can be illustrated quite nicely using Descartes
classical drawing. As a whole, this hand-eye system
knows nothing about causation. It is merely a messy
plasma of particles and photons trying their very best
to obey Schroedinger's Equation, which is symmetric.
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However, carve a chunk from it, say the object part,
and we can talk about the motion of the hand
CAUSING this light ray to change angle.

lo and behold, it is now the light ray that causes the
hand to move - precisely the opposite direction. The
lesson is that it is the way we carve up the universe
that determines the directionality we associate with
cause and effect. Such carving is tacitly assumed in
every scientific investigation. In artificial intelligence it
was called circumscription, by J. McCarthy. In
economics, circumscription amount to deciding which
variables are deemed endogenous and which ones
exogenous, IN the model or EXTERNAL to the model.
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SLIDE 51: FROM PHYSICS TO CAUSALITY

Let us summarize the essential
differences between equational and
causal models. Both use a set of
symmetric equations to describe
normal conditions. The causal model,
however, contains three additional
ingredients: a distinction between the
IN and the OUT. An assumption that
each equation corresponds to an
. independent mechanism, hence, it
must be preserved as a separate mathematical sentence. Interventions are
interpreted as surgeries over those mechanism. This brings us closer to
realizing the dream of making causality a friendly part of physics. But one
ingredient is missing: THE ALGEBRA.

- We discussed earlier how important the computational facility of algebra was to
scientists and engineers in the Galilean era. Can we expect such algebraic
facility to serve causality as well? Let me rephrase it di fvr ntly: Scientific
activity, as we know it, consists of two basic components:

SLIDE 52: OBSERVATORY (HEVELIUS, 1673)

Observations
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SLIDE 53: HAMMERING A MAGNET (GILBERT, DE MAGNET, 1600)

and interventions.

SLIDE 54: LABORATORY

The combination of the two is what
we call a LABORATORY, a place
where we control some of the
conditions and observe others. It so
happened that standard algebras
have served the observational
component.very well, but, thus far,
have not benefited the
interventional component. This is
true for the aigebra of equations,

Boolean algebra, and probability calculus, all are geared to serve observational
sentences, but not interventional sentences.

SLIDE 55: NEEDED: ALGEBRA OF DOING

Take for example, probability theory.
If we wish to find the chance it rained,
given that we see the grass wet,
we can express our question in a
formal sentence written like that:
P(rainlwet) to be read:
Probability~Of~Rain~Given~Wet. The
vertical bar stands for the phrase:
"given that we see". Not only can we
express this question in a formal
sentence but we can also use the machinery of probability theory and transform
the sentence into other expressions. In our example, the sentence on the left
can be transformed to the one on the right, if we find it more convenient or
informative.

But suppose we ask a different question: "What is the chance it rained if we
MAKE the grass wet?" We cannot even express our query in the syntax of
probability, because the vertical bar is already taken to mean "given that | see".
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We can invent a new symbol "DO", and each time we see a DO after the bar we
read it "GIVEN THAT WE DO" - but this does not help us compute the answer to
our question, because the rules of probability do not apply to this new reading.
We know intuitively what the answer should be: P(rain), because making the
grass wet does not change the chance of rain. But can this intuitive answer, and
others like it, be derived mechanically? so as to comfort our thoughts when
intuition fails?

The answer is YES, and it takes a new algebra: First, we assign a symbol to the
new operator "given that | do". Second, we find the rules for manipulating
sentences containing this new symbol. We do that by a process analogous to
the way mathematicians found the rules of standard algebra.

SLIDE 56: NEEDED: ALGEBRA OF DOING (CONT)

Imagine that you are a mathematician
in the 16th century, you are now an
expert in the algebra of ADDITION,
and you feel an wurgent need to
introduce a new operator:
MULTIPLICATION, because you are
tired of adding a number to itself all
day long. First thind you do is assign
the new operator a symbol
MULTIPLY. Then you go down to the
meaning of the operator, from which you can deduce its rules of
transformations. For example: the commutative law of multiplication can be
deduced that way, the associative law, and so on,.... we now learn all this in
high school. In exactly the same fashion, we can deduce the rules that govern
our new symbol: do(x). We have an algebra for seeing, namely, probability
theory. We have a new operator, with a brand new red outfit and a very clear
meaning, given to us by the surgery procedure. The door is open for deduction
and the result is give in the next slide.

SLIDE 57: CAUSAL CALCULUS

Please do not get alarmed, | do not
expect you to read these equations
right now, but | think you can still get
the flavor of this new calculus. [t
consist of 3 rules that permit us to
transform expressions involving
actions and observations, into other
expressions of this type. The first
allows us to ignore an irrelevant
. . observation, the third to ignore an
irrelevant action, the second allows us to exchange an action with an
observation of the same fact. What are those green symbols on the right? These
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are the green lights which the diagram gives us, whenever the transformation is
legal. We will see them in action on our next example.

SLIDE 58: OUTLINE PART-3: PRACTICAL TOOLS

Things brings us to part-3 of the
lecture, where | will demonstrate how
the ideas presented thus far can be
used to solve new problems of
practical importance.

SLIDE 59: DOES SMOKING CAUSE CANCER

Consider the century old debate concerning the
effect of smoking on lung cancer. In 1964, the
Surgeon General issued a report linking cigarette
smoking to death, cancer and most particularly,
lung cancer. The report was based on non-
experimental studies, in which a strong correlation
was found between smoking and lung cancer, and
the claim was that the correlation found is causal,
namely: If we ban smoking, the rate of cancer
cases will be roughly the same as the one we find
today among non-smokers in the population.

These studies came under severe attacks from the
tobacco industry, backed by some very prominent
statisticians, among them Sir Ronald Fisher. The

.
claim was that the observed correlations can also be explained by a model in
which there is no causal connection between smoking and lung cancer.
Instead, an unobserved genotype might exist which simultaneously causes
cancer and produces an inborn craving for nicotine. Formally, this claim would
be written in our notation as: P(cancer | do(smoke)) = P(cancer) stating that making
the population smoke or stop smoking would have no effect on the rate of
cancer cases. Controlled experiment could decide between the two models, but
these are impossible, and now also illegal to conduct.

This is all history. Now we enter a hypothetical era where representatives of
both sides decide to meet and iron out their differences. The tobacco industry
concedes that there might be some weak causal link between smoking and
cancer and representatives of the health group concede that there might be
some weak links to genetic factors. Accordingly, they draw this combined
model, and the question boils down to assessing, from the data, the strengths of
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the various links. They submit the query to a statistician and the answer comes
back immediately: IMPOSSIBLE. Meaning: there is no way to estimate the
strength from the data, because any data whatsoever can perfectly fit either one
of these two extreme models. So they give up, and decide to continue the
political battle as usual.

Before parting, a suggestion comes up: perhaps we can resolve our differences,
if we measure some auxiliary factors, For example, since the causal link model
is based on the understanding that smoking affects lung cancer through the
accumulation of tar deposits in the lungs, perhaps we can measure the amount
of tar deposits in the lungs of sampled individuals, and this might provide the
necessary information for quantifying the links? Both sides agree that this is a
reasonable suggestion, so they submit a new query to the statistician: Can we
find the effect of smoking on cancer assuming that an intermediate
measurement of tar deposits is available??? The statistician comes back with
good news: IT IS COMPUTABLE and, moreover, the solution is given in close
mathematical form. HOW?

LiDE 60: TYPICAL DERIVATION IN CAUSAL CALCULUS

The statistician receives the problem,
and treats it as a problem in High
School ALGEBRA: We need to
compute P(cancer) under hypothetical
action, from non-experimental data,
namely, from expressions involving
NO ACTIONS. Or: we need to
eliminate the "do" symbol from the
initial expression. The elimination
proceeds like ordinary solution of
algebralc equation - in each stage, a new rule is applied, licensed by some
subgraph of the diagram, until eventually leading to a formula involving only
WHITE SYMBOLS, meaning expression computable from non-experimental
data.

You are probably wondering whether this derivation solves the smoking-cancer
debate. The answer is NO. Even if we could get the data on tar deposits, the
model above is quite simplistic, as it is based on certain assumptions which
both parties might not agree to. For instance, that there is no direct link between
smoking and lung cancer, immediated by tar deposits. The model would need
to be refined then, and we might end up with a graph containing 20 variables or
more. There is no need to panic when someone tells us: "you did not take this or
that factor into account”. On the contrary, the graph welcomes such new ideas,
because it is so easy to add factors and measurements into the model. Simple
tests are now available that permit an investigator to merely glance at the graph
and decide if we can compute the effect of one variable on another.
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Our next example illustrates how a long-standing problem is solved by purely
graphical means - proven by the new algebra. The problem is called THE
ADJUSTMENT PROBLEM or "the covariate selection problem" and represents
the practical side of Simpson's paradox.

SLIDE 61: SIMPSON'S PARADOX

Simpson's paradox, first noticed by
Karl Pearson in 1899, concerns the
disturbing observation that every
statistical relationship between two
variables may be REVERSED by
including additional factors in the
analysis. For example, you might run a
study and find that students who
smoke get higher grades, however, if
o you adjust for AGE, the opposite is
true, in every AGE GROUP namely, smoking predicts lower grades. If you further
adjust for PARENT INCOME, you find that smoking predicts higher grades
again, in every AGE-INCOME group, and so on.

Equally disturbing is the fact that no one has been able to tell us which factors
SHOULD be included in"the analysis. Such factors can now be identified by
simple graphical means.

The classical case demonstrating Simpson's paradox took place in 1975, when
UC Berkeley was investigated for sex bias in graduate admission. In this study,
overall data showed a higher rate of admission among male applicants, but,
broken down by departments, data showed a slight bias in favor of admitting
female applicants. The explanation is simple: female applicants tended to apply
to more competitive departments than males, and in these departments, the rate
of admission was low for both males and females.

32



SLIDE 62: FISHNET

>=@p»  To illustrate this point, imagine a fishing
g boat with two different nets, a large
mesh and a small net. A school of fish
swim towards the boat and seek to pass
it. The female fish try for the small-mesh
challenge, while the male fish try for the
easy route. The males go through and
only females are caught. Judging by the
final catch, preference toward female is
clearly evident. However, if analyzed
separately, each individual net would surely trap males more easily than
females.
Another example involves a controversy called "reverse regression”, which
occupied the social science literature in the 1970's. Should we, in salary
discrimination cases, compare salaries of equally qualified men and women, or,
instead, compare qualifications of equally paid men and women? Remarkably,
the two choices led to opposite conclusions. It turned out that men earned a
higher salary than equally qualified women, and SIMULTANEOUSLY, men
were more qualified than equally paid women. The moral is that all conclusions
are extremely sensitive to which variables we choose to hold constant when we
are comparing, and that is why the adjustment problem is so critical in the
analysis of observational studies.

SLIDE 63: THE STATISTICAL ADJUSTMENT PROBLEM

Consider an observational study
where we wish to find the effect of Y on
Y, for example, treatment on response.
We can think of many factors that are
relevant to the problem; some are
affected by the treatment, some are
affecting the treatment and some are
affecting both treatment and response.
Some of these factors may be
unmeasurable, such as genetict rait
or life style, others are measurable, such as gender, age, and salary level. Our
problem is to select a subset of these factors for measurement and adjustment,
namely, that if we compare subjects under the same value of those
measurements and average, we get the right result.
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SLIDE 64: GRAPHICAL SOLUTION OF THE ADJUSTMENT
PROBLEM

Let us follow together the steps that
would be required to test if two
candidate measurements, Z, and Z,,
would be sufficient. The steps are
rather simple, and can be performed
manually, even on large graphs.
However, to give you the feel of their
mechanizability, | will go through them
rather quickly. Here we go.

SLIDES 65-69: GRAPHICAL SOLUTION OF THE ADJUSTMENT
PROBLEM (CONT)

end up with the answer to our
question: "IF X is disconnected from, Y
then Z, and Z, are appropriate
measurements.”
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ENDING STATEMENT

I now wish to summarize briefly the central message of this lecture. It is true that
testing for cause and effect is difficult. Discovering causes of effects is even
more difficult. But causality is not MYSTICAL OR METAPHYSICAL. It can be
understood in terms of simple processes, and it can be expressed in a friendly
mathematical language, ready for computer analysis.

SLIDE 70: ABACUS

What | have presented to you today is a sort of
pocket calculator, an ABACUS, to help us
investigate certain problems of cause and
effect with mathematical precision. This does
not solve all the problems of causality, but the
power of SYMBOLS and mathematics should
not be underestimated.

SLIDE 71: A CONTEST BETWEEN THE OLD AND THE NEW ARITHMETIC

1 ' Many scientific discoveries have been
delayed over the centuries for the lack of a
mathematical language that can amplify ideas
and let scientists communicate results. And |
am convinced that many discoveries have
been delayed in our century for lack of a
mathematical language that can handle
causation. For example, | am sure that Karl
Pearson could have thought up the idea of
RANDOMIZED EXPERIMENT in 1901, if he
had allowed causal diagrams into his
mathematics.

But the really challenging problems are still
ahead: We still do not have a causal
understanding of POVERTY and CANCER and INTOLERANCE, and only the
accumulation of data and the insight of great minds will eventually lead to such
understanding. The data is all over the place, the insight is yours, and now an
abacus is at your disposal too. | hope the combination amplifies each of these
components. Thank you.
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Remarks: technical details can be found in

J. Pearl, "Causal diagrams for experimental research,” (with discussion),
Biometrika, 82(4), 669-710, December 1995,

J. Pearl, "Structural and probabilistic causality," In D.R. Shanks, K.J. Holyoak,
and D.L. Medin (Eds.), The Psychology of Learning and Motivation, Vol. 34
Academic Press, San Diego, CA, 393-435, 1996.

J. Pearl, "The new challenge: From a century of statistics to an age of
causation," Computing Science and Statistics, 29(2), 415--423, 1997.

Hard copies of these and other related publications can be obtained from
Prof. Judea Peatrl
UCLA Computer Science Department
4532 Boelter Hall
Los Angeles, CA 90095-1596

or downloaded (postscript file) through http://Bayes.cs.ucla.edu/jp_home.html.
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