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in X achieving the value x, then X and Y will have the values x and y, respectively, 
without any intervention. 

4.3. Soundness of composition, effectiveness, and reversibility 

Following the tradition of standard logic, we will consider a property of causal 
relationships to be sound if that property holds in all causal models. 

Theorem 17. Composition is sound. 

Proof. Since Yz (u) has a unique solution, forming M, and substituting out all other 

variables would yield a unique solution for Y, regardless of the order of substitution. So 
we will form M, and examine the structural equation for Y in M,, Y, = fy( z, w, x, u), 
where W stands for the rest of the parent set of Y. To solve for W, we substitute out 

all variables except Z,Y, and X. In other words, we substitute out all variables in M, 
without substituting into Z, X, and Y and express W as a function of z, x, and u. We 

then plug this solution into fy to get Y, = fu( z, x, W( z, x, u) , u), which we can write as 
Yz = f (z, x, u). At this point, we can solve for X by substituting out all variables in Mz 
other than Z, which leaves Yz = f(z,X(u,z),u). We can now see that if x =X,(U), 
then Y,(u) = Yzx(u). q 

This proof is still valid in cases where X = 8. 

Theorem 18. Eflectiveness is sound. 

Proof. This theorem follows from Definition 1, where Y,(u) is interpreted as the unique 
solution for Y of a set of equations under X = x. 0 

Theorem 19. Reversibility is sound. 

Proof. Reversibility follows from the assumption that the solution for V in every sub- 

model is unique. Since Y,(u) has a unique solution, forming M, and substituting out 
all other variables would yield a unique solution for Y, regardless of the order of sub- 

stitution. So, we will form M, and examine the structural equation for Y in Mx, which 
in general might be a function of X,W,U, and additional variables: Y, = fy(x, w, z, u), 
where Z stands for parents of Y not contained in X U W U U. We now solve for Z by 

substituting out all variables except X,Y, and W. That is, we substitute out all variables 

in M,, without substituting into X, W, and Y and express Z as a function of x, w, and 
U. We then plug this solution into fy to get Y, = fy(x, w, Z(x, w, u), u), which we can 
write as Y, = f (x, w, u). We now consider what would happen if we solved for Y in 
M,,. Since we avoided substituting anything into W when we solved for Y in M,, we 
will get the same result as before, namely, Y,, = f (x, w, u). In the same way, we can 
show that W, = g(x,y,u) and Wxy = g(x,y,u). So, solving for y = Yx(u), w = W,(u) 
is the same as solving for y = f(x, w, u) and w = g(x, y, u), which is the same as 
solving for y = Y,,(u), w = Wxy (u). Thus, any solution y to y = Y,,(u), w = W,,(u) 
is also a solution to y = Y*(u) . Cl 
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Given a causal ordering of variables in V, that is, Y,, (u) = yZ (u) for any set 2 when- 
ever Y precedes X in the ordering, one can show that effectiveness and composition are 
complete [ 91. Joseph Halpern [ 131 has recently shown that composition, reversibility, 
and effectiveness are complete in all causal models, recursive as well as nonrecursive, 

as long as the uniqueness assumption holds. 

4.4. Proofs of causal relevartce axioms 

Using the properties from Section 4.2, we can prove Theorem 14, that the axioms of 

causal relevance are sound. 

4.2.1 Holds trivially. 0 

4.2.2 (By contradiction) Assume that there exists a causal model such that (XW ft 

Y I Z) &-((Z % y I Zl &(W + y I Z)>. s o, either (XW ft Y 1 Z) &-(X ft Y 1 Z) 

or(XWftYjZ)&~(WftY(Z). 
First, we consider (XW ft Y 1 Z) & -(X ft Y 1 Z). By our definition of causal 

irrelevance, -(X ft Y 1 Z) implies that there exist two values x, x’ of X and some 

value u of U such that Yx, (u) # Y,/, (u). Now, let us consider the values x, x’, z, 
u such that Y,, (u) # Yxjz (u). Using these values, we can determine w and w’ as 

follows: Let w = Wxz(u), and w’ = WXtz (u). It does not matter whether w = w’ or 

w # w’. By composition, Y,,,(u) Z Yxlzw( u). Thus, 3x, w, z, u Yxwz (u) Z Yntwfz (u), 
which contradicts (XW fi Y 1 Z) _ Thus, (XW ft Y 1 Z) & 1(X ft Y ) 2) leads to a 

contradiction. 
We can use a symmetric argument to show that (XW f+ Y I Z) & -( W ft Y I Z) 

also leads to a contradiction. q 

4.4 By our definition of causal irrelevance, (X ft Y I Z) + Y*,(u) = Yxlz (u) for 

all submodels of M,,. For an arbitrary W, we consider the submodel M, where W is 

forced to have the value w. By our definition of causal irrelevance, yXzw(u) = y*jzw for 
all values w. In addition, since (X ft Y 1 Z) 3 Yxz (u) = Yxfz (u) for all submodels 

of M, K&u) = Y,rzw for all submodels of M,. Since W was arbitrary, (X ft Y I 

Z) * (Xft Y 1 ZW) for all W. q 

4.5.1 (By contradiction) Assume (X ft Y I ZW)&(X ft W I ZY)&l(X 74 YW I Z). 

7(X + YW ) Z) implies 3x,x’,z (Yxz(u) f Y,!,(u)) V (Wxz(u> + Wxjz(u)), Since 
W and Y are symmetric, we will only consider Y. Consider the values of x, x’, z, u 
such that Yxz(u) Z Y,),(u). Let y = Y,,(u) and y’ = Yxtz(u). 

By composition, Y,,(u) = Yxzw(u> for w = W,,(u). By assumption, I’&(u) = 
Ynl,,( u). Also by composition, W,,(u) = Wxry(u) for y = Y,,(u). By assumption, 
Wxzy (u) = Wxfzy (u) . By reversibility, since y is a solution to the simultaneous equations 

Y = yx’zw and w = Wxfzy, then y must also be a solution to Yxfz (u). Thus y = y’, a 

contradiction. We can use a symmetric argument to show that W,, (u) f Wxlz (u) also 
leads to a contradiction. 0 
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4.5.2 (By contradiction) Assume (X ft Y 1 ZW) & (W f, Y / ZX) & 7(XW f, 
Y 1 Z). Since -(XW f, Y ( Z), by definition &,x’,w,w’,z Yxwz(u) # Yx,,,,,z(~). 
However, (X ft Y 1 ZW) implies Vx, x’, z, w YxZw(u) = YxtZW(u). Furthermore, ( W fi 
Y ( ZX) implies Vx’, w, w’, z Y,~,,(u) = Yx$fz (u). Thus, vu’x, x’, w, w’, z Yxwz (U) = 
Yxtwz (u) = Yx,w~z (u), thus Vx, x’, w, w’, z Y,,,(u) = Y,t,t, (u). This contradicts 3x,x’, 

w,w’,z Y&.(u) # Y&Q(u). 0 

4.5. Causal relevance and Lewis’ counteflactuals 

It is instructive to compare our framework to that of Lewis [ 181. We give here a 
version of Lewis’ logic for counterfactual sentences (from [ 191) . 

Rules 
( 1) If A and A * B are theorems, so is B. 

(2) If (Bl&...)+C) isatheorem, thensois ((APB])...) rj (A-C) 

Axioms 
( 1) All truth-functional tautologies. 

(2) Act-+ A. 
(3) (AD-+B)&(BE-+A)~(AD-+C) -(B-C). 

(4) ((AVB) n-+A) V ((AVB) MB) V (((AVB) 0-C) - (A-C) 
& (BE-C)). 

(5) A-B-A-B. 

(6) A&B-A-B. 

The statement A CT+ B stands for “In all closest worlds where A holds, B holds 
as well”. Lewis is careful to not put any restrictions on definitions of closest worlds, 
beyond the obvious requirement that world w be no further from itself than any other 
w’ # w. In essence, causal models with local interventions define an ordering among 
worlds that gives a metric by which to define what worlds are closest. As such, all of 
Lewis’ axioms are true for causal models and follow from effectiveness, composition, 

and (for nonrecursive systems) reversibility. 

In order to relate Lewis’ axioms to our framework, we need to translate his syntax 
’ into the language of causal models. We will equate Lewis ’ “world” with an instantiation 

of all variables in a causal model, including the variables in U. Propositions, such as A 

and B in the statements above, will be limited to the assignment of values to subsets of 

variables in a model. Thus, the meaning of the statement A cw B in causal models is 
“If we force a set of variables to have the values A, a second set of variables will have 
the values B”. Let A stand for a set of values XI,. . . ,x, of the variables Xl,. . . ,X,, 
and let B stand for a set of values yt, . . . , y,,, of the variables Yl , . . . , Y,,. Then, 

A D-+ B = Y~x,...~,,(u) = YI & 

L,.&(U) = Y2 & (25) 
. . . 

Ex,...x,,(u) = Yn & 
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Fig. 9. Example of the failure of reversibility in Lewis’ framework: W = w holds in all closest y-worlds, and 

Y = y holds in all closest w-worlds, yet Y + Y and W f w. 

Conversely, we need to define what statements such as Y,(U) = y mean in Lewis’ 

notation. Let A stand for the proposition X = x, and B stand for the proposition Y = y. 

Then, 

Y,(u) = y E A ci+ B 

We can now examine each of Lewis’ axioms in turn. 

(26) 

(1) 
(2) 

(3) 

(4) 

(5) 
(6) 

Trivially true. 
This axiom is the same as effectiveness. Namely, if we force a set of variables 

X to have the value n, then the resulting value of X is x. That is, Xx(u) = x. 
This axiom is a weaker form of reversibility, which is relevant only for nonre- 
cursive causal models. 
Since actions in causal models are restricted to conjunctions of literals, this axiom 
does not apply. However, under the interpretation do( A V B) 3 &I( A) V do(B) , 

this axiom does hold. 
This axiom follows directly from composition. 
This axiom follows directly from composition. 

Likewise, composition and effectiveness follow from Lewis’ axioms. Composition 
is a consequence of Lewis’ axiom (5) and rule (l), while effectiveness is Lewis’ 
axiom (2). Thus, causal models do not add any restrictions to counterfactual statements 

above those imposed by Lewis’ framework, when we are considering recursive models. 
When we consider nonrecursive systems, we see that reversibility is not enforced by 
Lewis’ framework. Lewis’ axiom (3), while similar, is not as strong as reversibility. 
For instance, Y = y may hold in all closest w-worlds, W = w may hold in all closest 
y-worlds and, still, Y = y may not hold in our world. A graphical example violating 

reversibility in Lewis’ framework is given in Fig. 9. 

4.6. Why transitivity fails in causal relevance 

Causal transitivity is a property that makes intuitive sense. If a variable A has a causal 
influence on B, and B has a causal influence on C, one would think that A would have 
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V = {x, KY}, x, y E (0, l}, w E (0, 1,2,3} 
w=x+2*242 

u= {h,U2}, Ul,U2 E {OJ} 
x = u1 

y=(w> 1) 

Fig. 10. Counterexample to transitivity in causal irrelevance. 

x = UI 

WI = 7x&7u2 

w2 = x & 7u2 

V = {X, WI, W2, W3, W4, Y} binary w3 = TX&U2 

U = {Ui,U2} binary W4 =X&U2 

Y= 
(w3 & 7w1 & lW2) v 

(w4 & 1WI & -7w2) 

P(Ul) = P(u2) =0.5 

Ul 

i 

xi P’ 
i 
Y 

Fig. Il. Transitivity fails, even when a variable is more completely controlled by its parents than in Fig. 10. 

a causal influence on C. This is not always the case, however, even in deterministic 
causality. Consider the causal model described in Fig. 10. In this example, X is causally 

relevant to W, and W is causally relevant to Y, but X is causally irrelevant to Y. The 
intuition behind this example is that changing X can only cause a minor change in 
W, while Y only responds to large changes in W. However, the failure of transitivity 

is deeper than this. Even when X has more complete control over the intermediate 
variable W, we still may not be able to achieve transitivity. Consider the causal model 
of Fig. 11. 

This model is the same as the model of Fig. 10 except W has now been split into 
WI,. . . , W4, corresponding to W’s four possible values. That is, WI is true if x + 1.42 = 0, 
W2 is true if x + ~2 = 1, W3 is true if x + z.42 = 2, and W4 is true if x + ~2 = 3. 

Now, by fixing X, we can cause any of the intermediate variables WI,. . . , W4 to 
be false in any given state of the world U. Likewise, each of the intermediate vari- 

ables WI,. . . , W4 can affect Y in any state U. However, X has no effect on Y in any 
state u. 
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4.7. Causal relevance and directed graphs 

4.7.1. Causal graphs as irrelevance-maps 
Comparing Axioms 3.2-3.5 to Axioms 4.2-4.5, we see that causal irrelevance is quite 

similar to path interception in directed graphs. Since people (and machines) can easily 

reason about graphs it would be useful to create a graph that represents all of the causal 
relevances and irrelevances of a given causal model. That is, we would like to create a 

graph G*(M) such that 
(i) Each variable X in M corresponds to exactly one node X* in G*(M), 

(ii) For all subsets of nodes X*, Y*, Z* in G*(M), (X* +Y* 1 Z*)~.(.+.Q j (X ft 

Y 1 Z), and 
(iii) For all subsets of variables X, Y, Z in M, (X ft Y 1 Z)=+(X*-tY* 1 Z*)Q(M). 
In such a graph G*(M), if all directed paths from X* to Y* were intercepted by some 

variables in Z, then X would be causally irrelevant to Y in the model M. Likewise, if a 
set of variables X was causally irrelevant to a set Y given fixed Z, then all paths from 
nodes in X* to nodes in Y” would be intercepted by some variables in Z. 

The obvious choice for G*(M) is G(M), the graph associated with the causal model 
itself, as defined by Eq. ( 1). If we use G*(M) = G(M), then implication (ii) holds, 

since in Section 3.6 we showed that (X -.+Y 1 Z)ocM) ==+ Y,,(U) = Yz(u>, and thus 

(X f, Y 1 Z) . However, since transitivity always holds in path interception but does not 
always in causal irrelevance, for a given model M there might be no graph G*(M) such 
that implications (ii) and (iii) hold simultaneously. Nonetheless, we can use directed 
graphs to validate candidate theorems of causal irrelevance, as we show below. 

4.7.2, Directed graphs as theorem provers 
Consider an oracle that takes in statements about path interception and returns YES 

if the statement holds in all directed graphs and NO otherwise. We will show that such 

an oracle can be used to validate or refute sentences about causal relevance. 
First, let us consider a language of causal relevance in which the literals stand for 

simple irrelevance statements of the form (X ft Y I Z), where X, Y and Z are sets 

of variables. Second, let the canonical form for sentences in the language of causal 

irrelevance be an implication al & a2 &. . .62 ai q bl V b2 V . . * V bk, whose antecedent 
consists of a conjunction of non-negated literals and whose consequent consists of 
non-negated literals. For instance, consider the sentence * 

(Xf,Y~Z)&~(Xj+Y~0)=+~(Z++Y~0). (27) 

This sentence is not in canonical form because the second conjunct in the antecedent 

is negated and the statement in the consequent is negated. The canonical form of this 

sentence is 

~Xf,~l~~~~~ft~I0~~~~ft~I0~. (28) 

Any causal irrelevance sentence can be written in a unique canonical form using 
standard logical procedures. 

* A version of this sentence was chosen in [ 141 as the definition of causality. 
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Definition 20 (Horn component). A Horn component H of a causal irrelevance sen- 
tence S is a sentence H such that 

(i) H is in canonical form, 
(ii) the consequent of H contains no disjunctions, and 

(iii) H+ S. 

If a sentence S is in the canonical form at &a:! & ’ . . & ai ==+ bl V b2 V. . . V bk, then a 

Horn component of S is any sentence of the form at & a2 &. . s &ai ==+ bj. For example, 

Eq. (28) has no disjunctions in its consequent and, hence, is itself a Horn component. 
For any causal irrelevance statement A of the form (X ft Y 1 Z), we will consider 

A,, the graphical translation of A to be the corresponding path-interception statement 
(X + Y 1 Z)G(M). Using this convention, we can define 

Theorem 21 (Graphical theorem verification). A causal irrelevance sentence S is true 
for all causal models iff there exists a Horn component H of S such that Hg, the 
graphical translation of H, is true for all graphs. 

For example, consider the sentence in Eq. (27). The canonical form of this sentence 
is given in Eq. (28)) and is itself a Horn component. The sentence corresponding 
to Eq. (28) for path interception in directed graphs, (X + Y 1 Z)o & (Z * Y 1 

0)~ ==+ (X -+ Y 1 @)o, states that if all paths from X to Y are intercepted by Z, and 
there are no paths from Z to Y, then there is no path from X to Y. This sentence is true 

for all directed graphs, so Eq. (27) is a valid theorem of causal relevance. 

Next, consider transitivity, stated as (X f, Y 1 Z) =+ (a f, Y / Z) V (X f, a I Z). 
The Horn components of this sentence are 

H’: (X ft Y l z> - (0 ft y I z>, (29) 
H2: (Xf,YIZ)=+(Xf,aIZ). (30) 

Looking at each of the corresponding path-interception sentences in turn, we find that 
H; : (X * Y / Z), * (a ++ Y 1 Z)o is not true for all directed graphs G, and 

H;:(X-+YIZ)o-(X * a ( Z>o is also not true for all directed graphs G, that is, 
if Z intercepts all paths from X to Y, it is not the case that either Z intercepts all paths 
from any other variable to Y or Z intercepts all paths from X to any other variable. 
Thus, transitivity is not a theorem of causal relevance. 

Proof of Theorem 21. First, we prove that if there are no disjunctions in the consequent 
of a canonical form sentence, then the sentence is true iff the corresponding sentence is 
true for path interception in directed graphs. 

We will prove this by contradiction. Assume that there exists some theorem A j B, 
where A and B are conjunctions of literals such that 

l A q B is not a theorem in causal irrelevance, and 
l A, ==+ B, is a theorem in path interception in directed graphs. 

Since A, =+ B, is a theorem in path interception, then we must be able to generate 
B, from A, using the axioms of path interception in directed graphs. However, since 
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A I B is not a theorem in causal irrelevance, every such generation of B, from A, 

must include the application of the axiom of transitivity. When the axiom of transitivity 
is used, a disjunction is created. This disjunction must be used in the generation of 

B,. By assumption, B, does not contain a disjunction. Also, none of the antecedents 

of any of the axioms of path interception contain disjunctions. Thus the only way to 
use this disjunction in the generation of B, is to resolve the disjunction with a negated 
clause. Since A, started with no negated statements, and none of the axioms of path 

interception can be used to create negated statements, we cannot resolve the disjunction 
with anything. Thus, generating B, from A, did not require an application of transitivity, 

a contradiction. 
Next, we prove that if a theorem A ==+ B V C is a theorem in causal irrelevance, 

then either A =+ B is a theorem in causal irrelevance or A =+ C is a theorem in causal 
irrelevance. If A ==+ B V C is a theorem in causal irrelevance, then we must be able to 
generate B V C from A using the axioms of causal irrelevance. Since no axiom creates 

a disjunction, to generate B V C from A we must either generate B from A and add C 

or generate C from A and add B. 
Thus, a causal irrelevance sentence is a theorem iff there is a path-interception theorem 

that corresponds to one of the Horn components of the original sentence. q 

5. Conclusion 

How do scientists predict the outcome of one experiment from the results of other 
experiments run under totally different conditions? Such transfer of experimental knowl- 
edge involves inferences that cannot easily be formalized in the standard languages of 

logic, physics, or probability. 

The formalization of such inferences requires a language within which the experimen- 
tal conditions prevailing in one experiment can be represented, such that the outcome of 

the experiment can be posed as constraint in the design and analysis of the next exper- 
iment. The description of experimental conditions, in turn, involves both observational 
and manipulative sentences, and it requires that manipulative phrases (e.g., “having 

no effect on”, “holding Z fixed”), as distinct from observational phrases (e.g., “being 

independent of”, “conditioning on Z”), 9 be given formal notation, semantical interpre- 
tation, and axiomatic characterization. It turns out that standard algebras, including the 

algebra of equations, Boolean algebra, and probability calculus, are all geared to serve 
observational but not manipulative sentences. 

This paper bases the semantics of manipulative sentences on a set of structural equa- 
tions that we call a causal model. Unlike ordinary algebraic equations, a causal model 
treats every equation as an independent mathematical object attached to one and only 
one variable. Actions are treated as modalities and are interpreted as the nonalgebraic 

operator of replacing equations. 

’ Philosophers, statisticians, and economists have often confused “holding Z constant” with “conditioning on 

a given Z” [ 291. 
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This semantics permits us to develop an axiomatic characterization of manipulative 
statements of the form “Changing X will not affect Y if we hold Z constant”. This 

axiomatization highlights the differences between causal irrelevance, as in “X is causally 
irrelevant to Y in context Z”, and informational irrelevance, as in “Finding X will 
not affect our belief in Y, once we know Z”. The former shows a closer affinity 
to graphical representation than the latter. Under the deterministic definition, causal 
irrelevance complies with all of the axioms of path interception in cyclic graphs except 

transitivity. This affinity leads to graphical methods for proving theorems about causal 

relevance and explains, in part, why graphs are so prevalent in causal talk and causal 
modeling. 

Outside of artificial intelligence, our results have interesting ramifications in the fields 

of statistics and epidemiology where, thus far, the only accepted formalization of cau- 
sation has been Rubin’s framework of counterfactuals [ 33,361, which is a rather cum- 
bersome language for expressing causal knowledge. Graphical and structural equation 

models, popular as they are in econometrics and the social sciences, are viewed with 
suspicion by statisticians because the causal interpretation of these models has not been 

adequately formalized [ 8,461. 
Our translation of counterfactuals into statements about structural equation models 

(Definition 5) generalizes and unifies the structural and counterfactual approaches, and 
greatly clarifies their conceptual and mathematical bases. The soundness of effectiveness 

and composition-the only properties of counterfactuals used in Rubin’s framework- 
assures that every theorem in that framework is also a theorem in structural equations 
models. The completeness of effectiveness and composition in recursive models [9] 

further assures that the structural interpretation of counterfactuals introduces no extra- 
neous properties beyond those embodied in Rubin’s framework. Most significantly, this 
unification permits investigators to express causal knowledge in the intuitively appealing 

language of causal graphs, use the graphs as inferential machinery and be assured of 
the validity of the results. 
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Appendix A. Independence of composition, effectiveness, and reversibility 

We show that reversibility, composition, and effectiveness are independent by creating 
a table of counterfactual statements such that two of the properties hold but the third 
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x = 2.41 

V = {X, W, Y} binary w= (x & Ul) 

U = (~7,) binary 
Y 

y = Putizy( x, w, 2.41) 

P(u,) = 0.5 

Fig. B.1. Counterexample to Property 2.2.3. 

does not. We will consider a small model, one with only two binary variables X and Y 

and a single value for U. 

A. 1. Composition and effectiveness, not reversibility 

x=0 Y=O 

xx,=0 Yx*=O XX=o,Y=o = 0 YX=o,Y=o = 0 
xx,1 = 1 YX=l = 1 XX=o,Y=l = 0 YX=o,Y=l = 1 

xy=o = 0 Yy,o=O XX=l,Y=o = 1 YX,l,YdJ = 0 

xy,t = 1 Yy=I = 1 XX=l,Y=l = 1 YX=l,Y=l = 1 

A.2. Effectiveness and reversibility, not composition 

x=0 Y=l 

xx=0 =o Yx,o = 1 XX=o,Y=o = 0 YX=o,Y=o = 0 

xx=1 = 1 YX,l = 0 XX=o,Y=l = 0 YX=o,Y=l = 1 

xy,o=o Yy,=O XX=I,Y=o = 1 YX=l,Y=o = 0 

xy=1 = 1 Yy,1 = 1 XX,l,Y=] = 1 YX=l,Y=l = 1 

A.3. Composition and reversibility, not effectiveness 

x=0 Y=l 

xx,=0 Yx* = 1 XX=o,Y=o = 0 YX=o,Y,o = 1 

xx=1 = 0 Yx,, = 1 XX=o,Y=l = 0 Yx*,y=t = 1 

xy,, = 0 Yy+ = 1 XX,l,Yzcl = 0 YX=l,Y=o = 1 

xy=t = 0 Yy=t = 1 XX=l,Y=l = 0 YX=l,Y=l = 1 

Appendix B. Counterexamples 

2.2.3 (XW + Y 1 Z)p I (X j+ Y 1 Z)p v (X f, W 1 Z)p. 
In the causal model of Fig. B.l, we can see that 

~~~ft~l0~P~~~~fr~I0~P~~~~ft~I0~P. 
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x = Ul 

{ 

Ul 

V = {X, W Y} binary y = Parity(x, w, u,) 

U = { Ut , U2) binary Pa~$Y(x,Y,ul) w = 

1 u1 

P(Ul) = P(u2) = 0.5 

UI UZ 

vi4 
if u2 = 0 I WA ,-y 

if u:! = 1 
Y f/ ,. 

if u2 = 0 

if u2 = 1 

Fig. 8.2. Counterexample to Property 2.2.4 

In this counterexample, changing X can affect the probability of Y, and changing 

X can affect the probability of W, but changing X and W together cannot affect the 
probability of Y. Since changing X affects the value of W, it makes sense to think that 
intervening on W while intervening on X would not interfere with the effect that X has 

on Y. However, X does not completely control W. That is, when we only intervene on 

X, 1/t still has some effect on W. Controlling both X and Y removes the influence of 

Ut on W. As in the counterexample to Property 2.2.2, removing the connection between 

Ut and W prevents X from having an effect on Y. 

2.2.4 (XW+YIZ)p&(XYftWIZ)p=+(Xf,YIZ)pV(XftWIZ)~. 
In Fig. B.2, we can see that 
0 P(w) = P(y) = 0.5; 
0 P(w 1 set(X= 1)) =P(y 1 set(X= 1)) =0.75; 
l P( w 1 9, y^) = 0.5 for all values of 2, j? and 
0 P( y 1 2, i3) = 0.5 for all values of L?, w^. 

Thus, (XW f, Y I 0)~ c!k (XY f+ W 1 0)~ 8~ -((X f, Y ) 0)~ V (X f, W I @PI. 
This counterexample actually contains two causal models, each similar to the model 

of counterexample 2.2.2 (see Section 3.4, Fig. 6). In one, W is a function of X, Y, and 
171, and Y is a function of U1. As for Property 2.2.2, X can affect W when Y has the 

same value as U2, but X has no effect on P(w) when Y is held constant. In the other, 
W is a function of U1, and Y is a function of X, W, and Ul. Also as in Property 2.2.2, 

X can affect Y when W has the same value as U1, but it has no effect on P(w) when 
W is fixed. U2 determines which model is in effect at any given time. While intervening 
on only X can affect P(w) and P(y), simultaneously changing X and Y has no effect 

on P(w) , and simultaneously changing X and W has no effect on P(y) . 

2.3 (X ft WY ) Z)p - (X f, Y 1 ZW)p. 

In the causal model of Fig. B.3, (X f, YW I 0)~ & -(X f, W I Y)P. 

In this counterexample, X does not have any effect on Y since P(y) = 0, and X can 
only act as an inhibitor of Y. When we intervene on W, then it is possible for Y to have 

the value 1, and X can affect the probability of Y. Thus, X can only affect Y when we 
intervene on W, and X has no effect on W. 
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x = t.41 

V = {X, W Y} binary w = u2 
Y 

U = {Ul , U2) binary y=(~ & (wXORu2)) 

P(q) = P(u2) =os 

Fig. B.3. Counterexample to Property 2.3. 

V = {X, U: Y} binary 
i 

Y = u2 \e 
W 

U2 1’ 4 
x Y 

x = u1 

U = {VI, lJ2) binary w = Putity( x, y, ll2) 

P(u,) = P(LQ) = 0.5 

Fig. B.4. Counterexample to Property 2.4. 

V = {X, W, Y} binary 
i 

y = t42 UJ 
W 

u2 Y’ 4 
x Y 

x = Ul 

U = (U1,U2) binary w = Purity( x, y, u:!) 

P(q) = P(u2) = 0.5 

Fig. B.5. Counterexample to Property 2.5.1. 

2.4 (XftYI Z)P&(X++WI zY)~e(Xf,~l Z>P. 
In the causal model of Fig. B.4, (X f, Y ( (b)p & (X f, W 1 Y)P &7(X f, WY / 0)~. 
While changing X can affect P(w) (and hence P ( y. w) ) when Y is not held fixed, 

and changing X has no effect on P(y), fixing Y blocks the effect that X has on W. 

2.5.1 (X f+ Y ) zW)p & (X f+ W 1 Zr>p - (X ++ WY 1 Z)P. 
In the causal model of Fig. B.5, (X f, Y I W)p&(X f, W I Y)p&-(X f, WY I 0)~. 
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x = u1 

V = {X, u! I: Z} binary 

U = {VI, U2) binary 

Y = u2 

W = Purizy(x,y,z) 

z = u:! 

P(q) = P(u2) = 0.5 

Fig. B.6. Counterexample to Property 2.5. I in which each variable in U has a single child. 

V={X,WY}, 
x = z41 

x,y E (0, l}, w E (C),1,2,3} 
w=x+2*r4 

U={U,,U2}, Ul,U2E {OJ} 
y = (w > 1) 

P(Ul = 1) = P(u2 = 1) = 0.5 

Ul 

6 
xt P’ 

W 

JI 
Y 

Fig. B.7. Counterexample to Property 2.6. 

Fixing W prevents X from altering the probability of Y, and fixing Y prevents X from 

altering the probability of W, but X can change the probability of W (and hence the 
probability of W & Y) if there is no intervention on Y. 

Up to this point, all of the counterexamples have relied on some exogenous variable 
from U having two different children in V. Obviously, this is not essential, since we 
could always create similar examples in which each exogenous variable has exactly one 

child. For example, in the model of Fig. B.5, we could replace ZJ2 with Z to get the 
model of Fig. B.6. 

In this model, all of the exogenous variables U have exactly one child, yet Property 
2.5.1 still does not hold. There is still an undirected cycle in the underlying causal graph, 
which is required for Property 2.5.1 to be false. Properties 2.2.1-2.6 are all true for all 
causal models whose causal graphs are trees. In addition, Properties 2.2.1-2.5.2 are true 

for all causal models whose causal graphs are polytrees. Property 2.6, as we will see 
now, is not always true, even when we restrict its causal graph to be a polytree. 

2.6 (X~,YIZ)~~(U~~YIZ)~V(X~,QIZ)P~‘~~XUZUY. 
In the causal model of Fig. B.7, 
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X can only cause a minor change in W, while a large change in W is required to 
affect Y. Thus, X can affect W, and W can affect Y, but X has no effect on W. Even if 
we restrict all variables to be binary, transitivity will not hold. For this counterexample, 

W could be split into four binary variables WI,. . . , W4, with fw, = 1(x V uz), fw, = 

x & 342, fw, = TX & u2, fw, = x & u2, and fy = w3 V ~4. Section 4.6 elaborates this 
counterexample. 
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